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Abstract— We present a technique to design routing
parameters for positive compartmental conservative sys-
tems with capacity constraints. Such systems describe the
flow of material through a network of interconnected
reservoirs and have become popular, in particular, as
models of air traffic flows. The technique presented here
is a Linear Programming based method to design time
varying routing parameters to satisfy piecewise constant
capacity constraints. Under these routing parameters, the
resulting system is positive, conservative and exhibits the
desired interconnection.

I. INTRODUCTION

In this work, we focus on control design for positive

compartmental systems. Such systems represent the dy-

namics of the flow of material through an interconnected

network of reservoirs. The dynamics are derived from

conservation laws and the underlying interconnection

of the network [1]. These models have been used to

describe a variety of different systems including auto-

mobile or aircraft traffic flow, job-balancing in computer

clusters [2], or any system of connected reservoirs with

natural constraints, such as irrigation networks [3].

We are motivated by the application of the control

design techniques presented here to problems in air

traffic flow management (ATFM). A popular method

of describing air traffic networks is through the use of

Eulerian models, first introduced in [4], which describe

the aggregate dynamics of groups of aircraft rather

than focusing on individual flights. The use of Eulerian

models in ATFM problems has become popular in part

because these models lend themselves to traditional

linear system control design. A survey and comparison

of available Eulerian frameworks can be found in [5] and

[6]. Although we are motivated by ATFM applications,
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the control techniques described here can be applied to

any positive compartmental system.

The issue of routing air traffic while satisfying capac-

ity constraints is a fundamental problem of air traffic

management research. Weather conditions and other

factors can decrease the capacity of a given region of

airspace. Several solution methods have been proposed

for this problem (for example, [7], [8]). Typically, ag-

gregate ATFM methods do not use routing as a control

parameter. Routing parameters are used as a control

input in [9] in which a nonlinear control technique

based on Max Weight policy is presented. Their model

aggregates flights based on destination, which makes

it of higher state-space dimension than that of [4],

but can be used to address routing in networks with

multiple destinations. We addressed routing design in

[10] in which we developed Linear Programs (LP) to

design static routing parameters for a single destination

network. Capacity constraints were considered, but in-

corporated only as constant capacity constraints.

In this work, we use an aggregate flow model with

routing parameters as the control input to satisfy time

varying capacity constraints. We derive linear constraints

to ensure that the state of the system lies below a

piecewise linear capacity bound. Time varying routing

parameters which ensure that these constraints are sat-

isfied can be recovered from any feasible point. If a

feasible solution cannot be found for a given set of

capacity constraints, these constraints can be altered to

generate a feasible problem. We give an LP which can

be used to adjust these constraints while minimizing the

integral of the difference between the given capacity

constraints and the altered capacity constraints.

Notation: Matrices are denoted by capital letters,

such as A, with entry Aij (ith row, jth column). Vectors

are represented by lower case letters, such as x with

coordinate xi. A set of scalar values parameterized by

time is denoted by β(t). We denote the cone of entry-

wise non-negative vectors of dimension n by R
n
+ and

write “x ≥ 0” to mean that vector x belongs to that set,

and “x > 0” to mean that it belongs to its interior, i.e.,

that every entry of vector x is strictly positive. Likewise,
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R
n×m
+ will denote the set of all n × m matrices with

non-negative entries. A real matrix M is called a Metzler

matrix if its off-diagonal elements are non-negative, i.e.,

Mij ≥ 0, i 6= j. For i = 1, . . . , n, ei is the ith canonical

basis vector of R
n.

II. NETWORK DESCRIPTION

The network model used in this work is a contin-

uous time analog of the Eulerian model of air traffic

introduced in [4]. Here we focus on a description of

the model which is relevant to the development of the

current work. For a more thorough justification of the

use of this type of model to describe air traffic, see our

previous work [11], [12], [10].

We consider positive systems which can be described

as a network of sections through which material can

travel. Some subset of the sections in the network are

“final sections,” or sinks. We denote final sections by

SF , that is section i is a final section if i ∈ SF .

