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Abstract— In this paper, we consider distributed estimation
for discrete-time, linear systems, with finite-time data fusion of
agent measurements between each time-step of the dynamics.
Prior work in this context is related to average-consensus,
where either the data fusion is implemented for an infinite
time (in general) to reach average-consensus, or under restricted
observability requirements (one-step and/or local), whereas, our
results hold under the broadest observability conditions (n-step
global observability, where n is the dimension of the dynamics).

We show that after the finite-time data fusion on agent
measurements, the observation map at each agent is a linear
combination of the local observation maps. We then show that
this new observation map is observable (if the data is fused for
a sufficient number of iterations that we lower bound) resulting
in a stable distributed estimator that can be implemented
using semi-definite programming at each agent. We further
characterize the performance of such distributed estimators
by comparing the positive-definiteness of their corresponding
information matrices. The centralized and distributed perfor-
mance gap, although cannot be written in closed form, can be
computed using the infinite horizon Kalman gain of each filter.
Finally, we consider special cases under which the performance
of these distributed estimators is equal to the performance of
the centralized Kalman filter.

I. INTRODUCTION

The advent of sensor and social networks has directed

much of the recent research interest to the distributed esti-

mation and control problems for dynamical systems whose

observation are distributed over a network of agents. Much

work has focussed on distributed estimation with measure-

ment fusion algorithms, where either the measurement data

is fused for an infinite time (in general) between each step

of the dynamics to reach average-consensus [1]–[4], or when

restricted models for observability are used [5]–[7]. However,

there are practical limitations in reaching a consensus as

infinite iterations of any data fusion algorithm are infeasible

to implement, and in cases, when infinite iterations are not

required, the observability conditions have been simplified

to address the finite-time data fusion. Relevant work in this

context is available in [1]–[3], [5] and references therein; see

also the foundation work in [8]–[10].

The restrictions posed on the data fusion algorithms limit

the generality of the observability conditions. For instance,

References [5]–[7], [11] consider distributed estimation with

single iteration of data fusion, but they require one-step
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global observability (collection of all the observation ma-

trices is full rank). On the other hand, References [1]–

[4] consider n-step global observability (collection of all

the observation matrices along with the system matrix is

full rank), but the data fusion algorithms must reach con-

sensus, which, in general, requires infinite iterations. Note

that References [2], [6], [7] also consider single-step data

fusion but with a restricted notion of observability, i.e., local

observability at each agent. Specifically, References [2], [6],

[11] consider scalar-state dynamical systems with a scalar

local observation at each agent; thus assuming that each

agent is observable. On the contrary, our work considers

vector state-space and assumes n-step global observability,

with only a finite iterations of the data fusion algorithm.

Furthermore, we do not require any agent to be locally

observable.

The distributed estimator we propose is based on finite-

time data fusion of agent measurements and does not require

any relaxation of the centralized observability condition. We

show that the finite-time data fusion results into a new

observation map at each agent that is a linear combination

of the local observation maps. We show that these local

observation maps guarantee observability at each agent when

the data fusion is implemented for a sufficient number of

iterations (greater than or equal to the primitivity index of the

underlying agent communication graph). Other techniques

with fusion of the state estimates at each agent have also

been considered, see, e.g., [5], [12] and the references

therein. Fusion on state estimates requires designing a block-

diagonal Kalman gain matrix that is equivalent to solving

related (Linear Matrix Inequalities) LMIs under structural

constraints, whose solution is not guaranteed even if the

system is centrally observable. The main contribution of this

paper is to provide a lower bound on the number of data

fusion iterations that guarantees local observability at each

agent. This local observability results in a block-diagonal

Kalman gain that can be computed locally at each agent.

In addition to showing the stability of the local error

processes, we provide a method for comparing the steady

state solution of the Riccati equations corresponding to the

distributed and the centralized estimator. We show that the

performance of the distributed estimator with finite-time data

fusion is always upper bounded (in the information sense,

or lower bounded in the error sense) by the performance

of the centralized Kalman filter. Although this result is

intuitive but has not been explicitly shown in the context

of distributed estimation with finite data fusion iterations.

Furthermore, we show that the performance of the distributed
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estimator is optimal under the available information, i.e.,

a better estimator cannot be obtained with the given set

of information. We further consider special cases where

the distributed estimators guarantee the performance of the

centralized Kalman filter. In this context, the approach we

use is novel and provides interesting insights into scenarios

where finite data fusion iterations are, in fact, optimal. The

performance analysis carried out in this paper can also be

extended to study the role of information fusion in Riccati

equations that we consider elsewhere.

