
A Sub-optimal Sensor Scheduling Strategy using Convex Optimization

Chong Li Nicola Elia

Abstract— In this paper, we consider a sub-optimal off-line
stochastic scheduling of a single sensor that visits (measures)
one site, modeled as a discrete-time linear time-invariant
(DTLTI) dynamic system, at each time instant with the objective
to minimize certain measure of the estimation error. The
objective of this paper is to search the optimal probability dis-
tributions under two cost functions. We show that the optimal
scheduling distribution is computable by solving a quasi-convex
optimization problem in the case we focus on the minimization
of maximal estimate error among sites. When the cost function
is the average estimate error of all sites, the scheduling problem
for a set of special DTLTI systems can be casted and efficiently
solved as a convex optimization problem by exploiting the
structure of the underlying Riccati-like equation. Furthermore,
we propose a deterministic scheduling strategy based on the
optimal stochastic one. Finally, we show some simulation results
to verify our strategies.

Index Terms— Kalman Filter, Quasi-convexity, Linear Matrix

Inequality, Riccati-like Equation

I. INTRODUCTION

In this paper, we consider a situation where the evolution

of N independent dynamic events (i.e. temperature, humid-

ification, etc.) spatially distributed in an area need to be

tracked (estimated) by a single entity, which we call sensor,

like a mobile robot. We assume that the sensor has limited

sensing range and therefore it needs to be in proximity

of the dynamic events for obtaining measurements. The

general question is to find the optimal site visiting strategy

to minimize the estimation error. The assumption of a single

sensor being used is motivated by some applications where

the use of one sensor restricts the use of other sensors. One

example, the implement of sonar range-finding devices, is

presented in [1].

Because of the significance and wide applications, consider-

able research has focused on the sensor scheduling problems

and its variations which include the sensor coverage problem

[2], [3], [4], [5], [6] and the sensor selection problem

[7], [8], [9]. In this paper, we assume that the dynamic

events are the result of the evolution of DTLTI systems

driven by Gaussian white noises, and the measurements are

also affected by additive white Gaussian noise. When the

systems dynamics and noise covariances are known, and the

sensor has sufficient computational capabilities, the optimal

scheduling that minimizes the tracking error covariance can

in principle be derived at each step by running a tree-search
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algorithm in conjunction with Kalman filters [10]. This

solution however is not practical. To deal with the complexity

of a tree-search, many strategies have been proposed to

prune the tree, i.e sliding-window, thresholding [7], relaxed

dynamic programming [11], etc. However, these strategies

may face difficulties again when some practical conditions

(i.e measurement loss, special interest in certain event, etc)

are considered.

In this paper, we concentrate on the search of off-line

stochastic scheduling strategies. They are not only nu-

merically more tractable than tree-search based strategies

proposed in the literature above, but provide performance

guarantees which are the upper bounds of the optimal

scheduling strategy using Kalman filtering as well. There

are other useful features as will be discussed later. For off-

line strategies, the idea is that, at each time instant, the

sensor visits site i according to some probability distribution

to minimize certain measure of estimation error. Of course,

the reduction of computational complexity but with guar-

anteed performance comes at the expenses of degradation

of the ideal performance. However, in many situations the

extra computational complexity cost may not be justified.

Moreover the ideal performance is not easily computable. A

setting similar to ours, which deals with the sensor selection

problem, has been considered in [8] but no optimal solution

method of the proposed strategy has not been established as

instead we do in this paper.

The paper is organized as follows. In section II, we model

and formulate the problem mathematically. In section III and

IV, we develop results and algorithms for off-line stochastic

scheduling under two cost functions, respectively. In section

V, we give an approach to obtain a deterministic strategy

based on the optimal stochastic one. At last, we present

several simulations to verify our results.

Throughout the paper, A
′

is the transpose of matrix A.

Ones(n,n) implies a n× n matrix with 1 as all its entries.

Diag(V ) denotes a diagonal matrix with vector V as its

diagonal entries. M ≥ 0 or M ∈ S+ implies matrix M is

positive semi-definite where S+ represents the positive semi-

definite cone.

