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Abstract— An important problem for intelligent autonomous
mobile systems/agents is the ability to predict the motions
of other objects/agents. This has natural extensions to co-
operative behavior control, where mobile agents avoid each
other by predicting the other’s motion. In this paper, we
have formulated a spatial probability distribution for moving
objects with respect to First-Order predictions, which take
into account mobility characteristics and how they relate to
probable motion. This is a novel method since the most common
approach uses Kalman Filters to estimate future states based
upon observed previous states only, assuming a geospatial 2–
D Gaussian distribution with monolithic variances in both
the normal and tangential directions of motion. Unlike prior
approaches, our methodology takes into consideration specific
dynamic constraints (e.g., Ackermann Steering), and probable
decision making capabilities of the mover. By adding higher
levels of fidelity to prediction models, more accurate and precise
object tracking, avoidance, or engagement can be accomplished
with already developed techniques.

I. INTRODUCTION

A major challenge in developing mobile autonomous
systems that will coalesce with other autonomous systems, be
it organic or mechatronic, is its capacity to predict the actions
of its neighbors. As humans, we instinctively navigate around
moving objects by estimating the most likely motion another
object will make given its mobility characteristics, the envi-
ronmental influences acting on it (e.g., terrain and weather
conditions, neighboring moving objects, traffic rules), and
an assumption of the mover’s objective (i.e., goals or other
motivations). Examples can be of people walking in crowded
parks, or driving along highways. In each case, as humans,
we track a mover’s motions and determine the most likely
action it will take, and then we compensate our motions
to avoid or engage the other mover. As an example, if
we are moving in an area where children are playing, we
instinctively know (i.e., expect) that their behavior is more
erratic than walking next to elderly people, so we compensate
our motions respectively.

For the most part, many intelligent systems such as
humans, animals, aquatic and winged vertebrate, know to
avoid potential collisions with other mobile objects. This is
not always the case as in distracted people or with children
who do not know better. Therefore, it is imperative for any
autonomous mechatronic system that will move around peo-
ple, and animals, exhibit obstacle avoidance behaviors. The
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current state-of-the-art systems are able to avoid stationary
objects, and moving objects pose additional challenges.

To avoid or engage dynamic objects, UxVs (Unmanned
Ground, Air, Sea/Surface, or Underwater Vehicle) must pre-
dict a moving object’s future position [1]–[6]. To perform
these estimates, Kalman Filters are commonly used to esti-
mate future states based upon previous observed states [7],
[8]. For the most part, they assume a geospatial 2–D Gaus-
sian distribution with monolithic variances in both the normal
and tangential directions of motion [8]. Some researchers
use potential fields to predict the behaviors of objects in the
presence of environmental influences [9]. Most of the models
do not take into consideration specific dynamic constraints
(e.g., Ackermann Steering [10], [11]), nor probable decision
making capabilities due to environmental influences.

In this paper, we set forth to understand how an intelligent
object may move on a featureless terrain within a short
window of time. We considered this a First–Order Short–
Range Mover Prediction Model (SRMPM). This model
defines probable motion based upon an initial state (i.e.,
position, velocity, and curvature), the mobility characteristics
of an object (e.g., maximum speed, maximum acceleration,
maximum curvature, and Ackermann Steering), and a set
of possible trajectories the mover may decide to traverse.
As an example, to predict the movements of a small child
running in a field, one would use a First–Order SRMPM to
characterize his/her motion since the child has not learned
the cost of navigating in different terrains and will select
paths in uneven terrains with equal probability until he/she
learns the amount of effort required to navigate such paths.
However, the child has some idea of his/her own capabilities
in following paths without falling over.

The focus of this paper is the development of the fun-
damental algorithmic approach rather than a specific real-
time implementation. The authors are performing parallel
studies that considers real–time implementation as well as
environmental influences.

This paper is organized in the following manner. Section II
introduces the concept of multiple orders of SRMPM, and
how the First–Order SRMPM fits in to an overall framework.
Section III discusses the decision basis from which an
intelligent object may select future motions, with an example
formulated using kinematically correct equations of motion
for ground vehicles. Section IV outlines the formulation of
the First–Order SRMPM. Section V shows the simulation
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results of the First–Order SRMPM with different initial
conditions and prediction time–horizons.