We now describe the rest of the paper. Section II provides

the preliminaries and sets the notation, whereas, Section III

provides the distributed estimator with finite-time data fusion

and considers the stability analysis. We then provide the

optimality (performance) analysis in Section IV. We provide

simulation results in Section V, and, finally, Section VI

concludes the paper.

II. PRELIMINARIES

Consider the following discrete-time dynamical system,

xk+1 = Axk + vk, (1)

where xk ∈ R
n is the state vector, and vk is the system noise

distributed as Gaussian, N (0, Q). Consider the following

observation model

yk = Cxk + rk, (2)

,




y1k
...

yNk


 =




C1

...

Cn


xk +




r1k
...

rNk


 (3)

where yik ∈ R
m and C , [CT

1 , . . . , . . . C
T
N ]T is the obser-

vation matrix1. We assume that the noise at each agent rik
is Gaussian,2 N (0, Im). We assume that the above system

is observable, i.e., the pair (A,C) is observable (this is the

n-step global observability that we mentioned before).

Network connectivity: The interactions among the agents

are modeled with an undirected graph, G = (V, E),
where V = {1, . . . , N} is the set of vertices and E ⊆ V ×V
is the set of ordered pairs describing the interconnections

among the agents. The neighborhood at the ith agent is

defined as Ni , {i}∪{j | (i, j) ∈ E}. For details on graph-

theoretic concepts, see [13].

A. Centralized Kalman filter

The optimal centralized state estimate, x̂c
k+1|k+1

, at time

k + 1, given all the agent observations up to time, k + 1, is

the centralized Kalman filter [14], [15]:

x̂c
k+1|k+1 = Ax̂c

k|k +Kc
k+1(yk+1 − CAx̂c

k|k), (4)

1Here, we assume that each agent has the same number, m, of observa-
tions, this assumption is made for simplification of the discussion and does
not lose generality.

2Note that the assumption of having an Im noise covariance can be
made without the loss of generality. This is because if the observation noise
covariance were Ri > 0, then a transformation of the local observations

with R
−1/2
i does not lose any information in yik , and results into a

covariance of Im. In such cases, we only require E[rikr
jT
k ] = 0, ∀i 6= j

for our results to hold.

where Kc
k+1

is the centralized Kalman gain that is computed

as a function of the centralized estimator and predictor error

covariances. Clearly, if the system is (A,C) observable, the

error dynamics in the Kalman filter are stable.

In the following, we give a distributed observer that is

based on data fusion between each innovation update. This

data fusion only requires finite iterations, unlike consensus-

based estimators [1]. We split the analysis of the proposed

distributed estimator into two categories: first we address

stability, and then we address optimality.

III. DISTRIBUTED KALMAN FILTER: STABILITY

Consider the following data fusion algorithm at agent i:

dik+1(t) =
∑

j∈Ni

wijd
j
k+1

(t− 1), (5)

with dik+1
(0) = CT

i y
i
k+1

. It follows that

dik+1(t) =
N∑

j=1

[W t]ijC
T
j y

j
k+1

,

=

N∑

j=1

[W t]ijC
T
j Cjxk+1 +

N∑

j=1

[W t]ijC
T
j r

j
k+1

,

where [W t]ij is the ij-th element of W t, and W = {wij}.

With t steps of data fusion (5), we get dik+1
(t), which is

a linear combination of the agents’ observations. Let Wi(t)
denote the mN ×mN diagonal matrix with [W t]ijIm as its

main diagonal elements (with i fixed and j = 1, . . . , N ).

After t steps of (5), the observation matrix for agent i’s
observation model, dik+1

(t), can be compactly written as

Ci(t) , CTWi(t)C =

N∑

j=1

[W t]ijC
T
j Cj , (6)

where the observation noise covariance in dik+1
(t) is

Ri(t) , CTW 2
i (t)C =

N∑

j=1

[W t]2ijC
T
j Cj , (7)

Using a similar finite-time data fusion algorithm to (5),

we may compute Ci(t) (and Ri(t)) at each agent i, which

is a scaled linear combination of the local (transformed)

observation matrices (and local weighted covariances). At

each agent i, this scaling depends on the ith row of the

weight matrix evolved after t steps, i.e., on [W t]ij . Note

that this data fusion has to be carried out only once at the

start of the algorithm as Ci(t) is independent of k.

