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Abstract— In this paper, we present an improvement to
frequency weighted balanced truncation technique based on
well-known partial fraction expansion. The method yields stable
reduced-order model for double-sided weightings. A numerical
example and comparison with other well-known techniques
shows that a significant approximation error reduction can be
achieved using this improvement.

I. INTRODUCTION

Frequency weighted balanced truncation was first intro-

duced by Enns [1] based on a modification of balanced

truncation [2]. The method may use input weighting, output

weighting or both. The stability of the reduced order model

is guaranteed only when one weighting is present. The

original Lin and Chiu’s technique [3] and its generalization

[4] provide a simple modification to Enns’ technique to

guarantee the stability in the case of double-sided weightings

provided that there are no pole-zero cancellations between

the original system and the weights [5]. Another modification

to Enns’ technique was proposed by Wang et al. [6] which

not only guarantees stability in the case of double-sided

weightings but also yields simple and elegant error bounds.

Inspired by the method [7], Al-Saggaf and Franklin [8],

[9] proposed a frequency weighted balanced truncation tech-

nique based on partial fraction expansion. However, their

method [8], [9] has significant limitations: (i) it can be

used with single-sided weight only, (ii) the output matrix

of the input weight or the input matrix of the output weight

must be square and nonsingular and (iii) the original system

and the weighting function have to be both strictly proper.

Their method was then generalized by Sreeram and Anderson

[10] to include double-sided and proper weighting functions.

Ghafoor and Sreeram [11] modified their method in [10]

by combining it with unweighted balancing [2] to obtain

simple and elegant error bounds. Although the method gives

a low approximation error but is adhoc with no theoretical

justification. Improved technique was proposed by Sahlan

and Sreeram [12] which is conceptually simple and ele-

gant. Errors obtained although slightly lower than the Enns’

method but may be considered still very large.

In this paper, we present further improvements to partial

fraction expansion technique which yields substantial ap-

proximation error reduction compared to Enns’ technique.

The method is also elegant with simple and easily com-
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putable error bounds. The method is illustrated by an ex-

ample.

II. PRELIMINARIES

This section reviews some of the well-known frequency

weighted balanced truncation techniques. Let G(s), V (s)
and W (s) be the stable original system and the stable

input and output weights respectively. Let {A,B,C,D},

{Av,Bv,Cv,Dv} and {Aw,Bw,Cw,Dw} be their corresponding

minimal realizations respectively. Consider the augmented

system W (s)G(s)V (s) represented by the following realiza-

tion:

W (s)G(s)V (s) =









Aw BwC BwDCv BwDDv

0 A BCv BDv

0 0 Av Bv

Cw DwC DwDCv DwDDv









=

[

Ã B̃

C̃ D̃

]

(1)

The controllability and observability Gramians of the aug-

mented realization
{

Ã, B̃,C̃, D̃
}

are given by:

P̃ =





Pw P12 P13

PT
12 PE P23

PT
13 PT

23 Pv



 Q̃ =





Qw Q12 Q13

QT
12 QE Q23

QT
13 QT

23 Qv



 (2)

where P̃ and Q̃ satisfy the following Lyapunov equations:

ÃP̃+ P̃ÃT + B̃B̃T = 0 (3a)

ÃT Q̃+ Q̃Ã+C̃TC̃ = 0 (3b)

Assuming that there are no pole-zero cancellations in

W (s)G(s)V (s), the Gramians, P̃ and Q̃ are positive definite.

A. Enns’ Technique

Expanding (2,2) blocks of (3) yield the following equa-

tions:

APE +PEAT +XE = 0 (4a)

AT QE +QEA+YE = 0 (4b)

where

XE = BCvPT
23 +P23CT

v BT +BDvDT
v BT

YE = CT BT
wQ12 +QT

12BwC+CT DT
wDwC

Diagonalizing the weighted Gramians {PE ,QE} yields:

T−1
E PET−T

E = T T
E QETE = diag(σ1,σ2, . . . ,σr,σr+1, . . . ,σn)

where σ1 ≥ σ2 ≥ . . .≥ σr > σr+1 ≥ . . .≥ σn > 0.

