
 
 

 

  

Abstract— This paper proposes a novel approach towards 
performance monitoring of batch processes that is oriented 
towards the requirements of real time assessment of batch 
health and online batch qualification.  The proposed approach 
is based on the use of discriminant analysis and exploits class 
information that is generally known (but ignored) from the 
archive of historical batches. Wavelet approximations are 
shown to provide for a parsimonious representation of the 
batch profiles. A framework for batch classification that is 
based on the above discrimnatory learning is proposed to 
facilitate the task of performance monitoring. The developed 
methods are evaluated on a Penicillin fermentation process for 
their ability to monitor and to detect the faults both for real 
time batch qualification as well as for batch release procedures. 

I. INTRODUCTION 
ATCH manufacturing is fraught with critical problems 
that stem from significant batch-to-batch variation in 
end quality indices. While this variation may appear 

relatively less important from the perspective of a single 
stage batch, the impact of these variations get significantly 
amplified when one considers manufacturing in multi-stage 
batch processes. Tight control of quality at each of the 
individual stages would help maximize the overall quality/ 
productivity of the manufacturing, and will help reduce 
quality variations and hence batch rejections and product 
recalls. With the recent PAT initiative by the US-FDA to 
bring in advances in life sciences manufacturing that adheres 
to regulatory guidance, as well as continuing interest in 
enhancing performances in other batch manufacturing areas 
such as polymers and fine chemicals, batch performance 
control has been receiving significant academic and 
industrial interest.   

As is well known, by virtue of their finite (but variable) 
duration batch processes pose additional complexities 
towards the task of process monitoring, when compared with 
their continuous counterparts. The multi-way directions of 
variation in a typical batch archive and the approaches to 
mine the information present in them using appropriate 
multivariate statistical tools and matrix unfolding methods 
have been well documented in literature [7][9]. Furthermore, 
approaches to accommodate varying batch durations in the 
above multivariate framework (such as functional space 
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methods [6] and dynamic time warping (DTW) [8], have 
also been popular. Batch processes also exhibit behavior 
such as time varying correlation and these has been 
addressed in literature using staged or multi-regime 
approaches [6]. The task of online monitoring of batch 
processes also requires a completed batch record, so that the 
projections about the batch state can be meaningfully done. 
Various approaches to addressing this problem are discussed 
in [9][15]. Yelchuru et al. (2008) have also recently 
proposed an approach based on similarity assessment of the 
current batch with those in the archive followed by suitable 
weighting based on a Euclidean measure of the similarities.  

The notion of process monitoring for batch processes has 
traditionally looked at differentiating an abnormal batch 
from a normal one by the use of multivariate statistical 
models. From an operating perspective, the need for 
continuous and real-time batch qualification, even for a 
normal batch, is also additionally important. Accurate 
prediction of end quality indices of the batch at every time 
step (or at least at key logical time points) during the batch 
evolution would be expected to help in batch health 
assessment and also shorten batch release times. Such an 
assessment, when done during the early time steps of the 
batch evolution, would also help to initiate corrective control 
or remedial measures to improve batch productivity. Often 
times, it is also instructive to compare the relative health of 
an evolving batch, i.e. the batch health relative to the best 
known or golden batch. As well, from a learning perspective 
it would be useful to mine the data in the archived database 
of batch measurements and identify factors that contribute to 
batches evolving closer to the golden batch.  

In this paper, we propose a novel approach based on 
discriminatory learning of archived batch information.  
Firstly, we extend the notion of process monitoring, which is 
relatively restrictive in batch qualification, and propose a 
new approach based on performance monitoring that 
explicitly quantifies the relative health of normal batches on 
a continuum scale, in addition to the abnormal batch 
flagging. To achieve this task, we propose the use of 
supervised learning / classification and discrimination 
analysis that are known to help in simplifying nonlinearities, 
as well as in detection and resolution of incipient parametric 
signatures that could be of help in longer term predictions. 
The task of batch labeling and the classification for the 
discrimination based learning is based on the end quality 
indices. Parametric signatures associated with different 
batches in the archive are then mapped onto these classes to 
model the overall nonlinear relationships as well as to 
facilitate the classification of new online batches. The above 
mapping of the parametric signatures needs the (i) 
accommodation of unequal batch durations as well as 
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compaction of the information present in the trajectories, 
and (ii) a reliable approach for completing the batch record 
online during the batch evolution. To achieve the former, we 
propose and evaluate a wavelet based signal approximation 
approach that can accommodate varying time scales or 
dynamics associated with these trajectories. To address the 
latter problem, we propose the use of the Gustafson-Kessel 
fuzzy classification approach to select batches from the 
archive that are similar to the current batch, and use them for 
batch record completion.  The proposed approach based on 
discriminatory learning has been validated using simulations 
involving a nonlinear batch penicillin fermentation.   