We now consider the following distributed estimator.

x̂i
k+1|k+1 = Ax̂i

k|k +Ki
k+1(d

i
k+1(t)− Ci(t)Ax̂

i
k|k). (8)
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The error in the above estimator is given by

eik+1|k+1 , xk+1 − x̂i
k+1|k+1,

= Axk + vk −Ax̂i
k|k

− Ki
k+1(Ci(t)xk+1 − Ci(t)Ax̂i

k|k)

− Ki
k+1

N∑

j=1

[W t]ijC
T
j r

j
k+1

,

=
(
A−Ki

k+1Ci(t)A
)
eik|k + ηik+1, (9)

where

ηik+1 = (In −Ki
k+1Ci(t))vk −Ki

k+1

N∑

j=1

[W t]ijC
T
j r

j
k+1

.

A. Infinite-time data fusion

In this section, we show that, if we replace Ci(t) by CTC,

then the distributed estimator in (8) has the same stability

notion and performance as the centralized estimator in (4).

In other words, this is equivalent to saying that the two

observation models, yk and CT yk, have the same stability

notion and performance. We will prove this in Theorem 2

in Section IV. In the following lemma, we show that the

stability of the observation model yk implies the stability of

the observation model CT yk, and vice versa.

Lemma 1: The pair (A,C) is observable if and only if the

pair (A,CTC) is observable.

The above lemma is straightforward to prove. For instance,

notice that the row-space of CTC is the same as the row-

space of C; thus, the row-space of the observability matrix

for the pair, (A,CTC), is the same as the row-space of the

observability matrix for the pair, (A,C), and observability

of the two pairs are equivalent. That the performance is also

the same will be shown in Theorem 2.

One method to obtain CTC from Ci(t) is through

average-consensus as is shown in [1]. Choosing the weight

matrix, W = {wij}, in the data fusion algorithm (5), to be

stochastic (along with some assumptions on the underlying

agent communication graph, G), such that limt→∞ W t =
11T /N , guarantees

lim
t→∞

Ci(t) =
1

N
CTC. (10)

Hence, if we allow infinite consensus iterations between each

successive steps of the dynamics (between each k and k +
1), then the local observation matrices become CTC/N and

choosing Ki
k+1

= NKc
k+1

at each agent suffices for the

distributed estimator in (8) to have the same performance as

the centralized Kalman filter (4).

Clearly, there are several limitations of reaching consen-

sus. Mainly, the process is asymptotic, thus, requires infinite

iterations between any two time-steps of the dynamics.

This requirement, although has pedagogical contributions, is

infeasible to implement in any practical situation. We now

explore the distributed estimator of (8), when the data fusion

between any two steps of the dynamics is carried out for a

finite time.

B. Finite-time data fusion

We now provide the main result of this section, i.e., the

distributed estimator in (8) results into a stable estimator for

any t ≥ τ(G) along with some restrictions on the weight

matrix, W , where τ(G) is the index of primitivity of the

underlying agent communication graph, G. To proceed fur-

ther, we first characterize the observability of the observation

matrix,
∑N

j=1
zijC

T
j Cj , when zij > 0 for all i, j, in the

following lemma.

Lemma 2: A dynamical system is (A,CTC)-observable if

and only if it is (A,
∑N

j=1
zijC

T
j Cj)-observable3 for strictly

positive zij’s.

Proof: Let Dc =
∑N

j=1
CT

j Cj . Recall that the

pair (A,Dc) is observable if and only if the observability

Gramian,

O =
[
(Dc)

T , (DcA)
T , . . . , (DcA

n−1)T
]T

(11)

is full rank. That the observability Gramian is full rank is

true if and only if the following matrix

OTO =

n−1∑

k=0

(Ak)TDT
c DcA

k, (12)

=

n−1∑

k=0

(Ak)T
N∑

j=1

CT
j Cj

N∑

j=1

CT
j CjA

k, (13)

is strictly positive-definite. Now note that OTO is strictly

positive definite if and only if

n−1∑

k=0

(Ak)T
N∑

j=1

zijC
T
j Cj

N∑

j=1

zijC
T
j CjA

k, (14)

is strictly positive definite for zij > 0 for all i, j, which

concludes the proof.