The state of section i, denoted by xi, represents the

amount of material in that section. Material in each

section is assumed to be traveling at a constant speed,

corresponding to a section traversal time of τi > 0. This

leads to an outflow rate of section i of
xi(t)

τi
. The subset

of sections which material in section i /∈ SF can flow

into is denoted Oi. Material can always flow back into

the section that it has just exited, therefore i ∈ Oi for

all i /∈ SF . Note that routing material back into the

section which it has just exited effectively reduces the

flow rate out of that section. In the physical system, this

recirculation can be realized by holding or slowing down

the material moving through the section.

Any material in a final section will flow out of the

network, therefore Oi = ∅ for all i ∈ SF . Fractions of

the outflow of section i are routed to sections j ∈ Oi

according to the routing parameter βij(t). To simplify

notation in the remainder of this paper, we will refer to

these routing parameters collectively as β(t).

Material can flow into any section in the network from

sources outside of the network. Let S be the number of

sources supplying the network. The output of source s is

represented by ds(t) ≥ 0. The fraction of the output of

source s routed to section i at time t is denoted by bsi(t),
with 0 ≤ bsi(t) ≤ 1 for all i, s and t, and

∑n

i=1 bsi(t) =
1 for all s and t.

Under routing strategy β(t), the dynamics of section

i is described by

ẋi(t) = −
xi(t)

τi

+
∑

j:i∈Oj

βji(t)
xj(t)

τj

+

S
∑

s=1

bsi(t)ds(t).

The dynamics of an n section network can thus be

described by the following dynamical system

ẋ(t) = A(β(t))x(t) + B(t)d(t)

x(0) = x0

(1)

where the ith row and sth column of B(t) is bsi(t), the

sth row of d(t) is ds(t), and

A(β(t)) = A0 +
n

∑

i=1

n
∑

j=1

βij(t)

τi

ejei
T (2)

with A0 = diag
(

− 1
τ1

, . . . ,− 1
τn

)

. The unique solution

of (1) under routing strategy β(t) is designated by xβ(t).

III. PROBLEM DESCRIPTION

A. Basic Control Design Objectives

In this work, we design routing parameters to satisfy

the performance objectives discussed in Section III-B.

In designing these control inputs, we must ensure that

the resulting system satisfies the following constraints:

Positivity: System (1) is internally positive, i.e.,

x0 ≥ 0 and d(t) ≥ 0 ∀t ≥ 0 ⇒ x(t) ≥ 0, ∀ t ≥ 0.

Conservation: For all t ≥ 0,

βij(t) ≥ 0, ∀ i, j, (3)

βij(t) = 0, for j /∈ Oi, (4)
∑

j∈Oi

βij(t) = 1, ∀ i /∈ SF . (5)

Positivity ensures that each coordinate of state x,

which represents the quantity of material present in a

section, is non-negative at all times. Physically, the Con-

servation requirement expresses that material leaving

every non-final section must be conserved.

The following sufficient and necessary conditions,

which follow directly from Theorem 2 in [13], will be

useful to ensure that positivity is satisfied.

Theorem 1: Let A(·), B(·) be continuous matrix-

valued maps with A(t) ∈ R
n×n, B(t) ∈ R

n×S for all

t ≥ 0. Then, the linear time-varying system

ẋ(t) = A(t)x(t) + B(t)d(t)

is internally positive if and only if

(i) B(t) ∈ R
n×S
+ for all t ≥ 0,

(ii) matrix
∫ t

0
A(s)ds is Metzler for all t ≥ 0.

Because matrix B(t) in system (1) is entry-wise non-

negative for all t by construction, it follows from The-

orem 1 that a sufficient condition for internal positivity

of this system is that matrix A(β(t)) be Metlzer for all

t ≥ 0. Note that a matrix A(β(t)) of the form given in

(2) is Metzler if and only if βij(t) ≥ 0 for all i, j, which

is required by the Conservation constraint.
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B. Performance Control Design Objective

The control design objective is to generate routing

parameters β(t) to satisfy a time varying, piecewise

constant, capacity constraint. This type of constraint

often arises naturally, such as in ATFM problems. For

example, weather conditions or other factors can affect

airspace capacity. With coarse weather predictions, it

is not reasonable to construct an exact time varying

capacity constraint. Thus, in this application, available

capacity is considered to be constant over some time

interval of length ∆T . A similar type of piecewise

constant capacity constraint is used, for example, in [8].

