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Abstract— In this paper, efficient deployment algorithms are
proposed for a mobile sensor network to enlarge the coverage
area. The proposed algorithms calculate the position of the
sensors iteratively based on existing coverage holes in the
field. To this end, the multiplicatively weighted Voronoi (MW-
Voronoi) diagram is used for a network of mobile sensors
with different sensing ranges. Under the proposed procedures,
the sensors move in such a way that the coverage holes
in the network are reduced. Simulation results are provided
to demonstrate the effectiveness of the deployment schemes
proposed in this paper.

I. INTRODUCTION

Wireless sensor networks have attracted considerable re-

search interest in the past decade, and have found a broad

range of applications in various areas [1], [2], [3]. Re-

cent advances in MEMS (micro-electro-mechanical systems)

technology have enabled the design and manufacturing of

small and low-cost sensor nodes. Examples of sensor net-

work applications include biomedical engineering, security

surveillance, tracking vehicles and environmental monitor-

ing, to name only a few [4], [5], [6], [7]. In this type

of system, it is desired to improve network coverage with

limited use of resources [8], [9]. An efficient deployment

algorithm should take important practical constraints such

as limited communication and sensing ranges into account.

Furthermore, it is more desirable to have a decentralized

decision-making strategy, due to the distributed configuration

of the network [9], [10], [11].

In [12], [13], a mobile sensor deployment strategy is

introduced to increase network coverage. In [14], distributed

control laws are presented to achieve convex equi-partition

configuration in mobile sensor networks. An efficient pro-

cedure is introduced in [15] to move the sensors in such

a way that the maximum error variance and extended pre-

diction variance are minimized. Distributed control laws are

provided in [16] for the disk-covering and sphere-packing

problems using non-smooth gradient flows. An algorithm

is proposed in [17] to monitor an environmental boundary

with mobile agents, where the boundary is optimally ap-

proximated with a polygon. Decentralized control laws for

optimal placement of sensors are presented in [6] for target
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tracking. A coverage strategy is proposed in [18] based on

a localized Voronoi diagram, where each sensor uses the

local information of the neighboring sensors to construct its

Voronoi region. In [19], a real-time coverage map is provided

to compute the position of the sensors accordingly. Most of

the existing works in mobile sensor networks (including the

above-mentioned papers) assume that all sensors have the

same communication and also sensing ranges. While this

can significantly simplify the deployment algorithm design,

it may not be a realistic assumption in many real-world

applications.

In this paper, two distributed deployment algorithms are

presented for a network of nonidentical sensors. The multi-

plicatively weighted Voronoi (MW-Voronoi) diagram is em-

ployed to find the coverage holes, where the weight assigned

to each sensor is proportional to its sensing radius [20], [21].

Two algorithms are proposed in this work: Maxmin-vertex

and Minmax-vertex. Both algorithms are vertex-based in the

sense that they use the distance of each sensor from the

vertices of its corresponding MW-Voronoi region to calculate

the new destination point for the sensor. The algorithms are

decentralized, and sensor placement is performed iteratively.

Once each destination is computed, new local coverage area

of the corresponding sensor (in the previously constructed

MW-Voronoi region) is compared to its preceding local

coverage area. If the new local coverage area is larger than

the preceding one, the sensor moves to the new destination;

otherwise, it remains in its current position. If the increase

in the local coverage area of each sensor in an iteration does

not exceed a certain threshold, the algorithm is terminated

(to ensure a finite number of iterations).

The rest of the paper is organized as follows. In Section II,

some preliminaries and important notions and definitions

are presented. Section III provides the new algorithms for

efficient network coverage, as the main contribution of the

paper. Simulations are given in Section IV, and finally the

concluding remarks are summarized in Section V.