II. PROPOSED METHODOLOGY

Predictions of behaviors are categorized in the following
ways, (i) the Zeroth–Order SRMPM assumes the object has
zero awareness of its surrounding and its capabilities, which
is usually modelled using Kalman filters, (ii) the First–Order
SRMPM assumes the object is unaware of external influ-
ences, but is aware of its mobile capabilities (e.g., kinematics
and dynamics), (iii) the Second–Order SRMPM takes into
consideration the surrounding static environmental influences
(i.e., terrain, weather, and obstacles), (iv) the Third–Order
SRMPM takes into consideration the effects of a moving
environment, and (v) the Fourth–Order SRMPM takes into
consideration expected tactical behaviors. In this study, we
are laying the groundwork for the First–Order SRMPM.

Our proposed method for determining the mobility profile
is based on the following items (given a specific time hori-
zon), (i) the formulation of trajectories a mover can navigate
given initial conditions, (ii) the construction of a decision
tree that defines the possible trajectories a mover can take at
an instance in time, (iii) the concatenation of decision trees at
the ends of each trajectory that forms the sampling space of
all possible paths, (iv) the definition of individual paths based
upon the concatenation of trajectories in a sequential order,
(v) the probability a mover will transition to a trajectory
with a certain curvature, given an initial curvature, (vi) the
probability a mover will be at a specific location along a
path given initial conditions, and (vii) the probability that a
mover will be at a specific cell in the map given the above
information and its geometry.

The First–Order SRMPM has the following triplet proba-
bilistic form:

(Ω,A,P) (1)

where Ω is the sampling space, A is the algebra of all
possible events, and P is the probability distribution function
of event A ⊂ A. The sampling space is defined as a position
in the world map:

Ω = {ω : ω = ci, i = 1, ..., Nc} , (2)
A = {Ai : Ai ⊂ Ω} , (3)

P (ci) =

Nσ∑
l=1

Ns∑
j=1

P (ci|sj) P (sj |σl) P (σl) (4)

P (σl) =

NO∏
k

P(k)
(
σ

(k)
l

)
for k = 0, 1, 2, . . . (5)

where ω is an individual sample of a cell, ci, that a mover
may occupy in the map, Nc is the number of cells in the
world map, σl is a path the mover may take, sj is the position
of the Gravitational Center (GC) along a path, NO is the
number of prediction orders, Nσ is the number of paths, Ns
is the number of states the mover may assume, and k is the
index relating to the prediction orders. Equation 5 describes
the total probability of path σl being selected, which is the
product of all prediction order probabilities for selecting σl.

III. DECISION TREE FORMULATION

A Decision Basis is defined as a set of probable trajectories
a moving object can take given a set of initial conditions. A
Decision Tree is formed by concatenating a Decision Basis
at the end of each trajectory of a previous Decision Basis.
A Tier is the set of decision bases ordered along each path.
Tier 1 contains the root Decision Basis, Tier 2 contains the
set of decision bases attached to the ends of each trajectory
emanating from the Tier 1. Tier 3 is the next set, and so on.
The Decision Basis has the following form:

ΛT =

NΛT⋃
i=1

{
δ(ΛT ,i)

}
, for T = 1, 2, . . . , NT , (6)

where δ(ΛT ,i)
1 is the ith trajectory emanating from the

Decision Basis ΛT , NΛT is the number of trajectories in
the basis ΛT , and NT is total number of decision bases.

A path is designated as the following:

σl =
{
δl1 , δl2 , . . . , δlk−1

, δlk , δlk+1
, . . . , δlNδl

}
, (7)

for l = 1, 2, . . . , Nσ,

where {δlk} is the set of concatenated trajectories that make
up σl, Nσ is the total number of paths, k is the index of
trajectories from the initial position to the final position, Nδl
is the number of trajectories that make up σl. Note that the
trajectories that are in ΛT may also be in σl.