The remainder of the paper is organized as follows:  In the 
next section, wavelet based functional approximation is 
presented to address the problem of signal representation. 
The batch classification framework including batch labeling, 
representative cluster prototype generation and their use in a 
supervised fisher discriminant analysis algorithm is 
presented in section 3. The results with combined approach 
of wavelet based functional approximation and FDA and the 
prediction of the batch duration and yield for both 
offline/online situations are presented in section IV.    

II. WAVELET BASED FUNCTIONAL APPROXIMATION 
A batch process data record consists of time series 

variables with nonstationary dynamic trends and sharp 
discontinuities. For dimensionality reduction, classification 
and reliable fault detection, the features in these time 
trajectories need to be parsimoniously represented. 
Commonly used functional approximation methods such as 
Legendre polynomials require more number of bases 
functions to model the non-stationarities and sharp 
discontinuities in the data accurately. This result in an 
increase in the dimensionality of feature space which in turn 
affects the performance of models built for fault detection 
and classification. In this scenario, data approximation using 
wavelet bases provides an attractive alternative. Wavelets 
provides a multi resolution representation of data using 
which the important features such as sharp discontinuities in 
the data can be represented using relatively  few number of 
bases functions. Wavelet based methods have been 
successfully used for applications such as data compression 
and de-noising [1, 2]. 
A given time series x(t) can be represented in terms of 
wavelet bases ln ( )t∅  as follows 

ln ln
1 1

( ) ( )
lnL

l n
x t w t

= =

= ∅∑∑                                               (1) 

where, wln are wavelet coefficients, L is the number of 
resolutions and nl is the number of bases at signal resolution 
l. The number of resolutions is generally chosen as 

2log ( )L T= ⎢ ⎥⎣ ⎦ , where T is the length of the time series and 

.⎢ ⎥⎣ ⎦  is the rounding operator. The wavelet coefficients can be 
efficiently computed using the two-channel filter bank 
algorithm [3]. 

 This commonly used wavelet based data approximation 
method involves representing the coarsest-scale signal first 
(l=1) and then adding increasingly finer levels of resolution l 
>1. The approximation error reduces with the increase in the 
number of levels and the characteristics of the data are better 
represented. However, to represent sharp discontinuities in 
the data, which are important features in batch process data, 
more number of resolution levels need to be added. This 
results in an increase in the number of wavelet coefficients 
for data approximation and hence greater feature dimension. 
Therefore, we need a procedure for parsimonious 
representation of data which also preserves important 
characteristics of the data. 

 Low frequency components of the data are adequately 
represented by coarser scales while the sharp jumps in the 
data are manifested in coarser to finer scales. Owing to 
better time-frequency resolution of wavelet bases, the 
magnitude of only few wavelet coefficients in finer scales 
within the neighborhood of this discontinuity will be 
significant when compared to the rest of the coefficients. 
Therefore, by retaining only these few significant wavelet 
coefficients at finer scales along with the coefficients at 
coarser scales adequately represents the characteristics of the 
data. We use the procedure suggested in [4] to select wavelet 
coefficients which parsimoniously represent data under 
consideration. 

The optimum number of wavelet coefficients wln is to be 
selected in such a way that both the reconstruction error and 
the number of wavelet coefficients should be small. To 
achieve a compromise between these conflicting objectives, 
we define the following cost function which we refer to here 
as Relative Reconstruction Error (RRE). RRE is a weighted 
average of normalized mean square error (nMSE) and the 
number of coefficients (C) used for reconstruction. 

( ) (1 ) CRRE C w nMSE w
N

= × + − ×                                    (2) 

here, w is a weight (0<=w<=1) and N is the total number 
of coefficients.  We select C for which RRE is minimum. 
We select the required wavelet bases for each variable time 
series of batch process using a training data set of normal 
operation following the procedure described below. 
 
1.    Apply L - level wavelet decomposition [3] of time series 

in the training data set. 
2. For each batch in the training set, select C number of 

absolute significant coefficients and compute RRE. 
Repeat this for different values of C. Select that C for 
which RRE is minimum. 

3. The minimum of all the selected optimum C’s obtained 
for all the training data is the optimum C, say C*, for 
this variable. 

4. For each batch, select C* absolute significant 
coefficients and note their corresponding bases. 

5. The union of all the selected bases is the optimum bases 
set for batch data. 

The optimum bases set and the corresponding wavelet 
coefficients for each variable are then used for building 
models for fault detection and classification.   
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III. BATCH CLASSIFICATION FRAMEWORK 
The task of batch performance monitoring involves a 

characterization of the batch health defined in the terms of 
key quality indicators and placed relative to the health of the 
best known batch. Towards this objective, we propose a 
batch classification framework that broadly consists of  (i) 
Information representation, (ii) Discriminatory learning, and 
(iii) Batch qualification. In the sequel, we briefly describe 
the individual aspects of this framework.   