II. BACKGROUND

Let S be a set of n distinct weighted nodes in the plane

denoted by (S1, w1), (S2, w2), . . . , (Sn, wn), where wi > 0
is the weighting factor associated with Si, for any i ∈ n :=
{1, 2, . . . , n}. Partition the plane into n regions such that:

• Each region contains only one node, and

• the nearest node, in the sense of weighted distance, to

any point inside a region is the node assigned to that

region.
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The diagram obtained by the partitioning described above is

called the multiplicatively weighted Voronoi diagram (MW-

Voronoi diagram) [21]. Analogous to conventional Voronoi

diagram, the mathematical characterization of each region

obtained by the above partitioning is as follows:

Π̄i =
{

Q ∈ R
2 | wjd(Q,Si) ≤ wid(Q,Sj), ∀j ∈ n− {i}

}

(1)

for any i ∈ n, where d(Q,Si) is the Euclidean distance

between Q and Si.

According to (1), any point Q in the i-th MW-Voronoi

region Π̄i has the following property:

d(Q,Si)

d(Q,Sj)
≤

wi

wj

, ∀i ∈ n, ∀j ∈ n− {i} (2)

Definition 1. Similar to conventional Voronoi diagram, the
nodes Si and Sj (i, j ∈ n, i �= j) in an MW-Voronoi diagram
are called neighbors if Π̄i∩ Π̄j �= ∅. The set of all neighbors
of Si, i ∈ n, is denoted by Ni and is formulated below:

Ni =
{

Sj ∈ S | Π̄i ∩ Π̄j �= ∅, ∀j ∈ n
}

(3)

Definition 2. Consider a sensor Si with the sensing radius
ri and the corresponding MW-Voronoi region Π̄i, i ∈ n, and
let Q be an arbitrary point inside Π̄i. The intersection of the
region Π̄i and a circle of radius ri centered at Q is referred to
as the coverage area with respect to (w.r.t.) Q. The coverage
area w.r.t. the location of the sensor Si is called the local
coverage area of that sensor.

Definition 3. The Apollonian circle of the segment AB,
denoted by ΩAB,k, is the locus of all points E such that
AE
BE

= k [22].

To construct the i-th MW-Voronoi region, first the Apol-

lonian circles of the neighboring partitions are found for the

i-th sensor. In other words, the Apollonian circles ΩSiSj ,
wi
wj

are found for all Sj ∈ Ni. The smallest region (created by

the above circles) containing the i-th node is, in fact, the

i-th MW-Voronoi region (e.g., see Fig. 1). An example of a

MW-Voronoi diagram with 15 sensors is sketched in Fig. 2.

1
S

2
S

4
V

3
V

2
V

1
V

14
O

13
O

12
O

5
S

4
S

3
S

1,51SS
:

2,41SS
:

3

2
,31SS

:

2,21SS
:

Fig. 1. The MW-Voronoi region for a sensor S1 with four neighbors
S2, . . . , S5 [3].

The MW-Voronoi diagram is the main tool for sensor

deployment in this paper. Each sensor has a sensing area

which is a circle whose size can be different for distinct

sensors. Let each sensor in the field be denoted by a node

with a weight equal to its sensing radius, and sketch the MW-

Voronoi region for each sensor. From the characterization of

the MW-Voronoi regions provided in (1), it is straightforward

to show that if a sensor cannot detect a phenomenon in its

corresponding region, no other sensor can detect it either.

This means that in order to find the ”so-called” coverage

holes (i.e., the undetectable points in the network), it would

suffice to compare the MW-Voronoi region of each node with

its local coverage area.

Notation 1. Consider a circle of radius r centered at O,
denoted by Ω(O, r) hereafter, and a point V in the plane.
The intersections of Ω and the extension of V O from O is
denoted by TV

Ω(O,r). The other intersection point of Ω(O, r)

and V O (or its extension) is denoted by T̄V
Ω(O,r).

Notation 2. As mentioned before, the boundary curves of
an MW-Voronoi region are the segments of some Apollonian
circles. The set of all such Apollonian circles for the i-th
MW-Voronoi region is denoted by Ωi. The sets Ω̄i and Ω̃i

are then defined as follows:

Ω̄i = {Ω ∈ Ωi|Si ∈ Ω}

Ω̃i = {Ω ∈ Ωi|Si /∈ Ω}

Assumption 1. In this paper, it is assumed that there is no
obstacle in the field. Therefore, the sensors can move to any
desired location without obstacle avoidance concerns using
existing techniques, e.g. [9], [23], [24], [25].