Figure 1 shows a simple implementation of a Decision
Tree. It shows 27 possible paths (Nσ = 27) a mover can
select. The first branch (Λ1) consists of three trajectories(
NΛ1

= 3,Λ1 =
{
δ(1,1), δ(1,2), δ(1,3)

})
, as well as the other

decision bases concatenated at the ends of each tier of
trajectories. NT = 13, is the total number of decision bases.

Fig. 1. An example Decision Tree containing 27 possible paths

A. Generating Trajectories

The Decision Tree is a graph that must have a certain
amount of fidelity to approximate the infinite possibilities of
choices (in direction, speed and time). While in an attempt
to satisfy the aforementioned, a balance must be achieved

1The subscript ΛT is removed in following discussion for brevity.
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between fidelity and implementability. The more choices
embedded in the graph, the longer it takes to compute
a solution. Work is being done to determine methods for
finding such an optimal balance, but is not discussed here
since it is beyond the scope of this topic.

1) Constructing a Simplified Kinematic and Dynamic
Model: In order to estimate the actions of moving objects,
basic kinematic equations of motion must be formulated.
For this paper, we will use a ground vehicle to illustrate
the methods. By altering the basic assumptions, the same
methodology can be extended to other vehicle types (under
water, surface and aerial), as well as gaiting entities such as
humans and animals.

The first order predictor looks at variances based upon
the capabilities of the mover, such as its physical config-
uration (size and shape), maximum speed, maximum ac-
celeration, and platform type (biped, quadruped, multi–ped,
bicycle/motorcycle, car, truck, tractor). To predict the mo-
tions of a mover using a First-Order SRMPM, two primary
assumptions have to be made: (i) the dynamic and kinematic
capabilities and limitations of the mover given a set of
initial conditions and constraints (e.g., Ackermann Steering),
and (ii) the tendencies of a mover without environmental
influences.

For this study, the dynamic limitations of the mover are (a)
the critical trajectory a mover can follow while maintaining
stability during a maneuver (Note that for ground vehicles,
mobile stability is based upon the marginal state values
that tote the conditions for flipping), and (b) the maximum
distance along a path the mover can take within a specified
prediction horizon. It is easy to determine (b) since it is the
distance the mover can achieve at its maximum accelera-
tion, given its initial velocity. Determination of (a) is more
involved since it requires finding the maximum curvature
rates an object can follow while maintaining stability. To
determine non-critical trajectories a mover is likely to follow,
the assumption is made that curvature rates will take a mover
from an initial curvature to one with a measure of less
curvature, since the natural tendencies of a mover’s motion
is to straighten out rather than continue to increase its curve.

2) Evaluating a Simplified Dynamic Model for Mobile
Stability: Here, we consider dynamic stability due to external
forces (such as the centrifugal force) that act on an object
performing a turn. The flipping is determined by the torque
about a tipping point and the associated centrifugal acceler-
ation acting on it, which is greater then the restoring torque
about the same point due to gravity. Slipping is an important
phenomenon that requires further study, but is outside the
scope of this paper. The assumptions made are acceptable,
and even conservative, since slipping would aid to an object’s
stability in regards to the object’s tipping parameters.

An example of this can be seen in cars. When the car
performs a maneuver that causes the tire to collapse to
a geometry that greatly increases the friction between the
wheel and the terrain, and prevents the car from sliding,
the body behaves as if it was pinned to the ground at that
tire. Figure 2(a) shows the simplified model used. The main

assumptions used to determine the object’s motions are (i)
the object’s motion is evaluated at instantaneous curvatures,
(ii) the object is traveling at a constant velocity, (iii) the
Center of Gravity is symmetric about the front width of the
object, and (iv) there is no slippage between the tires and
the terrain.

(a) Simplified construct for the
Gravitational Center.

(b) Top view of motion acting on
a plane.

(c) Centrifugal force acting on the side of an object.

(d) Restoration torque acting at the tipping point.

Fig. 2. Simplified dynamics of a moving object.