A. Information representation via Classification and 
clustering 
The information present in the archived database of batch 

measurements can be represented and exploited in different 
ways depending on the objective sought. In the current 
work, we propose to represent the information in a way that 
facilitates the tasks of classification and discriminatory 
learning. Figure 1 represents the classification of batches 
with respect to their end quality indices. For instance, time 
duration and yield are two important quality indicators for a 
batch. Using these indicators, batches that belong to Cluster 
1 achieve a high yield in relative shorter times and therefore 
could be considered as the best batches. A similar 
qualification could be attributed to each of the batches in the 
archive based on these quality indicators so that the relative 
health of these batches can be established with respect to the 
best batch.  

In addition to representing the known batches into each of 
these clusters via batch labeling, it is also important to 
define the class prototypes or representative batches that best 
define the behavior within each class/cluster. Generally, 
such supervised classification approaches recommend using 
the class mean as a representative prototype. In our work, we 
propose to additionally use the class members on the 
boundaries of each class (see Figure 2) to better represent 
the behavior of each class 
 

 
Fig 1. Classification of a batch into clusters based on batch yield and 
duration  

 
Fig. 2. Cluster prototype definition for the batch classification framework  

B. Learning via discriminant analysis 
Having represented the performance of a batch in terms of 

its end quality indicators, the next step is to establish the 
discriminants or classifiers that help to map the (suitably 
wavelet transformed) variable trajectories to each of these 
classes. Towards this objective we propose to use the linear 
discriminant analysis to build these classifiers as follows:  

Considering that (i) the three way matrix of variation is 
appropriately unfolded along the batch direction [7], and (ii) 
the time trajectories of the variables are approximated by 
wavelet coefficients (see section II), we now have the matrix 
X of these coefficients as row vectors for each batch.  
Furthermore, assuming that there are c classes of batches in 
this matrix X, and that a subset of samples in  X, which 
belong to class j  is denoted as  X(j), the discriminant 
analysis begins by calculating the. total mean vector x  and 
the mean vector for class  j( j〈 〉x ) which are given by  

                 1

m

i
i

m
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∑x

x  and i
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where m(j) is the number of batches in class j. Next, The 
total scatter matrix  tS , the within-class scatter matrix for 

class j , j〈 〉S  , the within-class scatter matrix wS   and the 

between-class scatter matrix  bS are defined as 
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Fisher discriminant analysis then seeks to find the 
discriminants v that maximize the between class scatter 
while minimizing the within class scatter using a suitably 
formulated objective function as, 

( ) max
T

b
T

w

J
≠

=
v 0

v S vv
v S v

                                                      (7) 
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which results in the solution of the generalized eigenvalue 
problem given by 

b wλ=S v S v                                                                      (8) 

C. Batch classification using probabilistic clustering  
During online operation, performance monitoring and 

prediction in real time requires that the information about 
the remainder of the batch be completed to form a batch 
record. In our approach, we propose to use the Gustafson-
Kessel fuzzy-probabilistic classification method to find the 
membership value of an ongoing batch to pre-defined cluster 
prototypes, which could be then used to construct the future 
batch evolution as a weighted average of these cluster 
prototype profiles. We outline the batch classification steps 
as follows: 

Future Data filling and Quality Prediction Method : 

 Step 1: The membership value of an ongoing batch with 
respect to its similarity to the cluster prototypes is first 
evaluated. We consider cluster prototypes as cluster centroid 
for the Fuzzy GK algorithm to estimate the membership of 
the ongoing batch in terms of its similarity to the cluster 
prototype as   

2
( 1)

,

,1

1 ( 1)ij
c m

ij A

kj Ak

m
D

D

μ
−

=

= ≠
⎛ ⎞
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⎝ ⎠

∑

                                      (9) 

where, ijμ is the membership value of xi to cluster prototype 
j, Dij,A is weighted Euclidean distance from sample xj to 
cluster prototype CPj., m is fuzzy exponent parameter and A 
is semi positive definite weighting matrix 

Step 2: Next, the end product quality indices of the ongoing 
batch is calculated as a weighted average of the quality 
indices of the cluster prototype as,.  
 

                                                                                          (10) 

where  BQ1j is the quality 1(e.g. batch duration) of cluster 
prototype j, BQ2j is the quality 2 (e.g batch yield) of cluster 
prototype j, and EQuality1 is the estimated value of quality 1. 