The proof of this lemma is straightforward and we provide

it here for the sake of completeness. With the help of the

above lemma, we provide the following theorem.

Theorem 1: Let the agent communication graph, G, be

irreducible, and let τ be its primitivity index. For each i,
let wij > 0, ∀ j ∈ Ni, then ∃Ki at each i, such that the

distributed estimator in (8) is stable for any t ≥ τ .

Proof: Since G is irreducible, and for each i, wij >
0, ∀ j ∈ Ni, the matrix W is irreducible and primitive.

Hence, for any t ≥ τ , W t is a strictly positive matrix,

i.e., each element of W t is strictly positive, and, at any

agent i, Ci(t) =
∑N

j=1
wijC

T
j Cj is a linear combination

of CT
j Cj’s with strictly positive weights. Hence, (A,Ci(t))

is observable at each i from Lemma 2, and there exists a

gain matrix Ki at each i that stabilizes the error in (8).

We may implement the following procedure at each agent

i, to compute a stabilizing gain, Ki, that guarantees a stable

error process, i.e., ρ(A − KiCiA) < 1. From Lyapunov

theory [16], we know that ρ(A−KiCiA) < 1, if and only

3Note that CTC =
∑N

j=1
CT

j Cj .
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if there exists a symmetric positive-definite matrix, P > 0,

such that

(A−KiCiA)
TP (A−KiCiA)− P < 0,

⇒ (PA− Y iCiA)
TP−1(PA− Y iCiA)− P < 0,

where Y i = PKi. Writing the above equation in its Schur

complement form, we can solve the following Linear Matrix

Inequality (LMI) [17],
[

P (PA− Y iCiA)
T

(PA− Y iCiA) P

]
> 0, (15)

for P and Y i using semi-definite programming (SDP) [18],

and compute Ki = P−1Y i.

IV. DISTRIBUTED KALMAN FILTER: OPTIMALITY

In this section, we will provide a quantitative comparison

between the performance of the centralized Kalman filter

(4) and the distributed Kalman filter with finite-time data

fusion (8). We will also consider cases when the performance

of the distributed estimator is the same as the centralized

performance. To this end, we note that the observation set

of the centralized Kalman filter is given by the pair (C,R),
where R > 0 is the observation noise covariance, which is

block-diagonal as we assume that the observation noise is

independent among the agents. As we mentioned before, we

can assume R = ImN , without loss of generality. Thus, at

any time k, the information content4, Ic, associated to the

centralized observation set, (C, ImN ), is given by

Ic = CTR−1C = CTC. (16)

Similarly, as shown in (6) and (7), the observation set of

the distributed estimator is given by (Ci(t), Ri(t)), and the

information content, at any time k, in the distributed filter is

Id = (CTWi(t)C)(CTW 2
i (t)C)†(CTWi(t)C), (17)

where ‘†’ denotes the Moore-Penrose pseudo-inverse [20].

We replace the inverse with a pseudo-inverse as CTW 2
i (t)C

is not necessarily invertible. Let Zc
k|k and Zc

k|k−1
be the

information matrices of the centralized Kalman filter, which

are the inverses of the error covariances, Sc
k|k and Sc

k|k−1
,

respectively5. The following lemma shows that the compar-

ison of the information matrices coming from two different

observation sets is governed by the their information content.

Lemma 3: Let (C1, I) and (C2, I) be two observation sets

corresponding to the dynamical system in (1), such that

(A,C1) and (A,C2) are both observable. If Z1

0|0 = Z2

0|0

and I1 ≥ I2, then Z1

k|k ≥ Z2

k|k, ∀ k.

Proof: We will prove this lemma by induction. The

base case (k = 0) holds trivially. To show for time k, we

assume the following is true for time k − 1,

Z1

k−1|k−1 ≥ Z2

k−1|k−1. (18)

4Note that for static linear parameter estimation, the information content
is the inverse of the Cramer-Rao lower bound [19].

5The superscript ‘c’ denotes the centralized variables, whereas, the
superscripts ‘d’ will denote the variables in the distributed filter.