Figure 2(c) and Equation 8 depict the forces acting on
the simplified model on uneven ground. Figure 2(d) and
Equation 10 show the restoration force due to gravity under
the same conditions as Figure 2(c). The following equations
are the forces and torques acting on the system:

Fc = m · ac = m
v2

ρ
, (8)

τt = Fc · sin(σ + θ)l = m
v2

ρ
sin(σ + θ)l, (9)

τr = m · g cos(σ + θ)l = mg cos(σ + θ)l, (10)

where Fc is the centrifugal force, m is the mass of the object,
ac is the centrifugal acceleration, v is the normal velocity of
the object, ρ is the radius of curvature describing the motion,
τt is the torque generated by Fc, σ is the angle of the CG
from the plane of the vehicle relative to the tipping point, θ
is the angle of the terrain, l length of the leaver arm from
the tipping point to the CG, and τr is the restoration torque
of due to gravity.
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In guaranteeing safe operations, the centrifugal force pro-
duced by a turning maneuver has to be less than that of the
restoration forces due to gravity, as shown in Equation 11.
The constraint equations that restrict flipping are as follows:

τt < τr, (11)
v2

ρ
< g cot(σ + θ). (12)

On a flat surface, θ = 0, resulting in cot(σ) = b/h. Therefore
the critical instantaneous radius of curvature is

ρc
∆
=
v2

g

h

b
. (13)

The critical instantaneous radius of curvature dictates the ex-
treme curvatures used in the Decision Basis. Curvatures are
not generated that are greater than the critical instantaneous
curvature.

IV. MOVER PREDICTION MODEL

The Probability Distribution Function (PDF) for the First–
Order SRMPM is formulated by combining the probabilities
that (i) an object will most likely transition to paths with
instantaneous curvatures that are closer to its current instan-
taneous curvature, (ii) the location of the mover’s Center of
Gravity (CG) along a chosen path, and (iii) its occupation of
a cell in the world map given the location of its CG and its
physical characteristics.

A. Determining the probability that a mover will transition
to a curvature given an initial curvature

A Beta probability density function [12] is used to deter-
mine the discrete probability profile associated with the prob-
ability that a mover will select a trajectory in an adjoining
decision basis, given the termination curvature of its current
trajectory. The Beta function is ideal since it skews the higher
probabilities of selected trajectories to a group that is closer
to the previous trajectory’s curvature, as can be seen in
Figure 3(a). This figure shows that for the critical curvatures
(the extreme left/negative and right/positive curvatures), the
probabilities will most likely be zero. Curvatures that are
close to the mode, will have higher probabilities (even if they
are close to the critical curvature). The following outlines
the distribution characteristics of the Beta function used to
determine, P(δlk |δlk−1), the conditional probability that a
mover navigating along trajectory δlk−1

will transition to
δlk , along σl. See Equations 6 and 7 for details regarding
the relationship between trajectories and paths.

P(δlk |δlk−1) =
1

B(ακΛk−1
, βκΛk−1

)

×(1− κlk)
βκΛk−1

−1
κ
ακΛk−1

−1

lk
, (14)

×
βκΛk−1

(ακΛk−1
+ βκΛk−1

+ 1)
, (15)

Iκ(κ;ακΛk−1
, βκΛk−1

) =
Bκ(κ;ακΛk−1

, βκΛk−1
)

B(ακΛk−1
, βκΛk−1

)
, (16)

B(ακΛk−1
, βκΛk−1

) =
Γ(ακΛk−1

)Γ(βκΛk−1
)

Γ(ακΛk−1
+ βκΛk−1

)
, (17)

Bκ(κ;ακΛk−1
, βκΛk−1

) =

∫ κ

0

t
ακΛk−1

−1
(1− t)β

κ
Λk−1

−1
dt,

(18)
Γ(n) = (n− 1)!, (19)

where κlk is the terminating curvature associated with δlk ,
βκΛk−1

is the complete beta function, Bκ(κ;ακΛk−1
, βκΛk−1

)
is the incomplete beta function, I(ακΛk−1

, βκΛk−1
) is the

regularized complete beta function, Iκ(κ;ακΛk−1
, βκΛk−1

) is
the regularized incomplete beta function, and ακΛk−1

and
βκΛk−1

are shaping parameters for the Beta distribution of
curvature based upon the terminating curvature of the pre-
vious trajectory. Figure 3(a) shows an example of a Beta
function used to find the probability of a mover selecting
the next trajectory.