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 5037



Transforming and partitioning the original system realiza-

tion, we have

[

T−1
E ATE T−1

E B

CTE D

]

=





A11 A12 B1

A21 A22 B2

C1 C2 D





Enns’ reduced-order model is then given by GE(s) =
{A11,B1,C1,D}.

Essentially, Enns’ technique is based on diagonalizing si-

multaneously the solutions of Lyapunov equations as given in

(4). However, Enns’ technique cannot guarantee the stability

of reduced order models as XE and YE may not be positive

semidefinite. Several modifications to Enns’ technique are

proposed in the literature to overcome the stability problem.

B. Sreeram and Anderson’s Partial Fraction Expansion

Based Technique

Sreeram and Anderson generalized the partial fraction

expansion based technique proposed in [8], [9] to include

proper weighting functions [10]. The technique first trans-

forms the augmented system realization (1) into a block

diagonal form by the following transformation matrix:

T̃ =





I −Y R

0 I X

0 0 I



 (5)

Note that even though the technique [10] considers only

strictly proper original systems, the derivation presented in

this paper is generalized to include proper original systems

as these equations will be required in the main section of

the paper. Transforming the augmented system realization

(1), we have:

W (s)G(s)V (s) =

[

Ã B̃

C̃ D̃

]

=

[

T̃−1ÃT̃ T̃−1B̃

C̃T̃ D̃

]

=









Aw X12 X13 X1

0 A X23 X2

0 0 Av Bv

Cw Y1 Y2 DwDDv









= Ŵ (s)+ Ĝ(s)+V̂ (s)

=

[

Â B̂

Ĉ D̂

]

(6)

where

X12 = YA−AwY +BwC = 0 (7a)

X23 = AX −XAv +BCv = 0 (7b)

X13 = AwR−RAv +BwCX +YAX +BwDCv

+Y BCv −Y XAv = 0 (7c)

X1 = BwDDv +Y BDv −Y XBv −RBv (7d)

X2 = BDv −XBv (7e)

Y1 = DwC−CwY (7f)

Y2 = DwCX +DwDCv +CwR (7g)

D̂ = DwDDv (7h)

Remark 1: In (7c), matrix R exists if and only if Av 6= Aw.

Instead of balancing and truncating the original system

{A,B,C}, the method balances and truncates the new system

{A,X2,Y1} to obtain the reduced-order models.

Note that the frequency weighted error can be large with

this method. However, the error can be reduced for strictly

proper original system and the weights (D = 0,Dv = 0 and

Dw = 0) if the reduction error is made to have zeros at the

poles of input weight or output weight as shown in [10].

C. Sahlan and Sreeram’s Partial Fraction Expansion Based

Technique

As in the previous method, Sahlan and Sreeram’s

method [12] involves decomposing the augmented system

W (s)G(s)V (s) into Ŵ (s) + Ĝ(s) + V̂ (s) (see equation (6))

using partial fraction expansion. These terms are then re-

combined to obtain a new augmented system W (s)G(s)V (s)
such that

W (s)G(s)V (s) = Ŵ (s)+ Ĝ(s)+V̂ (s) =W (s)G(s)V (s) (8)

where G(s) =
{

A,B,C,D
}

is the new original system, and

V (s) =
{

Av,Bv,Cv,Dv

}

and W (s) =
{

Aw,Bw,Cw,Dw

}

are

the new input and output weights respectively. The new

parameters in the above equations are given by

Bw =
[

Bw Aw I
]

(9a)

Dw =
[

Dw Cw 0
]

(9b)

B =
[

B −X AX
]

(9c)

C =





C

−Y

YA



 (9d)

D =





D 0 CX

0 0 R

Y B −R−Y X YAX



 (9e)

Cv =





Cv

Av

I



 (9f)

Dv =





Dv

Bv

0



 (9g)

Using the matrices defined in (9), the equations in (7) can

now be expressed as:

X12 = BwC (10a)

X23 = B Cv (10b)

X13 = BwD Cv (10c)

X1 = BwD Dv (10d)

X2 = B Dv (10e)

Y1 = DwC (10f)

Y2 = DwD Cv (10g)

D̂ = DwD Dv (10h)

Remark 2: From equation (8), we have

W (s)G(s)V (s) =W (s)G(s)V (s)
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This relation is valid even if

W (s)G(s)V (s) 6= Ŵ (s)+ Ĝ(s)+V̂ (s)

which is the case when R in (7c) does not exist (see Remark

1).