II. MODELING AND PROBLEM FORMULATION

A. Modeling

Consider a set of N independent DTLTI systems to be

measured evolving according to the equation

xi[k + 1] = Aixi[k]+ wi[k] i = 1,2, . . .N

yi[k] = Cixi[k]+ vi[k]
(1)
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where we assume that (Ai,Ci) is detectable. xi[k] ∈ R
ni

is the process state vector and yi[k] ∈ R
pi is the output

vector. wi[k] ∈ R
ni and vi[k] ∈ R

pi are the process noise and

measurement noise which are white Gaussian and zero mean

with covariance matrix Qi, Ri, respectively. The initial state

xi[0] is assumed to be a Gaussian zero mean random variable

with covariance matrix πi[0]. Note that the DTLTI system

i modeled above may represent the local dynamic change

of environment in its neighborhood. In the paper, without

additional explanation, i takes values from the integer set

{1,2, · · · ,N}. Since the case that Ai is stable (i.e all eigen-

values of Ai are less than or equal to unity in magnitude.)

is very important in a large number of practical applications

of estimation [8], we give the following assumption.

Assumption 1: All independent DTLTI systems to be esti-

mated are stable.

We remark that all the exposition can be easily extended into

the case of unstable DTLTI systems. Next, we give another

assumption which a bit simplifies the model.

Assumption 2: All the modeled systems to be measured are

evolving independently.

The more general coupled case will be explored in the

future work. Our model allows a single sensor to keep

hopping/switching among these N possible sites at which

it takes measurements of the systems.

Assumption 3: The sensor at time instant k has only access

to the i-th dynamic system measurement ỹi[k].
This assumption arises from the sensor’s limited range of

sensing and can be modeled mathematically as

ỹi[k] = ξi[k]yi[k]

where ξi is the indicator function indicating whether or not

the sensor is at location i at time instant k and ∑N
i=1 ξi[k] = 1

since only one system can be measured by the single sensor

at each time step k. Note that the real sensor scheduling

problem is to decide on-line which site to visit at each time

instant. Thus, the estimators implemented by the sensor are

random but dependent on the current states. In this paper,

we are interested in scheduling strategies which are simpler

to implement. These strategies can be computed off-line and

come with performance guarantees and thus, are useful as

they provide tight upper bounds on the optimal scheduling

strategy. Motivated by the above discussions, we remove the

dependence and assume that ξi is an i.i.d Bernoulli random

variable with distribution

ξi[k] =
{

1 with probability qi

0 with probability 1−qi
i = 1,2, . . .N

where qi is the probability that the sensor chooses to visit

system i at each time instant.

In this settings, for a given set of qi’s, the optimal estimator

for each system is Kalman filter with intermittent observa-

tions. The covariance of the estimate error Pi[k] for system i

evolves according to the following Riccati-like equation.

Pi[k + 1] =AiPi[k]A
′

i + Qi−

ξi[k]AiPi[k]C
′

i(CiPi[k]C
′

i + Ri)
−1CiPi[k]A

′

i

Since the sequence {ξi[k]}
∞
k=0 is random, the above Riccati-

like equation is stochastic and can not be determined off-

line. Instead, we focus on the iteration of E[Pi[k]] where

the expectation operator is taken over ξi[k]. Similar to [12],

we define the following modified algebraic Riccati equation

(MARE)

gqi
(Xi) = AiXiA

′

i + Qi −qiAiXiC
′

i(CiXiC
′

i + Ri)
−1CiXiA

′

i (2)

Note that the concavity of the MARE allows use of Jensen’s

inequality to find an upper bound on E[Pi[k]]. That is,

E[Pi[k + 1]]≤AiE[Pi[k]]A
′

i + Qi−

qiAiE[Pi[k]]C
′

i(CiE[Pi[k]]C
′

i + Ri)
−1CiE[Pi[k]]A

′

i

As long as Ai is stable, MARE (2) converges to X̄i (i.e. X̄i =
limk→∞ Xi[k] where Xi[k + 1] = gqi

(Xi[k])) for ∀qi ∈ R[0,1],

where X̄i is the unique positive-semidefinite fixed point of

the MARE. Note that X̄i is the upper bound of the steady-

state value of E[Pi[k]].

B. Problem Formulation

Motivated by the above discussion, in this paper, we concen-

trate on minimizing some measure of X̄i as a means to keep

the steady-state value of E[Pi[k]] itself small. We consider

two cost functions on X̄ ′
i s.