Our objective is to find routing parameters to drive

the state of system (1) to remain below a given capacity

constraint. Our solution to this problem is developed

in several stages. First, we give sufficient conditions

to ensure that the state of system (1) remains below

some time varying capacity bound. We then focus on

designing routing parameters to satisfy a linear capacity

bound. We give a nonlinear relation that can be used

to generate routing parameters β(t) between the end

points of the linear bound, if routing parameters can

be found which satisfy certain constraints at the end

points. Finally, we give linear constraints to generate

a piecewise linear lower approximation to the given

piecewise constant capacity constraint and associated

routing parameters to ensure that system (1) remains

below the piecewise linear capacity bound.

IV. LP ROUTING FOR TIME VARYING

CAPACITY CONSTRAINTS

In [10] we give conditions to ensure that the state of a

linear system with no input remains below some constant

capacity bound. Here we extend the claim given in [10]

to ensure that the state of system (1) remains below a

continuous time varying capacity bound.

Claim 1: If A(t) is Metzler, c(t) > 0, A(t)c(t) +
B(t)d(t) ≤ ċ(t), for all t ≥ 0, and x0 ≤ c(0), then the

solution of system (1) satisfies x(t) ≤ c(t) for all t ≥ 0.

Proof: Let ξ(t) = c(t)− x(t). In order for ξ(t) to

remain positive for all t ≥ 0, we must show that

ξi(t) = 0
ξ(t) ≥ 0

}

⇒ ξ̇i(t) ≥ 0.

Differentiating ξ we have

ξ̇(t) = ċ(t) − (A(t)x + B(t)d(t))

≥ A(t)(c(t) − x(t))

= A(t)ξ(t).

Since A(t) is Metzler, if ξi(t) = 0 and ξ(t) ≥ 0 then

[Aξ(t)]i ≥ 0. In particular, ξ̇i(t) ≥ [Aξ(t)]i ≥ 0. Thus,

ξ(t) ≥ 0 and x(t) ≤ c(t) for all t ≥ 0.

A. Linear Capacity Bound

We now concern ourselves with a single linear ca-

pacity bound over an interval of length T . We assume

constant inflow and constant matrix B over this interval,

d(t) = d ≥ 0 for all 0 ≤ t ≤ T,

B(t) = B ∈ R
n
+ for all 0 ≤ t ≤ T.

Let us also assume that the capacity constraint varies

linearly according to

c(t) = b + tm for all 0 ≤ t ≤ T, (6)

where b and m are constant vectors in R
n.

The following results show how to design routing

strategies β(t) that satisfy the positivity and conservation

conditions and such that xβ(t) ≤ c(t) for all t.
Theorem 2: Let constraint vector c(t) be given as in

(6) and x0 ≤ c(0). If there exist β(0) and β(T ) such

that constraints (3) - (5) are satisfied and

A(β(0))c(0)+Bd ≤ m, A(β(T ))c(T )+Bd ≤ m, (7)

then the parameters β(t) defined by

βij(t) =

(

1 − t
T

)

βij(0)ci(0) + t
T

βij(T )ci(T )
(

1 − t
T

)

ci(0) + t
T

ci(T )
, (8)

for all i, j and 0 ≤ t ≤ T are such that A(β(t)) is

positive and conservative for all 0 ≤ t ≤ T . In addition,

xβ(t) ≤ c(t) for all 0 ≤ t ≤ T .