Diagonalizing the weighted Gramians
{

P,Q
}

of the new

system G(s) =
{

A,B,C,D
}

which satisfy

AP+PAT +B B
T

= 0 (11a)

AT Q+QA+C
T

C = 0 (11b)

yields

T−1
SS PT−T

SS = T T
SSQTSS = diag(σ1,σ2, . . . ,σr,σr+1, . . . ,σn)

(12)

where σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 ≥ . . . ≥ σn > 0. Instead

of reducing G(s), in this technique the new original system

G(s) is reduced using balanced truncation to obtain Gr(s).
The final reduced-order model Gr(s) is obtained by simply

deleting the extra rows in Cr, extra columns in Br and both

extra rows and columns in Dr. Since the realization
{

A,B,C
}

is minimal and the weighted Gramians
{

P,Q
}

satisfy the

Lyapunov equations (11), the technique yields stable models

in the case of double-sided weightings. Although the method

is simple and elegant, approximation error reduction obtained

from this technique is very small and is often negligible.

In the next section, we present an improvement to this

technique to obtain a significant weighted error reduction

not reported so far with any technique.

III. MAIN RESULTS

The proposed method can be explained using the following

steps.

Step 1 The augmented system W (s)G(s)V (s) is decom-

posed using partial fraction expansion to obtain Ŵ (s) +
Ĝ(s)+V̂ (s). This step is the same in all three partial fraction

expansion techniques [10]–[12] and can be written as follows

W (s)G(s)V (s) = Ŵ (s)+ Ĝ(s)+V̂ (s)

Step 2 The block diagonalized augmented system Ŵ (s)+
Ĝ(s)+V̂ (s) is reconstructed to find a new augmented system

W (s)G(s)V (s). This step is the same as in [12] and is written

as

Ŵ (s)+ Ĝ(s)+V̂ (s) =W (s)G(s)V (s)

Step 3 Intermediate reduced order model Gr(s) =Cr(sI−
Ar)

−1Br + Dr is obtained from G(s) by using balanced

truncation. This step is same as in [12].

Step 4 which is the final step is different to the technique

of [12]. In [12], the final reduced order model is obtained by

directly deleting the extra rows in Cr, extra columns in Br

and extra rows and columns in Dr. In the proposed method,

if Gr(s) = Cr(sI −Ar)
−1Br +Dr is the final reduced-order

model then the matrices Cr,Br and Dr are chosen such that

W (s)Gr(s)V (s) =W (s)Gr(s)V (s)

To find the final reduced-order model Gr(s) in the pro-

posed technique, let Gr(s) =Cr(sI−Ar)
−1Br +Dr with Dr =

D, then the augmented system W (s)Gr(s)V (s) is given by:

W (s)Gr(s)V (s) =









Aw BwCr BwDCv BwDDv

0 Ar BrCv BrDv

0 0 Av Bv

Cw DwCr DwDCv DwDDv









=

[

Ãr B̃r

C̃r D̃r

]

Let T̃r =





I −Yr Rr

0 I Xr

0 0 I



 be the transformation matrix

required to take the augmented system to a block diagonal

form, then

W (s)Gr(s)V (s) =

[

T̃−1
r ÃrT̃r T̃−1

r B̃r

C̃rT̃r D̃r

]

=









Aw X12,r X13,r X1,r

0 Ar X23,r X2,r

0 0 Av Bv

Cw Y1,r Y2,r DwDDv









(13)

where

X12,r = YrAr −AwYr +BwCr = 0 (14a)

Y1,r = DwCr −CwYr (14b)

X23,r = ArXr −XrAv +BrCv = 0 (14c)

X2,r = BrDv −XrBv (14d)

X13,r = AwRr −RrAv +BwCrXr +YrArXr +BwDCv

+YrBrCv −YrXrAv = 0 (14e)

X1,r = BwDDv +YrBrDv −YrXrBv −RrBv

Y2,r = DwCrXr +DwDCv +CwRr (14f)

D̂r = DwDDv (14g)