Step 3: The future record of current batch from the current 
time t=k to predicted batch duration (EQuality) is calculated as 
weighted average of wavelet coefficients of all cluster 
prototypes. The weighted average wavelet coefficients are 
inverted to get the time domain profiles of the ongoing batch 
as, 

jijNewBatch WCCWC μ∑=                                                     (11) 
where WCj is the wavelet coefficients of batch j  

11 :1:1
)(

QualityQuality EkiNewBatchEkij WCinvx
+=+=

=                    (12) 

where 
1:1 QualityEkijx

+=
is the prediction of variable j from 

current instant to predicted batch duration(EQualtiy) 

The next steps in the quality prediction would then involve a 
wavelet based approximation of the complete batch records 
as above (Equation 10 -12) to arrive at the feature vector of 

the evolving batch. This feature vector is then projected onto 
the FDA directions v (see Equation (8)) to identify the 
evolving batch cluster.  
Figure 3 below shows the schematic of the proposed 
performance monitoring algorithm. 

 
Fig. 3. Batch FDA Algorithm  

 In the next section, we discuss the results obtained for 
validation of the proposed algorithm using simulations 
involving a nonlinear antibiotic fermentation  

IV. RESULTS 
The proposed method is evaluated on data obtained from 

simulations involving penicillin fermentation. The basic 
model equations used for this simulator are taken from Birol 
et. al. [11] and were simulated in Matlab. The simulations 
were performed for total of 210 batches and the data was 
generated by varying the initial conditions assuming a 
sampling time of 0.5 hrs. The data consisted of time profiles 
of 8 variables (such as temperature, aeration rate, pH etc.) 
varying over batch durations of approximately 180 to 325 
hours and batch yields of 0.6 g/l to 1.1 g/l, across the 
batches. In addition to this, 6 faulty batches were also 
simulated with steps and ramp disturbances of different 
magnitudes in aeration rate and agitation power. 
Out of the 210 batches, 180 batches were randomly selected 
as training batches and the rest 30 batches were used for 
algorithm validation. The time domain data of all the 
variables in all the batches are approximated by wavelet 
approximation method as discussed in section 3. The data 
was classified into 5 different clusters based on the end 
product quality indices (batch duration and yield). Each 
cluster was defined by cluster prototypes as discussed in 
previous section. The training batch data were used to build 
the Batch FDA model and define the control limits for 

∑
∑

=

=

jijQuality

jijQuality

BQE

BQE

22

11

μ

μ
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normal batch operation. Figure 4 shows the FDA scores plot 
for the training batch data. It can be seen that the algorithm 
is able to successfully segregate the data into 5 distinct 
clusters. 

 
Fig. 4 Scores plot - Training data set 

A. Offline batch process and performance monitoring 
The representative feature vector (wavelet coefficients) for 
the test batch data are calculated and projected on to the 
FDA directions to predict the batch health and its quality. As 
per the expectation, the normal test data set are projected 
well below the FDA statistical control limit while faulty 
batches are seen to violate the control limit (Figure 5). 

 
(a) 

 
(b) 

Fig. 5 Offline-monitoring Result (a) FDA Control Chart (b) Scores plot 

 
(a) 

 
                                             (b) 

 
(c) 

Fig. 6. The online performance monitoring result (a) FDA control chart (b) 
FDA scores plot (c) Quality prediction chart 

B. Online batch process and performance monitoring 
The online batch monitoring requires a complete batch 

record. As discussed in section 3, the partial batch record is 
filled with future data using cluster prototypes. The time 
trajectories of variables of the ongoing batch are 
approximated by wavelet analysis and the data are projected 
on the FDA discriminant directions. 

Figure 6 represents the result of online monitoring and 
quality prediction of normal test batch. The projection of the 
ongoing batch at each time instant falls into the cluster 4 
which qualifies the ongoing batch to be a normal batch 
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having similar dynamics as batches in cluster 4. The dotted 
line shows the actual quality value (duration: 342 hrs (684 
samples), Yield 0.985 g/l) of test batch It is seen that this 
end quality prediction are made with high accuracy early 
during the evolution of the batch.  

 

 
                                              (a) 

 
 (b) 

Fig. 7 The online performance monitoring result (a) FDA control chart (b) 
FDA scores plot 

 
Figure 7 represents the results of online monitoring of a 

faulty batch. The fault is introduced in aeration rate at 200th 
sampling instant (100 hrs). The projection of the ongoing 
batch started to violate the control limit after 460th sampling 
instant and remains outside the control limit which confirms 
that the batch is not normal. The FDA scores plot also 
indicates that the projection of ongoing batch does not fall 
on any of the normal clusters. 

V. CONCLUSIONS 
A novel approach for online assessment of batch health and 
batch classification is proposed. Issues associated with time 
varying correlations and unequal batch records are addressed 
using an improved wavelet based functional approximation 
method. The batch data are classified based on the quality 
indices and discriminant analysis is performed to predict the 
batch quality. The proposed online performance monitoring 
approach is validated for both offline and online scenario 
using simulation involving a nonlinear fermentation case 
study.  
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