J1(X̄1, X̄2, · · · , X̄N) = max
i

fi(X̄i)

J2(X̄1, X̄2, · · · , X̄N) =
1

N

N

∑
i=1

fi(X̄i)

where fi is assumed to be a monotone increasing linear

mapping: S
ni
+ → R,

X ≥ Y ⇒ fi(X) ≥ fi(Y ) for X ,Y ∈ S
ni
+

In the case where N systems are modeled for different phe-

nomena (i.e. temperature, humidification, etc ), these linear

mappings allows us to uniform/rescale the measure of X̄i such

that the estimated states of N systems are in comparable unit.

Based on previous assumptions and discussions, the objective

of this paper is to search an optimal probability distribution

(i.e qi’s) to minimize the cost function. The problem for our

strategy is formulated as follows.

minimize
qi,X̄i

J

subject to X̄i = gqi
(X̄i)

∑
i

qi = 1

qi ≥ 0 i = 1,2, . . .N

(3)

where J ∈ {J1,J2}.
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III. MINIMIZATION OF THE MAXIMAL ESTIMATE ERROR

AMONG SITES.

In this section, we consider problem (3) with J1 as the

cost function, which is denoted by OP I. It is shown that

this problem can be solved by investigating a related quasi-

convex optimization problem. Then, an efficient Nested-

Bisection algorithm is proposed to solve OP I.

By adopting J1 as the cost function, we are able to partially

decouple OP I in terms of objective functions. That is,

max
i

fi(X̄i) ≤ γ ⇔ fi(X̄i) ≤ γ for alli (4)

where γ ∈ R. Note, however, that the constraint ∑i qi = 1

still couples the N DTLTI systems. In order to break this

constraint, we consider the following optimization problem

for each system i where fi(X̄i) ≤ γ is treated as a new

constraint.

minimize
qi,X̄i

qi

subject to X̄i = gqi
(X̄i)

fi(X̄i) ≤ γ, qi ≥ 0

(5)

where γ ∈ R
+ can be viewed as a pre-assigned estimate

performance. The solution of problem (5) q
opt
i implies the

smallest probability required for measuring system i for

achieving the pre-assigned estimate performance γ . By

solving problem (5) for all i, we can obtain the value of

∑N
i=1 q

opt
i . By increasing or decreasing γ , we can drive the

value of ∑N
i=1 q

opt
i equal to 1 such that OP I is solved.

Next, we give a lemma in order to establish that the

computation of the solution of problem (5) can be

reformulated as the iteration of an Linear Matrix Inequality

(LMI) feasibility problem. Without abuse of notation, we

remove the subscript i since the following results apply to

each of the N systems.

Lemma 1: Assume that (A,Q1/2) is controllable and (A,C)
is detectable. For any given q ∈ R(0,1] and invertible matri-

ces Q and R, the following statements are equivalent:

a) ∃X ∈ S+ such that X = gq(X).
b) ∃K and X ∈ S+ such that X ≥ Φ(K,X).
c) ∃H and G ∈ S+ such that Γq(H,G) ≥ 0.

where

Φ(K,X) =(1−q)(AXA′+ Q)

+ q(A + KC)X(A + KC)′+ qQ+ qKRK′.

Γq(G,H) =













G qGA + qHC G GA−qGA qH

(·)′ qG 0 0 0

(·)′ (·)′ Q−1 0 0

(·)′ (·)′ (·)′ G
′
−qG

′
0

(·)′ (·)′ (·)′ (·)′ qR−1













The proof of c) takes the change of variable G = X−1 and

H = X−1K. Based on Lemma 1, we immediately obtain the

following theorem.

Theorem 1: If (A,Q1/2) is controllable and (A,C) is de-

tectable, the solution of the optimization problem (5) can be

obtained by solving the following quasi-convex optimization

problem in variables (q,G,H,X).

minimize
q,G,H,Y

q

subject to f (Y ) ≤ λ , i = 1,2, . . .N
[

Y I

I G

]

≥ 0

Γq(G,H) ≥ 0, q ≥ 0, G > 0

(6)

Specifically, the solution is obtained by using bisection for

variable q and iterating LMI feasibility problems.

Based on Theorem 1, an algorithm to drive the value of

∑i q
opt
i equal to 1 while solving OP I is a Nested Bisection

algorithm described as follows.