B. Determining the probability that a mover will select a
path

The probability that a path will be selected has the
following form:

P(σl) =
∏

δlk∈σl

P

δlk
∣∣∣∣∣∣∣

⋃
{δlj∈σl,δlj≺δlk}

{
δlj
} (20)

where δlj precedes δli going from the initial state of the
mover to the final state of σl. This equation illustrates that the
probability that a path σl will be chosen is the product of the
probabilities that incremental trajectories are chosen along
the path, depending upon the conditional probability that
adjoining trajectories are selected given their their curvatures,
as described in Equation 14.

C. The probability a mover will be at a specific state

To determine the probability that the mover will be at a
specific state, P(sk), along the path is formulated by

P(sk) =
∑
l

P(σl, sk) =
∑
l

P(sk|σl)P(σl), (21)

P(σl, sk) =P(sk|σl)P(σl), (22)

P(sk|σl) =
1

B(αl, βl)
(1− sk)βl−1sαl−1

k

with l being the index of path segments that are a member
of path σl, and B(αl, βl) is tuned with respect to physical
capabilities of the vehicle (e.g., the initial speeds, maximum
achievable speeds, accelerations and braking forces).

D. The probability a mover will be at a specific cell in the
map

To determine the probability that the mover will be at
a specific state (i.e., cell) in the map, P(ci), given the
physical dimensions of the mover is formulated using a
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normal distribution:

P(ci) =
∑
k

P(sk, ci) = P(ci|sk)P(sk), (23)

P(ci|sk) =
1√

2πσnσt
e
−
{

(snk−µn)2

2σ2
n

+
(stk−µt)

2

2σ2
t

}
(24)

where ci is a cell in the map, P(sk, ci) is the joint probability
of the mover’s GC at state sk and some part of the mover’s
body occupying cell ci (where snk and stk are the components
of sk transformed into normal and tangential components,
respectively, to the direction of the mover). Figure 3(b) shows
the method of discretizing the continuous probability den-
sity function, P(s), into a probability distribution function,
PD(sk), for each state (sk) along the entire path, spanning
multiple tiers of trajectories.

(a) The probability of a mover
choosing a trajectory at a decision
node. µκ is the mean, and χκ is
the mode.

(b) The probability of a mover
being along a path (the path is
comprised of contiguous trajectory
segments). sµ is the mean, and sχ
is the mode.

Fig. 3. Using the Beta Function for determining the probability of a mover
traversing to different trajectories and its state along a trajectory.

(a) ΛT = 7, τ = 4 s (b) ΛT = 11, τ = 4 s

(c) ΛT = 7, τ = 3 s (d) ΛT = 11, τ = 3 s

Fig. 4. Model fidelity comparison between ΛT = 7 and ΛT = 11.

V. SIMULATION RESULTS

The characteristic probability profiles generated in this
paper show that the profiles are more similar to waves than
ellipses. The monotonic variances in 2–D spatial Gaussian
approximations do not take into consideration possible cur-
vatures that objects may take. Different model fidelities are
constructed by adding more trajectories to each decision
basis. The finer the discretization (i.e., the more trajectories
in a basis), the more accurate the model.

1) Case 01: This case refers to a situation where the
initial speed of an object traveling due North is at 4 m/s with
zero curvature (i.e., the object is moving straight). Figure 4
shows the results of this case using two different fidelity
models. The left profiles consist of ΛT = 7 and the right
profiles consist of ΛT = 11. For a Decision Tree containing
7–dimensional uniform decision bases, spanning 3 and 4
seconds, and has 343, and 2,401 paths, respectively. A
Decision Tree containing 11–dimensional uniform decision
bases, spanning 3 and 4 seconds, and has 1,331 and 14,641
paths.