Proof: First, note that since each βij(t) is a convex

combination of βij(0) and βij(T ), it satisfies (3) -

(5) whenever βij(0) and βij(T ) do, thus the resulting

system is conservative. This also implies that A(β(t)) is

Metzler for all 0 ≤ t ≤ T , thus the resulting system is

positive. With β(t) given by (8), let us define G(t) as

G(t) = A(β(t))c(t) + Bd,

From (8) and the fact that c(t) is linear, we find that

βij(t)ci(t)

τi

ej =
βij(t)

[(

1 − t
T

)

ci(0) + t
T

ci(T )
]

ej

τi

=

(

1 − t
T

)

βij(0)ci(0) + t
T

βij(T )ci(T )

τi

ej .

Summing both sides over i, j and adding A0c(t) + Bd
to both sides results in

G(t) =

(

1 −
t

T

)

G(0) +
t

T
G(T ).

In turn, G(t) ≤
(

1 − t
T

)

m + t
T

m = m, which,

according to Proposition 1, implies that xβ(t) ≤ c(t)
for all 0 ≤ t ≤ T .
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B. Piecewise Constant Capacity Bounds

With Theorem 2 in hand, we are now ready to design

routing parameters to satisfy piecewise constant capacity

bounds. However, some new notation must be introduced

before we can proceed.

Let T be the length of the time interval of interest.

In order to allow for flexibility in the solution, T will

be divided into time intervals of two sizes, ∆t and ∆T
where ∆t ≤ ∆T , ∆T is an integer multiple of ∆t and

T is an integer multiple of both ∆t and ∆T . Define

K = T
∆t

, tk = k∆t for k = 0, . . . ,K. Using time steps

of length ∆t, T can be divided into intervals of the

form ik = [tk, tk+1) with ∪K−1
k=0 ik = [0, T ). Similarly,

L = T
∆T

, Tl = l∆T for l = 0, . . . , L. Using time steps

of length ∆T , T can be divided into intervals of the

form Il = [Tl, Tl+1) with ∪L−1
l=0 Il = [0, T ).

We will be dealing with discontinuous functions,

therefore for any function g we define

g(t+k ) = lim
t → tk
t ≥ tk

g(t) and g(t−k ) = lim
t → tk
t ≤ tk

g(t).

Recall that our goal is to find, when possible, a

time-varying routing strategy β(t) such that A(β(t)) is

positive and conservative for all t and

xβ(t) ≤ c̄(t) for all 0 ≤ t ≤ T. (9)

The given constraint c̄ is assumed to be constant over

intervals Il for l = 0, . . . , L.

Note that neither Proposition 1 nor Theorem 2 can

be used directly in this case, because function c̄ is

discontinuous from the left at Tl for every l. In particular,

it is possible that

xβ(t) ≤ c̄(t) and A(β(t))c̄(t)+Bd(t) ≤ 0 for all t ∈ Il

but that xβ(Tl+1) > c̄(T+
l+1).

In order to design routing strategies β(t) such that

constraint (9) is satisfied, and guarantee that the inequal-

ity is enforced at points of discontinuity of c̄, we proceed

in two steps. First, we introduce a continuous, positive,

piecewise linear function c such that

c(t) ≤ c̄(t) for all 0 ≤ t ≤ T. (10)

We parametrize this function as

c(t) = c(tk) + (t − tk)m(t+k )

for all 0 ≤ t ≤ T where k = ⌊ t
∆t

⌋ and m(t) is constant

over intervals ik for k = 0, . . . ,K. Condition (10) and

the positivity requirement can be formulated as

0 ≤ c(tk) ≤ min{c̄(t+k ), c̄(t−k )}.

Note that c̄(t+k ) = c̄(t−k ) for all k, unless tk = Tl for

some l. By defining c(t) in this way and making the

assumption that B is constant and d(t) is constant over

intervals ik for k = 0, . . . ,K, the problem of satisfying

piecewise constant capacity bounds becomes a series of

problems of the form discussed in section IV-A.