Algorithm:Nested-Bisection algorithm for OP I

Given l ≤ γopt ,u ≥ γopt , tolerance ε ≥ 0

repeat

1. γ = l+u
2

.

2. For each system Ti, solve optimization problem (6)

by bisection algorithm for the variable qi [13]. Denote

the minimized objective value of (6) as q
opt
i

3. If ∑i q
opt
i ≤ 1,u := γ; else l := γ .

until u− l ≤ ε
where γopt is the optimal objective value of OP I.

Note that the interval [l,u] is guaranteed to contain γopt , i.e.,

we have l ≤ γopt ≤ u at each step. Therefore, the algorithm

is guaranteed to converge to the optimal objective value γopt .

IV. MINIMIZATION OF THE AVERAGE ESTIMATE ERROR

AMONG SITES

In this section, we consider problem (3) with J2 as the

cost function, which is denoted by OP II. Unfortunately,

the previous approach does not work and we do not have

a general solution yet. In what following, our approach is to

exploit the structure of one special class of DTLTI systems

(i.e. single-state process with measurement delays) to solve

this problem. Exploring this problem in general is a direction

of our future research.

A. Modeling of Single-State Systems with Measurement de-

lay

Consider a set of N DTLTI single-state systems to be

measured evolving according to the equation

xi[k + 1] =aixi[k]+ wi[k] (7)

where xi[k],vi[k],wi[k]∈ R and the covariance of w and v are

Qi ∈ R
+ and Ri ∈ R

+, respectively. The measurement taken

by the single sensor at each time instant is formulated as

follows.

ỹi[k] = ξi[k](xi[k−di]+ vi[k])

where di represents the delay in measurement, which we

assume to be fixed and known in this paper.

To deal with delays, which may come from image processing

process or wireless communication, an expanded state space
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system by adding new states corresponding to the measure-

ment delays of system i is defined. The augmented states are

defined as follows

x1
i [k] = xi[k−di]

x2
i [k] = xi[k−di + 1]

...

x
di
i [k] = xi[k−1]

We then obtain the following compact form for system i with

measurement delays.

Xi[k + 1] = AiXi[k]+ Biwi[k]

ỹi[k] = ξi[k](CiXi[k]+ vi[k])
(8)

where X ,A,B,C has the following structure

Xi =















x1
i

x2
i
...

x
di
i

xi















, Ai =















0 1 0 · · · 0

0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · ai















, Bi =















0

0
...

0

1















(9)

Ci =
[

1 0 · · · 0
]

Note that xi[k] is the true state of system i at time step k,

other states included in vector Xi[k] are dummy variables for

handling delays.

B. Solutions of OP II

By exploiting the special structure of above model, we are

able to obtain the closed-form fixed point of the MARE. We

present this result in the following theorem. Subscript i is

removed without any abuse of notation.

Theorem 2: Consider a MARE (i.e. X̄ = gq(X̄)) in R
n×n

where q is given and (A,B,C) have the structure presented

in (9). Then MARE has a unique positive-semidefinite fixed

point X̄ as

if a = 1,

X̄ =











x1 x1 · · · x1

x1 x2 · · · x2

...
. . .

...

x1 x2 · · · xn











(10)

where

x j =
Q+

√

Q2 + 4qQR

2q
+( j−1)Q j = 1, · · · ,n

if 0 < a <
√

1
1−q

and a 6= 1,

X̄ =











x1 ax1 · · · an−1x1

ax1 x2 · · · an−2x2

...
...

. . .
...

an−1x1 an−2x2 · · · xn











(11)

where

x1 =
Ra2 −R + Q+

√

(Ra2 −R + Q)2−4(a2 −1−a2q)QR

2(1 + a2q−a2)

x j = a2( j−1)x1 +
1−a2( j−1)

1−a2
Q j = 2,3, . . . ,n

Note that if a ≥
√

1
1−q

, MARE can not converge to a steady

state value [12]. Note, however, that MARE as ARE cannot

be solved in closed-form without any special structure and

this is a main limitation of our approach.

By using the closed-form fixed point of the MARE, we

can transform OP II into a simplified form which can be

solved by standard techniques. As an example, we consider

the linear mapping fi(X̄) in J2 as

fi(X̄i) = V ′X̄iV (12)

where V = [0,0, · · · ,0,1]′ has the compatible dimension.