It can be seen in these figures that decision bases with
greater numbers of paths create smoother profiles. Figure 4
shows that the model with lower dimension decision bases
has a grainier profile, and it shows that ΛT = 7 has the
highest probabilities concentrated at a single point due North
of the object. In contrast, Figure 4 shows the probabilities
with ΛT = 11 has a more distinctive horseshoe shape, where
the higher probabilities are smoothed out along an arc. By
inspection, Figures 4(a) - 4(d) show that a 2–D Gaussian
approximation degrades with large time horizons.

It can also be seen that the probable motion of the mover
propagates like a wave emanating from its initial position.
The Gaussian model does not capture this wave like distri-
bution. This is the case since most Gaussian approximations
do not take into consideration possible curvatures the object
may take. As can be seen in Fig. 4(a) and 4(b), the highest
Northern probable location for the mover is at d ∼= so · t (the
distance is approximately equal to the initial speed multiplied
by the time, with out acceleration).

2) Case 02: This case refers to a situation where the
initial speed of an object is traveling due North at 4 m/s,
with an initial left curvature of -0.050 1/m. As in the
previous case, Figure 5 shows two different fidelity models
(ΛT = 7 and ΛT = 11). Similar to Case 01, the profile with
the least number of possible paths to select becomes more
grainy. The figures with ΛT = 7 show a high probability
that the object will go due North. This is a residue from the
coarseness of the discretized space. As seen in Figure 5, the
Decision Basis with the higher dimension show a smoother
profile with the higher probabilities condensed toward the
left. This is intuitively obvious since an object will try to
maintain its initial motion (within a finite time) given no
other influences. The Gaussian models are unable to capture
this characteristic.

3) Case 03: This case refers to a situation where the
initial speed of an object is traveling due North at 8 m/s
with zero curvature (seen in Figure 6). The figure shows that
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(a) ΛT = 7, τ = 4 s (b) ΛT = 11, τ = 4 s

(c) ΛT = 7, τ = 3 s (d) ΛT = 11, τ = 3 s

Fig. 5. Model fidelity comparison between ΛT = 7 and ΛT = 11.

with higher dimensional decision bases, the expected location
(i.e., mode of the distribution) is more focused due North,
but the profile maintains a horseshoe shape, and the probable
motion propagates like a wave. A Decision Tree containing
15–dimensional uniform decision bases, spanning 3 and 4
seconds, and has 3,375 and 50,625 paths, respectively. This
case shows that as the number of trajectories in the decision
bases increases, there most likely is an optimum number
of trajectories to use, where by increasing the number of
trajectories beyond this limit does not greatly add to the
fidelity of the model.

(a) ΛT = 11, τ = 4 s (b) ΛT = 15, τ = 4 s

(c) ΛT = 11, τ = 3 s (d) ΛT = 15, τ = 3 s

Fig. 6. Model fidelity comparison between ΛT = 11 and ΛT = 15.

VI. CONCLUSION

In conclusion, this paper sets forth the ground work to
construct a First–Order SRMPM that can accurately predict
future positions of an intelligently moving object, given its
initial conditions and the absence of environmental influ-
ences. This construct is beneficial since it has a higher level
of fidelity than those of a 2–D Gaussian distributions, which
are generated with little to no insight into actual mobile
capabilities and decision processes of intelligent objects.

The proposed method is a better approximation than a
2–D Gaussian probability distribution since the Gaussian
distribution has monolithic directional variances along the
normal and tangential directions of motion. This study allows
researchers to use the methods outlined in this paper as a
benchmark to evaluate the accuracy of other methods for
constructing mover probability profiles. Through the insights
gain in this paper, analytical and numerical methods can be
constructed to approximate the shapes of the First–Order
SRMPM PDFs, which would be more applicable for real–
time implementation.

Further studies are being preformed to construct higher
levels of prediction models that take into consideration
environmental influences, such as static and dynamic objects,
as well as goals and expected behaviors. The authors are ap-
plying these techniques to their obstacle avoidance methods
for UxV research and development.
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