Assumption 2. The sensors are supposed to be capable of
localizing themselves with sufficient accuracy in the field
(using, for instance, the methods proposed in [1], [26]).

Assumption 3. The communication range of the sensors is
bounded (and not necessarily the same for all sensors). This
is a limiting factor for the sensors, potentially preventing
them from reaching their neighbors, which can result in
incorrect Voronoi regions around some of the sensors. Conse-
quently, such a limitation can negatively affect the detection
of coverage holes.
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Fig. 2. An example of the MW-Voronoi diagram for a group of 15
nonidentical sensors in a network.
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III. DEPLOYMENT PROTOCOLS

In this section, two different protocols are developed for

a distributed sensor network. The proposed algorithms are

iterative, where in each iteration every sensor first broadcasts

its sensing radius and location to other sensors, and then

constructs its MW-Voronoi region based on the received

information. It checks the region subsequently to detect

the possible coverage holes. If any coverage hole exists,

the sensor calculates its target location (but does not move

there) in such a way that by moving there the coverage

hole would be eliminated, or at least its size would be

reduced by a certain threshold. Once the new target location

is calculated, the coverage area w.r.t. this location (in the

previously constructed MW-Voronoi region) is obtained. If

this coverage area is greater than the current one, the sensor

moves to the new location; otherwise it remains in its current

position. In order to terminate the algorithm in finite time, a

proper threshold ǫ is defined such that if the increase in the

local coverage area by each sensor is not sufficiently large

(as specified by ǫ), there is no need to continue the iterations.

Notation 3. In the remainder of this paper, V represents an
MW-Voronoi diagram with n regions (each one correspond-
ing to a node). Furthermore, the number of vertices of the
i-th region is denoted by mi, for any i ∈ n.

Definition 4. The corner points of the i-th MW-Voronoi
region (i.e., the intersection points of its boundary curves)
are denoted by Vi = {Vi1, Vi2, . . . , Vil}. These points are
called the MW-Voronoi vertices for the i-th region.

A. Maxmin-Vertex Strategy

The main idea behind this strategy is that normally for

ideal network coverage, none of the sensors should be too

close to any of the vertices of its Voronoi region. The

Maxmin-vertex strategy selects the destination for each sen-

sor as a point inside the corresponding MW-Voronoi region

whose distance from the nearest vertex is maximized. This

point will be referred to as the Maxmin-vertex centroid, and

will be denoted by Ōi for the i-th MW-Voronoi region, i ∈ n.

Let the distance between this point and the nearest vertex

on the i-th region to it be represented by r̄i. Denote with

C(Oi, ri) a circle of radius ri centered at the point Oi. The

Maxmin-vertex circle is defined next.

Definition 5. The Maxmin-vertex circle of a region in the
MW-Voronoi diagram V is defined as the largest circle
centered inside that region such that all of the vertices of
the region are either outside the circle, or on it. This circle
is, in fact, C(Ōi, r̄i) for the i-th region, i ∈ n.

Remark 1. If an MW-Voronoi region has exactly one
boundary curve, then this curve is a circle which is also
the Maxmin-vertex circle in the Maxmin-vertex strategy.

A number of lemmas and theorems are presented next, but

the proofs are omitted due to space restrictions.

Lemma 1. Suppose the i-th region (i ∈ n) of the MW-
Voronoi diagram V has more than one boundary curve. If
the Maxmin-vertex circle passes through exactly one vertex,

say Vi1, then Ōi is TVi1

Ω for some Ω ∈ Ωi; otherwise, the
Maxmin-vertex circle passes through at least two vertices.

Lemma 2. Consider an MW-Voronoi diagram V , and assume
that the Maxmin-vertex circle of one of the regions, say
region i (i ∈ n) passes through exactly two vertices,
say V̄i1 and V̄i2. Then Ōi is the intersection point of the
perpendicular bisector of V̄i1V̄i2 and the boundary of the
i-th MW-Voronoi region.