Then,

(Z1

k−1|k−1)
−1 ≤ (Z2

k−1|k−1)
−1,

or,

A(Z1

k−1|k−1)
−1AT +Q ≤ A(Z2

k−1|k−1)
−1AT +Q,

or,

(A(Z1

k−1|k−1)
−1AT +Q)−1

≥ (A(Z2

k−1|k−1)
−1AT +Q)−1,

or,

(A(Z1

k−1|k−1)
−1AT +Q)−1 + CT

1 C1

≥ (A(Z2

k−1|k−1)
−1AT +Q)−1 + CT

2 C2,

since I1 ≥ I2, and the proof follows by realizing that

Z1

k|k = (A(Z1

k−1|k−1)
−1AT +Q)−1 + CT

1 C1.

The above lemma shows that the performance of two dif-

ferent Kalman filter (both estimating the same system (1))

with two different but observable observation sets, can be

compared by comparing their associated information content,

I. Note that since both the observation sets are observable,

limk→∞ Z1

k|k and limk→∞ Z2

k|k, exist and are strictly pos-

itive definite. Since both of these sequences converge (to

a unique solution if we further assume (A,Q1/2) to be

stabilizable [16]), and one always stays below the other,

the asymptotic performance of limk→∞ Z2

k|k will always be

bounded above by limk→∞ Z1

k|k.

A. Comparison between centralized and distributed filters:

Special cases

We now show some relevant comparisons between the

information content of the centralized and distributed esti-

mators.

Lemma 4: The following are true:

(i) We have

I(CTC,CTC) = I(C, I); (19)

(ii) If Wi(t) = wImN for w 6= 0, then

I(C, I) = I(CTWi(t)C,C
TW 2

i (t)C); (20)

(iii) If C is invertible and t ≥ τ , then

I(C, I) = I(CTWi(t)C,C
TW 2

i (t)C); (21)

Proof:

(i) Note that

I(CTC,CTC) = CTC(CTC)†CTC,

= CTC,

= I(C, I),

by the properties of the Moore-Penrose pseudo-

inverse [20].
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(ii) We can write

I(CTWi(t)C,C
TWi(t)

2C)

= wCTC(w2CTC)†wCTC,

= CTC,

= I(C, I),

by the properties of the Moore-Penrose pseudo-

inverse [20].

(iii) Finally, note that if t ≥ τ , then Wi(t) is invertible. This

is because Wi(t) is a diagonal matrix whose diagonal

elements are given by [W t]ijIm and t ≥ τ ensures that

[W t]ij > 0 for each j. We thus have,

I(CTWi(t)C,C
TWi(t)

2C)

= CTWi(t)C(CTWi(t)
2C)†CTWi(t)C,

= CTWi(t)CC−1Wi(t)
−2C−TCTWi(t)C,

= CTC,

= I(C, I),

by the properties of the Moore-Penrose pseudo-

inverse [20].

Remarks:

(i) Note that I(CTC,CTC) is the information content of

the observation model, CT yk, as it has the observation

matrix, CTC, and the observation noise covariance,

CTC. Hence, part (i) of Lemma 4 shows that the two

observation models, yk and CT yk, possess the same

information.

(ii) Part (ii) of Lemma 4 shows that if the ith row of W t is

such that it can be written as w 6= 0 times 1T , then the

performance of the distributed estimator is the same

as the performance of the centralized estimator. One

method to obtain the ith row as w1T is via the average-

consensus [1], which results into w = 1/N as t → ∞.

(iii) Part (iii) of Lemma 4 shows that if C is invertible

(n× n square), then a distributed estimator with t ≥ τ
will result into the centralized performance. This is

a very important result as it shows that a Kalman

filter with finite-time data fusion can provide the exact

same performance as the Kalman filter with infinite

consensus iterations (when C is invertible).

Finally, we now revisit the distributed filter with infinite-time

data fusion (average-consensus) in the following theorem.

Theorem 2: The distributed estimator in (8) with infinite

average-consensus iterations between each step of the dy-

namics (between each k and k + 1) is observable when the

centralized estimator (4) is observable. Furthermore, the two

filters give the exact same performance.

Proof: The observability part is already established in

Lemma 1. The information content is compared in Lemma 4-

(i), and the theorem follows from Lemma 3.

B. Performance gap between the centralized and the dis-

tributed estimator

We now quantify the performance gap between the cen-

tralized Kalman filter (4) and the distributed estimator (8)

when t ≥ τ in the following lemma.