Second, treating this piecewise linear under-

approximation c as a free variable, we apply Theorem

2 over every interval [tk, tk+1] (k = 0, ...,K − 1) to

design routing strategies such that xβ(t) ≤ c(t) for all

tk ≤ t ≤ tk+1. Constraints of the form (7) involve terms

which are nonlinear in free variables β(t) and c(t),
namely βij(tk)ci(tk). These nonlinearities are removed

by making the substitutions zij(tk) = βij(tk)ci(tk) for

all i, j, k. These parameters are computed by

1) Finding a feasible point for the following set of

linear constraints, denoted by φ(c̄):

c(tk) ≤ min{c̄(t−k ), c̄(t+k )},∀ k,
c(tk) ≥ 0,∀ k,

c(tk+1) = c(tk) + ∆tm(t+k ),
k = 0, . . . ,K − 1,

zij(tk) ≥ 0, ∀ i, j, k,
zij(tk) ≤ ci(tk), ∀ i, j, k,
zij(tk) = 0, ∀ i, ∀ j /∈ Oi,∀ k,

∑n

j=1 zij(tk) = ci(tk),∀ i /∈ SF ,∀ k,

Bd(t+k ) + A0c(tk) +
∑n

i=1

∑n

j=1
zij(tk)

τi
ej

≤ m(t+k ),∀ k,

Bd(t−k+1) + A0c(tk+1) +
∑n

i=1

∑n

j=1
zij(tk+1)

τi
ej

≤ m(t+k ), k = 0, . . . ,K − 1.

2) Recovering β(tk) according to

βij(tk) =
zij(tk)

ci(tk)
,∀ i, j, k.

3) Interpolating non-linearly between βij(tk) and

βij(tk+1) according to

βij(t)=

(

1− t−tk

∆t

)

βij(tk)ci(tk)+ t−tk

∆t
βij(tk+1)ci(tk+1)

(

1− t−tk

∆t

)

ci(tk)+ t−tk

∆t
ci(tk+1)

,

where k = ⌊ t
∆t

⌋.

The resulting routing strategy is continuous over [0, T )
since function c is continuous by assumption.

If linear constraints φ(c̄) are infeasible, it is natural to

try to alter the desired capacity c̄ so as to find a feasible

solution, while ensuring that the resulting bounds are

close to c̄ in some sense. In such a case, we allow c̄ to

be increased to ĉ over intervals of length ∆t in order to

achieve feasible piecewise linear bounds below ĉ. The

problem of finding capacity constraints ĉ and piecewise
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Fig. 1. Network of interconnected sections. Material flows into the
network at sections 1, 2 and 3, material exits the network from sections
19, 20, 21, i.e., SF = {19, 20, 21}.

linear bounds c can then be written as the following LP:

min
∑K

k=0

∑N

i=1

(

ĉi(t
+
k ) − c̄i(t

+
k )

)

∆t
subject to φ(ĉ(t))

ĉ(t+k ) ≥ c̄(t+k ), k = 0, . . . ,K

(11)

V. APPLICATION

Here we give the details and results of simulated

problems making use of the proposed control design

method. We then discuss some issues that arise in the

application of this control method to an ATFM problem.

A. Application Example

In order to illustrate the proposed control method, we

applied this routing design technique to the compart-

mental system depicted in Figure 1. We chose a traversal

time τi = 0.4 hours for every i = 1, . . . , 21, to agree

with typical orders of magnitude encountered in the air

traffic management literature [4]. The connectivity of the

network can be inferred from the diagram.

The inflow rate of sections 1 and 3 is set to 25 material

units per hour, while the inflow rate of section 2 is equal

to 30 material units per hour. The initial conditions were

set to 10 material units for all sections in the top and

bottom rows and 12 for all sections in the middle row.

With this inflow and initial conditions, the state of every

section remains constant when flows are routed along the

rows of the network (i.e., when β1,4 = β4,7 = β7,10 =
β10,13 = β13,16 = β16,19 = 1 and similar equalities hold

for the second and third rows).

Each section except 14 has a constant capacity of

fifteen, i.e., c̄i(t) = 15 material units for all i 6= 14
and all t ≥ 0. Section 14, on the other hand, has the

piecewise constant capacity profile pictured in Figure 2,

where each base interval has length ∆t = 15 min.