Definition 6. For convenience of notation, the circle passing
through two vertices Vp and Vq of region i in the MW-
Voronoi diagram V , centered at the intersection of the
perpendicular bisector of VpVq and the curve VkVl, is denoted

by Ωk,l
p,q , k, l, p, q ∈ mi. Also, the circle passing through

one vertex Vr of MW-Voronoi region i, centered at TVr

Ω , is

denoted by ΘVr

Ω , for any r ∈ mi and Ω ∈ Ωi.

Theorem 1. Consider an MW-Voronoi diagram V , and
suppose that the i-th region (i ∈ n) has more than one

boundary curve. Let Ĉi and C̀i be the sets of all circles

Ωk,l
p,q , ∀k, l, p, q ∈ mi and ΘVr

Ω , ∀r ∈ mi, Ω ∈ Ωi,
respectively, whose centers are on the boundary curve of
the MW-Voronoi region i, and do not enclose any of the

vertices of the MW-Voronoi region. Let also C̃i be the set
of all circumcircles of any three vertices, centered inside
the MW-Voronoi region or on its boundary, which do not
enclose any of the vertices of the MW-Voronoi region. Define

Ci := Ĉi ∪ C̀i ∪ C̃i; then C(Ōi, r̄i) belongs to Ci, and is
the largest circle in this set.

Using the result of Theorem 1, one can develop a pro-

cedure with a complexity of order O(m3
i ) to calculate the

Maxmin-vertex centroid in the i-th MW-Voronoi region,

where mi is the number of the vertices of the corresponding

region. Since typically an MW-Voronoi region does not

have ”too many” vertices, the computational complexity for

calculating the Maxmin-vertex centroid is usually not very

high.

B. Minmax-Vertex Strategy

The idea behind the Minmax-vertex technique is that

normally for optimal coverage, each sensor should not be

”too far” from any of its Voronoi vertices. The Minmax-

vertex strategy selects the target location for each sensor as

a point inside the corresponding MW-Voronoi region whose

distance from the farthest vertex is minimized. This point

will be referred to as the Minmax-vertex centroid, and will

be denoted by Ǒi for the i-th region, i ∈ n. Furthermore,

the distance between this point and the farthest vertex from

it will be represented by ři. The Minmax-vertex circle is

defined next.

Definition 7. The Minmax-vertex circle of an MW-Voronoi
region is defined as the smallest circle centered inside the
region such that all of the vertices of the region are either
inside the circle or on it. This circle is, in fact, C(Ǒi, ři),
for the i-th region.

Remark 2. If an MW-Voronoi region has exactly one
boundary curve, then this curve is a circle which is also the
Minmax-vertex circle for that region in the Minmax-vertex
strategy.
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Lemma 3. If an MW-Voronoi region has more than one
boundary curve, then the corresponding Minmax-vertex cir-
cle passes through at least two vertices.

Lemma 4. Consider an MW-Voronoi diagram V , and assume
that the Minmax-vertex circle of one region, say region i
(i ∈ n) passes through exactly two vertices, say V̌i1 and
V̌i2. Then Ǒi is the intersection point of the perpendicular
bisector of V̌i1V̌i2 and the boundary of the i-th MW-Voronoi
region.

Theorem 2. Given the MW-Voronoi diagram V , let Ŵi be
the set of all circles Ωk,l

p,q , ∀k, l, p, q ∈ mi, whose centers are
on the boundary of region i, and all vertices of the region

are either inside or on them. Let also W̃i be the set of all
circumcircles of any three vertices, centered inside region i
or on its boundary, with all the vertices of the region either

inside or on them. Define Wi := Ŵi ∪ W̃i; then C(Ǒi, ři)
belongs to Wi, and is the smallest circle in this set.