Lemma 5: Let Zc
k|k and Zd

k|k be the information matrices

of the centralized Kalman filter (4) and the distributed

estimator (8) with t ≥ τ , respectively. Let the underlying

agent communication graph, G be irreducible, and, for each

i, let wij > 0, ∀ j ∈ Ni, then ∀ k,

Zc
k|k ≥ Zd

k|k. (22)

Proof: To prove the lemma, it suffices to show that

Ic ≥ Id,

form Lemma 3, or

CTC − CTWi(t)C(CTWi(t)
2C)†CTWi(t)C ≥ 0,

or,

CT (I −Wi(t)C(CTWi(t)
2C)†CTWi(t))C ≥ 0,

or,

I −Wi(t)C(CTWi(t)
2C)†CTWi(t) ≥ 0.

To this end, let X = Wi(t)C, and assume X = UΣV T

be its singular value decomposition. We can write the above

equation as

I −X(XTX)†X = I −XX†,

= I − UΣΣ†UT ,

= I − U1U
T
1 , (23)

where U1 is a matrix that contains the first r columns of

U and r = rank(Σ) = rank(X) = rank(C), since Wi(t) is

invertible. Since I −U1U
T
1 is a projection on the null space

of U1U
T
1 , it is positive semi-definite with r unit eigenvalues,

and the lemma follows.

In summary, the main contribution of the Lemma 4 and

Lemma 5 is to explicitly characterize when the distributed

estimator with t ≥ τ gives the centralized performance.

In addition, we have shown that distributed estimator can

achieve the centralized performance even when consensus is

not reached, i.e., data fusion is not implemented for infinite

time. In other cases, the performance of the distributed

estimator will be upper bounded by the performance in the

centralized case Lemma 5. The distributed estimator (8)

can thus be implemented as a Kalman filter with t steps

of data fusion. If t ≥ τ , then the distributed estimator is

stable and also optimal within the given observation set

(CTWi(t)C,C
TW 2

i (t)C), i.e., a better estimator cannot be

obtained with at least t steps of data fusion on agent mea-

surements with fixed data fusion rule. However, optimizing

the data fusion rule (wij’s at each agent) may result in

better performance. The exact performance gap, although

cannot be computed in closed form, can be quantified using

the infinite horizon Kalman gains, Kc
∞ and Ki

∞, and their

associated asymptotic information matrices, limk→∞ Zc
k|k

and limk→∞ Zi
k|k.
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Fig. 1. A circulant graph with N = 10 agents.
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Fig. 2. Performance comparison of the centralized Kalman filter with the
distributed Kalman filter with finite-time data fusion.

V. SIMULATIONS

We now present simulations to illustrate some of the

results in this paper. We randomly choose a 5 × 5 system

matrix, A, whose largest absolute eigenvalue comes out to

be 1.43. We consider a network of N = 10 agents connected

in a circle as shown in Fig. 1, such that each agent has one

observation of the state vector, xk, i.e., the local observation

matrix Ci ∈ R
1×5, and hence the global observation matrix

C ∈ R
10×5. We randomly choose the elements in Ci, ∀ i,

such that Ci(1, 5) = 0, ∀ i. It is straightforward to note that

CTC will have rank at most 4, and thus the system is not

observable in one time-step. Furthermore, the pair A and C
is chosen such that (A,C) is n-step observable (n = 5) but

(A,Ci) is not observable for any i.
At each agent i, we choose constant weights, wij =

1/3, ∀ j ∈ Ni. Note that the weight matrix W is a circulant

matrix with exactly 3 elements being 1/3 and the rest zero.

It is straightforward to note that τ = 5 for this configuration.

We run distributed filters with t = 5, 10, 15, and the trace of

the corresponding error covariances is plotted in Fig. 2 and

compared with the trace of the centralized error covariance.

Note that as we have shown in the paper, for t ≥ 5, the

distributed filters have stable error, but the performance of

the centralized filter is better when compared to any finite t.
Another observation is that as t increases, the performance

of the distributed Kalman filter with finite time data fusion

improves.

VI. CONCLUSIONS

In this paper, we present a distributed Kalman filter with

finite-time data fusion on agent measurements. We show

that if the data fusion is carried for a sufficient number of

iterations (at least equal to the primitivity index of the agent

communication graph) then the distributed filter has a stable

error. We then study the optimality of the distributed filters

and show that the performance of the distributed filters is

upper bounded (in the information sense) by the centralized

performance. We then provide special cases under which the

distributed filters with finite data fusion have exactly the

same performance as the centralized Kalman filter (or with

infinite consensus iterations).
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