Based on this profile, the linear constraints φ(c̄)
formulated using this value of ∆t were found it to

be feasible. The corresponding routing parameters for

selected sections are plotted in Figure 3. Notice that

in sections 1, 2 and 3, well upstream of the capacity

constrained section, the majority of the section outflow

is routed to the upper and lower sections of the graph.

Closer to the capacity constrained section, in sections

10, 11 and 12, a larger portion of the section outflow is

routed to the upper and lower sections of the graph.

In a second example, we imposed the capacity profile

pictured in Figure 4 on section 14. In this case, we found
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Fig. 2. Piecewise constant capacity constraint c̄14, piecewise linear
capacity bound c14 and state x14.

that linear constraints φ(c̄) are not feasible. Thus, LP

(11) was used to find constraints ĉ for which a feasible

solution could be found. The integral of the difference

between ĉ and c̄ is 0.84 (material units) × hour. That

is, using this solution, the actual section count will be

above the constraint c̄ by no more than an average of

0.84 material units over a one hour time period.

Notice that in both Figures 2 and 4 the state x14(t)
does not match the capacity bound c14(t) for most of the

simulation. This is because the use of Claim 1 to ensure

that x(t) ≤ c(t) implicitly assumes that the state of the

system is at capacity at all times, which is conservative,

resulting in the gap between the x14(t) and c14(t).

B. Use of Aggregate Models for ATFM Applications

Although the objective of the present paper is not

specifically to solve ATFM problems, the methods we

present are applicable to classes of such problems pro-

vided the points addressed below are taken into account.

An underlying assumption in the development of

aggregate models is that the state of each section is

infinitely divisible. In an ATFM application, the state

represents the number of aircraft in each section, which

is a discrete quantity. However, these models have been

shown to accurately describe the flow of aircraft in dense

traffic [5], [6]. The implementation of an aggregate

model and control method for ATFM problems requires

the use of some disaggregation method to translate the

aggregate control input to a flight-by-flight control input.

As suggested in [14], rounding heuristics can be used to

generate integer values of control inputs when needed.

The identity of each aircraft is lost in an aggregate

model. Thus, when routing is used as a control param-

eter, all aircraft involved in the problem must have the

same destination airport. Such a problem is proposed, for

example, in [15]. If multiple destinations are required,

traffic flow can be aggregated based on destination.

In current operations, human air traffic controllers

2781



0 1 2 3
0

0.2

0.4

0.6

0.8

1

Time [hr]

 

 

β
1,4

 = β
3,6

β
1,5

 = β
3,5

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Time [hr]

 

 

β
10,13

 = β
12,15

β
10,14

 = β
12,14

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Time [hr]

 

 

β
2,4

 = β
2,6

β
2,5

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Time [hr]

 

 

β
11,13

 = β
11,15

β
11,14

Fig. 3. Routing parameters associated with results plotted in Figure
2. Note that, due to symmetry of the problem, several of the routing
parameters have identical profiles. Also recall that βij(t) must sum to
1 for each section, and thus recirculation accounts for the remainder
of the flow routing (i.e. β1,1(t) = 1 − β1,4(t) − β1,5(t), etc.).

direct individual aircraft. In order to achieve the control

design objective, air traffic controllers can use the rout-

ing parameters generated by the proposed method as a

guideline when determining air traffic control commands

for individual aircraft.

VI. CONCLUSIONS AND FUTURE WORK

We presented sufficient conditions which can be used

to design time varying routing parameters to ensure that

the state of a positive conservative system remains below

a specified piecewise linear capacity bound. We also give

an LP which can be used to adjust capacity constraints in

order to find a feasible routing solution. Resulting rout-

ing parameters satisfy the specified capacity constraints

(or adjusted constraints) while ensuring that the resulting

system is positive, conservative and exhibits the desired

interconnection of sections.

The proposed solution method makes use of a deter-

ministic capacity forecast. However, it is more realistic

to assume that an uncertain forecast is available, with

more accurate updates available as time progresses. For

example, in an ATFM application airspace capacity is

related to uncertain weather forecasts. In future work

we will incorporate probabilistic capacity forecasts. We

will adapt this method into a receding horizon method

in which capacity constraints are revealed over time.
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