Using the result of Theorem 2, one can develop a pro-

cedure with a complexity of order O(m3
i ) to calculate the

Minmax-vertex centroid of the i-th MW-Voronoi region. As

in the case of the farthest point calculation, the computational

complexity for calculating the Minmax-vertex centroid is

normally not very high.

Remark 3. It is worth mentioning that for the case when the
sensing radii of the sensors are the same, the Minmax-vertex
algorithm becomes the Minimax algorithm proposed in [9].
In other words, the Minmax-vertex algorithm proposed here
is the generalized form of the one reported in the literature.

Remark 4. If the assigned location of a sensor is too far, the
real coverage may not be increasing as the sensor gets closer
to its destination. Therefore, as proposed in [9], the sensor
may select the midpoint or 3/4 point between its current
location and the assigned location in such cases, in order to
achieve better coverage.

Remark 5. In order to prevent the sensors from oscillatory
movements, each sensor can check its new movement di-
rection. If it is not in the opposite direction of the previous
movement, then it moves to the target location; otherwise, it
does not move [9].

IV. SIMULATION RESULTS

Example 1: In this example, 27 sensors are randomly

deployed in a 50m × 50m flat space: 15 with a sensing

radius of 6m, 6 with a sensing radius of 5m, 3 with a sensing

radius of 7m, and 3 with a sensing radius of 9m. Moreover,

the communication range of each sensor is assumed to be

10/3 times greater than its sensing range. Fig. 3 shows

an operational example of Minmax-vertex algorithm. Three

snapshots are provided, and in each one both local coverage

of the sensors (filled circles) and the MW-Voronoi regions

are depicted. The initial coverage is 68.5%, but after the

first round it is improved to 83.3%, and the final coverage is

95.8%. It can be observed from this figure that in the final

round the sensors are distributed more evenly than the initial

deployment, and that the coverage increases significantly.

Remark 6. It is important to note that an analytical solution
to the sensor deployment problem for optimal coverage is
mathematically too complex to compute. This issue has
also been pointed out in the existing literature, and the
performance of any sensor deployment technique is typically
evaluated by running a number of simulations with random
settings [9], [10], [23]. This approach for the evaluation
and comparison of sensor deployment strategies will be
adopted in the remaining simulations in order to measure
the effectiveness of the proposed techniques.

Example 2: Different settings will be examined in this

example, where the two algorithms proposed in Section III

are applied to a flat space of size 50m × 50m. The results

presented in this section for field coverage are all the average

values obtained by using 20 random initial deployments for

the sensors. Furthermore, while the horizontal axis in all

figures in this section represents a discrete parameter, the

graphs are displayed as continuous curves for clarity.

Assume first there are 36 sensors: 20 with a sensing radius

of 6m, 8 with a sensing radius of 5m, 4 with a sensing radius

of 7m, and 4 with a sensing radius of 9m. Moreover, the

communication range of each sensor is assumed to be 10/3
times greater than its sensing range; e.g., a sensor with a

sensing range of 6m has a communication range of 20m.

The coverage factor (defined as the ratio of the covered area

to the overall area) of the sensors in each round is depicted

in Fig. 4 for the two algorithms proposed in this paper. It

can be observed from this figure that both strategies result

in a satisfactory coverage level of the target field in the first

few rounds of the corresponding algorithms. The resultant

curves also show that the Minmax-vertex algorithm performs

better than the Maxmin-vertex algorithm as far as coverage

is concerned.

It is desired now to compare the performance of the

proposed algorithms in terms of the number of deployed

sensors n. To this end, consider three more setups: n=18,

27, and 45 (in addition to n=36 discussed above). Let the

changes in the number of identical sensors in the new setups

be proportional to the changes in the total number of sensors

(e.g., for the case of n=27 there will be 15 sensors with a

sensing radius of 6m, 6 with a sensing radius of 5m, 3 with

a sensing radius of 7m, and 3 with a sensing radius of 9m).

Fig. 5 provides the coverage results for different number of

sensors. It can be seen from this figure that the network

coverage in Minmax-vertex algorithm is larger than that in

Maxmin-vertex algorithm for different number of sensors.