Note that by ignoring the penalty of the delay di, this linear

mapping fi(X̄i) only takes the estimate of the state of system

i into consideration. Due to the space constraint, we restrict

our treatment to consider the case where ai = 1 for all i.

The more general case (i.e. ai 6= 1) can be easily explored

in parallel.

Corollary 1: 1) If (Ai,Bi,Ci) has the structure in (9) and the

linear mapping fi in J2 is defined as (12), then the solution

of the OP II can be obtained by solving the following convex

optimization problem

minimize
qi

∑
i

Qi +
√

Q2
i + 4qiQiRi

2qi

+ diQi

subject to ∑
i

qi = 1 qi ≥ 0 i = 1,2, . . .N

(13)

Moreover, the solution (i.e. qi’s) is independent from delays.

2) In the special case where Ri = 0 for all systems (i.e. no

measurement noise), the optimization problem (13) can be

solved by LMI as follows

minimize
qi,t

t

subject to ∑
i

qi = 1 qi ≥ 0 i = 1,2, . . .N

















t −∑i diQi Q
1/2

1 · · · Q
1/2

N−1 Q
1/2
N

Q
1/2

1 q1 · · · 0 0
...

...
. . .

...
...

Q
1/2
N−1 0 · · · qN−1 0

Q
1/2
N 0 · · · 0 qN

















≥ 0

The proof is straightforward to obtain from the closed-form

fixed point of the MARE.

V. GENERATION OF A DETERMINISTIC SCHEDULING

SEQUENCE

After obtaining the optimal probability distribution, we can

make the sensor visit each DTLTI system on-line according
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to a scheduling sequence which is generated randomly w.r.t

this optimal distribution. Instead of using an actual random

schedule, it may be of interest to derive deterministic sched-

ules based on the optimal random one. In this section we

are interested in finding a deterministic scheduling sequence

to make the measure of estimation error small. In particular,

we consider sequences of minimal consecutiveness.

Definition 1: Let {s[k]}L
k=1 be a set of sequences with length

L, satisfying that each element s[k] in the sequence is taken

value from an element set K = {ai|i ∈ {1,2, · · · ,N}} and the

number of occurrences of each value ai in the sequence is ni.

Then the sequence of minimal consecutiveness is the solution

of the following optimization problem

min
{s[k]}L

k=1

max
i, j∈{1,2,··· ,N}

{ j− i+1| j ≥ i,s[i] = s[i+1] = · · · = s[ j]}

Note that the minimal consecutiveness sequence is not

unique. Given the optimal distribution, we know that the

optimal stochastic scheduling sequence would be compatible

with the optimal distribution. Then we can heuristically gen-

erate a deterministic sequence of minimal consecutiveness

based on the optimal stochastic one. As an example, suppose

that we plan to generate a scheduling sequence with length

L = 13 from element set {1,2} w.r.t an independent and

identically distribution

Prob(s[k] = 1) =0.3

Prob(s[k] = 2) =0.7

The optimal scheduling sequence would have approximately

four 1’s and nine 2’s. Then a sequence of minimal consecu-

tiveness is

{s[k]}13
k=1 = 2212212212212

which has the minimal consecutiveness 2. The intuition for

concentrating on sequences of minimal consecutiveness is

that, under this class of sequences, the sensor visits all sites

in the shortest time compatible with the optimal distribution.

Thus, it avoids temporary build-up of error covariance due

to possibly long strikes/visits to one location.

Note that, in our off-line scheduling strategy, the number ni

of occurrences of each value in the sequence can be obtained

approximately compatible with the optimal probability dis-

tribution (i.e the example presented above). In practice, we

generate this deterministic scheduling sequence off-line and

implement it to the sensor.

VI. EXAMPLES AND SIMULATIONS

In this section, we present some examples and simulations.

Example A

Consider a single sensor for measuring two DTLTI systems

which are located in physically different places. We solve OP

I by using Nested-Bisection algorithm. The DTLTI systems

are presented in controllable canonical form as follows.