Since we know Gr(s) from Step 3, W (s) and V (s) from Step

2, we can write the augmented system as

W (s)Gr(s)V (s)

=

[

Aw Bw

Cw Dw

][

Ar Br

Cr Dr

][

Av Bv

Cv Dv

]

=









Aw BwCr BwDrCv BwDrDv

0 Ar BrCv BrDv

0 0 Av Bv

Cw DwCr DwDrCv DwDrDv









(15)

To find Gr(s) such that

W (s)Gr(s)V (s) =W (s)Gr(s)V (s)
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we need to equate equations (13) and (15). This gives

X12,r = BwCr (16a)

Y1,r = DwCr (16b)

X23,r = BrCv (16c)

X2,r = BrDv (16d)

X13,r = BwDrCv (16e)

X1,r = BwDrDv (16f)

Y2,r = DwDrCv (16g)

D̂r = DwDrDv (16h)

and

Dr =





D 0 CrXr

0 0 Rr

YrBr −Rr −YrXr YrArXr



 (17)

Rewriting the above equations we get

X12,r = YrAr −AwYr +BwCr = BwCr (18a)

Y1,r = DwCr −CwYr = DwCr (18b)

X23,r = ArXr −XrAv +BrCv = BrCv (18c)

X2,r = BrDv −XrBv = BrDv (18d)

The equations (18a) and (18b) can be written as
[

−I ⊗Aw +AT
r ⊗ I I ⊗Bw

−I ⊗Cw I ⊗Dw

][

Vec(Yr)
Vec(Cr)

]

=

[

Vec(BwCr)
Vec(DwCr)

]

(19)

where Vec(X) denotes the vector formed by stacking the

columns of X into one long vector. The coefficient matrix

on the left of the above equation has full rank, guaranteeing

solvability of the equation when
[

−Aw +λI Bw

−Cw Dw

]

has full rank for all λ = λi(Ar), i = 1, . . . ,r [13], [14], where

λ(X) denotes the eigenvalues of X . However, there is a

unique solution if and only if the matrix on the left of (19) is

square. Similarly Xr and Br, provided they exist, are uniquely

determined if and only if V (s) is square.

Remark 3: The condition that
[

−Aw +λI Bw

−Cw Dw

]

have full rank at some λi is effectively a condition that W (λi)
have full rank there. This observation follows immediately

from the identity:
[

−Aw +λI Bw

−Cw Dw

]

=

[

I 0

Cw(Aw −λiI)
−1 I

][

−Aw +λI Bw

0 W (λi)

]

We say effectively, since there remains open the possibility

that W (s) could have a pole at λi. A similar remark applies

to the input weight V (λi).

Remark 4: Note that if the weights W (s) and V (s) have

full row and column rank respectively, the requirement for

them to have this property for the particular values of λ =
λi(Ar) will be generally satisfied.

Theorem 3.1: If G(s) = {A,B,C,D} is stable and minimal

then Gr(s) = {Ar,Br,Cr,D} obtained from the proposed

method is also stable and minimal.

Proof: It has been proved in [12] that for a stable and

minimal original system G(s) = {A,B,C,D}, the new re-

alization G(s) =
{

A,B,C,D
}

is also stable and minimal.

Since Gr(s) =Cr(sI−Ar)
−1Br +Dr is obtained by balanced

truncation of G(s), stability of Gr(s) follows immediately.

Since Gr(s) = Cr(sI − Ar)
−1Br + Dr is the reduced order

model obtained using the proposed technique has the same

Ar as Gr(s), the stability is guaranteed for stable original

systems.

Theorem 3.2: If Gr(s) = {Ar,Br,Cr,D} is a rth order

model of the given original system G(s) and Gr(s) =
{

Ar,Br,Cr,Dr

}

is a rth order model of the new system G(s),
then

‖W (s)(G(s)−Gr(s))V (s)‖∞ =
∥

∥W (s)(G(s)−Gr(s))V (s)
∥

∥

∞
Proof: From Step 1 and Step 2 of the proposed method

W (s)G(s)V (s) =W (s)G(s)V (s) (20)

From Step 4 of the proposed method

W (s)Gr(s)V (s) =W (s)Gr(s)V (s) (21)