The time it takes for the sensors to provide the desired

coverage level is another important factor for measuring the

efficiency of the algorithms. Since the deployment time of

the sensors in each round is almost equal for all algorithms,

the number of rounds required for the sensors to reach a

certain coverage level is used to evaluate time efficiency.

It is shown in Fig. 6 that in both algorithms the number

of rounds (required to meet a certain termination condition)

increases by increasing the number of sensors up to a certain

value (which varies for different algorithms), and then starts

to decrease by adding more sensors. This is due mainly to
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Fig. 3. Snapshots of the execution of the movement of the sensors under the Minmax-vertex algorithm; (a) initial coverage; (b) field coverage after the
first round, and (c) final coverage.
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Fig. 4. Network coverage per round for 36 sensors.

the fact that when there are a small number of sensors in the

field, the MW-Voronoi regions are large in comparison with

the corresponding sensing circles. Hence, there is a good

chance that each sensor’s local coverage area is completely

inside its MW-Voronoi region, which means that the sensor

does not need to move in order to increase its coverage

area. On the other hand, when there are a large number

of sensors in the field, there is a good chance that each

sensor covers its MW-Voronoi region, which implies that the

termination condition will be satisfied in a short period of

time. It is also to be noted that when there are a relatively

small number of sensors, in the Maxmin-vertex algorithm

the number of rounds required for the proper termination is

less than that in the Minmax-vertex algorithm. Hence, for a

relatively small number of sensors, Maxmin-vertex algorithm

is a good candidate for field coverage as far as deployment

time is concerned.

Another important means of assessing the performance of

sensor deployment algorithms is the energy consumption of

the sensors. The consumed movement energy is known to

be directly related to the traveling distance of the sensors,

as well as the number of times they stop. Thus, to compare

the proposed methods in terms of energy consumption, the

traveling distance and the number of movements should be

taken into consideration. Fig. 7 depicts the average moving
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Fig. 5. Network coverage for different number of sensors using the
proposed algorithms.
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Fig. 6. The number of rounds required to reach the termination conditions
for different number of sensors using the proposed algorithms.

distance for different number of sensors. This figure shows

that by increasing the number of sensors, the average moving

distance is decreased in both scenarios. This is due to the fact

that in both algorithms when the number of sensors increases,

the MW-Voronoi regions become smaller. As a result, the

distance between each sensor and its destination point in the

corresponding MW-Voronoi region decreases, which leads

to a decrease in the average moving distance. It can be

seen from Fig. 7 that the average moving distance of both

algorithms are more or less the same when there are large
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number of sensors in the field. The number of movements

versus the number of sensors is depicted in Fig. 8, where it

is shown that if the number of sensors increases from 18 to

27, the number of movements increases as well. It can be

observed from this figure that in general when the number of

sensors is more than 27, the number of movements decreases.

This is due to the fact that for large number of sensors the

MW-Voronoi regions become smaller, and hence the sensors

will likely cover their MW-Voronoi regions. As a result, the

coverage holes will be covered in a shorter period of time,

decreasing the number of movements.
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Fig. 7. The average distance each sensor travels for different number of
sensors using the proposed algorithms.
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Fig. 8. The number of movements required for different number of sensors
using the proposed algorithms.

V. CONCLUSIONS

This paper presents efficient sensor deployment algorithms

to increase coverage in mobile sensor networks. The problem

is addressed in the most general case, where the sensing

radii of different sensors are not the same. A multiplicatively

weighted Voronoi (MW-Voronoi) diagram is then employed

to develop two vertex-based distributed deployment algo-

rithms. Under these algorithms, the sensors move iteratively

to fill coverage holes in the network. The algorithms are

based on some known facts about the general characteristics

of an ideal sensor configuration (e.g., each sensor should

not be too far or too close to any of the vertices of its

corresponding MW-Voronoi region). Simulation results are

presented to compare the proposed approaches for different

number of sensors in the field. Furthermore, it is shown that

both algorithms improve network coverage.
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