A1 =

[

0 1

−0.49 1.4

]

,C1 =

[

1

0

]′

Q1 =

[

2 0

0 2

]

A2 =

[

0 1

−0.72 1.7

]

,C2 =

[

1

0

]′

Q2 =

[

1 0

0 1

]

R1 = 0.5 R2 = 1

100 150 200 250 300
58

58.5

59

59.5

60

time step (System 1)

tr
(M

S
E

)

100 150 200 250 300
56

57

58

59

60

time step (System 2)

tr
(M

S
E

)

Fig. 1. Empirical state error covariances for DTLTI system 1 and 2 with
zero initial condition. The curves are obtained by averaging 5000 Monte
Carlo simulation for k = 1,2, · · · ,300

The following cost function are considered in this example.

J(X̄1, X̄2) = max
i∈[1,2]

trace(X̄i)

By running the Nested-Bisection algorithm, the optimal

probability distribution is [0.674,0.326] and the minimized

objective value of OP I is 59.1. We preassign this optimal

probability distribution to the sensor and obtain the empirical

error state covariance of each system (as shown in Fig.1)

by accordingly generating random tracking sequences. it

is shown that the error state covariances are fluctuating

with average values 58.7 and 57.5 which are tightly upper

bounded by the optimal objective value 59.1 (dashed line).

Next, we generate a scheduling sequence of minimal con-

secutiveness with length 300 according to the optimal distri-

bution [0.674,0.326], we let the sensor to take measurement

from these two systems under this sequence and the average

value of the trace of the error covariance turns out to be

55.53. We next compare this strategy with sliding window

algorithm [10]. By running the sliding window algorithm

with size 1 for scheduling, the percentages of visits to event

1 and 2 are about 0.673 and 0.327, respectively and the

average value of the trace of the error covariance turns out

to be 55.61 which is close but worse than 55.53.

Note that solvability of the OP II for this example is not clear

since the systems do not have the special structure assumed

in (9). Since these exist only two systems considered in this

example, we are able to solve the OP II by appropriately

gridding [q1,q2]. The minimized objective value of OP II is

53.6 and the solution [q1,q2] is [0.480,0.520] which is quite

different with the solution of OP I.

Example B

In this example, we verify our results in section IV. Consider

three random-walk vehicles in an area and a single sensor

equipped with a camera is used for tracking their 1 − D

positions. The dynamics of their positions are evolving as

(7) with ai = 1. But they are subject to different process
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Fig. 2. Positions of random-walk vehicles and tracking paths: Less varying
vehicle gets less attention from the camera while the tracking performance
is good.

noises, measurement noises and delays. Here we assume that

these vehicles have 1, 2 and 2 time-step measurement delays,

respectively. We have

A1 =

[

0 1

0 1

]

, B1 =

[

0

1

]

, C1 =

[

1

0

]′

Ai =





0 1 0

0 0 1

0 0 1



 , Bi =





0

0

1



 Ci =





1

0

0





′

i = 2,3

Q1 = 3 Q2 = 10 Q3 = 0.2

R1 = R2 = 5 R3 = 1

Remember that Q and R are variances of random

variables w and v which have zero means. By taking

the linear mapping fi in (12), the solution of OP II is

[q1,q2,q3] = [0.3395,0.4945,0.1660] with the minimized

objective value 20.7. In Fig.2, the tracking paths (red

curves) are shown in comparison of actual time-varying

positions of random-walk vehicles. The flat segments of red

curves imply that no measurement is taken in this time slot

and the estimator simply propagates the state estimated of

the previous time-step. It is shown that the tracking path of

vehicle 3 (green curve) has most flat segments as a result

of smallest visiting frequency. In comparison, the tracking

paths of vehicle 1 (cyan curve) and vehicle 2 (black curve)

match the actual positions much better even though the flat

segments in tracking path of vehicle 2 is much visible.

VII. CONCLUSION

In this paper, we have presented a sub-optimal strategy for

sensor scheduling problem. Firstly, we consider a stochastic

strategy where the sensor visits each site randomly according

to some probability distribution. By minimizing the maximal

estimate error among N sites, the optimal distribution can be

obtained by the proposed Nested-Bisection algorithm based

on solving a set of quasi-convex optimization problems. By

minimizing the average estimate error over all sites, we

can transform the scheduling problem into a convex form

by exploiting the closed-form fixed point of the MARE.

Furthermore, we propose a deterministic strategy based on

the optimal stochastic one. That is, generate a scheduling

sequence of minimal consecutiveness instead of generating

it randomly according to the optimal distribution. Finally, we

present some examples and simulation results.
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