Substracting (21) from (20) we have

W (s)(G(s)−Gr(s))V (s) =W (s)(G(s)−Gr(s))V (s)

Corollary 1:

‖W (s)(G(s)−Gr(s))V (s)‖∞

=
∥

∥W (s)(G(s)−Gr(s))V (s)
∥

∥

∞

≤ 2
∥

∥V (s)
∥

∥

∞

∥

∥W (s)
∥

∥

∞

n

∑
i=r+1

σi

where σi are the singular values of G(s).
Remark 5: If the reduced order model Gr(s) is obtained

without frequency weighting, then V (s) = W (s) = I. The

following result of [1], [15] can be obtained easily:

‖(G(s)−Gr(s))‖∞ ≤ 2
n

∑
i=r+1

σi

Algorithm

A step-by-step algorithm for the proposed method can be

obtained as follows:

1) Given a stable and minimal G(s), V (s) and W (s),
compute Y and X from (7a) and (7b) respectively.

2) Compute the fictitious input and output matrices B and

C from (9c) and (9d) respectively.

3) Calculate the transformation matrix, T which balance
{

A,B,C
}

to diagonalize the Gramians:

T−1PT−T = T T QT = diag{σ1,σ2, . . . ,σn}

4) Compute the frequency weighted balanced realization
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[

T−1AT T−1B

CT D

]

=





Ar A12 Br

A21 A22 B2

Cr C2 D



.

5) Solve (18a) to (18d) for Xr,Yr,Br,Cr.

6) A rth order model can be obtained as Gr(s) =
{Ar,Br,Cr,D}.

7) Calculate the weighted error =

‖W (s)(G(s)−Gr(s))V (s)‖∞ (22)

Remark 6: In the above algorithm, the values of R and Rr

do not have any affect on the approximation errors. The ma-

trices only determine the values of X13 and X13,r respectively.

In other words, the equation ‖W (s)(G(s)−Gr(s))V (s)‖∞ =
∥

∥W (s)(G(s)−Gr(s))V (s)
∥

∥

∞
is true due to Remark 2.

Remark 7: To reduce the approximation error, the matri-

ces B and C used in the proposed algorithm can be made to

be functions of free parameters α and β as follows:

B =
[

B −αX AX
]

C =





C

−βY

YA





To ensure that equations in (10) are valid, we need to have

Cv =





Cv
Av
α
I





Bw =
[

Bw
Aw

β
I
]

Note that, α and β can be any scalar values other than zeros.

By varying the scalars α and β, one can easily reduce the

weighted approximation errors.

IV. EXAMPLE

Consider the one-link flexible robot arm controller reduc-

tion problem [16] as in Example 2 of [11]. The transfer

function of the flexible robot arm from the motor voltage

signal to angular position of a load mass is given by

G(s) =
4445.7

s4 +28.3s3 +364.1s2 +2386.9s

A convex optimization based fifth-order controller transfer

function is given by

K(s) =
s5 +3.1s4 +4.4s3 +3.2s2 +1.3s+0.2

s5 +3s4 +4.3s3 +3s2 +1.2s+0.2

The input weight V (s) = (I+G(s)K(s))−1 and output weight

W (s) = (I + G(s)K(s))−1G(s) are used as the frequency

weighted models.

Simulation result is shown in Table I. The figures in

the last column gives approximation error improvement (in

percentage) of the proposed technique over Enns’ technique.

From the table, even though the reduction error for the

proposed method is slightly higher for order 1, but it gives

a significant improvement for order 2 and order 3.

Fig. 1 and Fig. 2 show the frequency weighted model

reduction error versus parameters (α and β) for order 1 and

order 3 respectively. For order 1, the reduction errors are

generally lower for lower values of α and β. For order 3, the

reduction errors are smaller for higher values of β.
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Fig. 1. Frequency weighted error versus parameters (α and β) for order 1
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Fig. 2. Frequency weighted error versus parameters (α and β) for order 3

V. CONCLUSIONS

An improved frequency weighted balanced truncation

based on partial fraction expansion is presented. The method

guarantees the stability of reduced order models for double-

sided weights. The approximation error can be reduced by

varying user chosen free parameters α and β. The results

of the example indicate a significant improvement over the

existing techniques [1], [11], [12].
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