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Abstract— Recently, there has been increasing attention on
animal inspired manipulators equipped with bi-articular actu-
ators. Bi-articular actuated manipulators usually present more
actuators than joints, resulting in actuator redundancy. In order
to resolve this torque load sharing problem, in this paper a new
approach based on infinity norm is proposed and successfully
implemented on BiWi, Bi-articularly actuated and Wire driven
manipulator.

The infinity norm model maximizes the force at the end
effector given the maximum actuator joint torques. Therefore,
it is an approach to optimize actuators design for bi-articularly
actuated manipulators. The infinity norm approach is based
only on linear functions for actuator redundancy resolution.

I. INTRODUCTION

Manipulators presenting animal musculo-skeletal charac-

teristics such as bi-articular actuators have been proposed for

more than two decades [1]. Recently, there has been increas-

ing attention on such biologically inspired manipulators, both

in hardware and control design aspects [2] [3] [4].

A manipulator based on such a model usually has more

actuators than joints, resulting in actuator redundancy. In

order to resolve this torque load sharing problem many

approaches have been proposed.

Several animal inspired approaches to solve actuator re-

dundancy as fatigue minimization [5], muscle force mini-

mization [6] [7], total muscle metabolic energy consumption

[8], total muscle stress minimization [9] [10] have been

proposed. These approaches are mainly based on a phe-

nomenological nature, which can make an implementation

on robotics applications difficult.

Pseudo-inverse matrices are often used for kinematics

redundancy resolution of manipulators [11]. This approach

is also used to resolve actuator redundancy [12]. Moore-

Penrose is the simplest pseudo-inverse matrix, and corre-

sponds to the minimization of the 2−norm (euclidean norm)

[13].

In this paper, our new approach to resolve actuator redun-

dancy based on infinity norm [14] is experimentally verified

by using Biwi, Bi-articularly actuated and Wire driven ma-

nipulator. The ∞− norm approach maximizes the force at

the end effector given the maximum actuator joint torques.

Therefore, it is used as an approach to optimize actuators
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design for bi-articularly actuated manipulators. Moreover,

the ∞ − norm approach is based only on linear functions

to resolve actuator redundancy.

The ∞ − norm approach is compared with the Moore-

Penrose pseudo-inverse approach (2 − norm) in terms of

maximum output force at the end effector by using both

numerical calculation and experimental results. Under the

same maximum actuator joint torques, the maximum output

force at the end effector calculated using the proposed

∞−norm approach is greater than the one obtained using

2−norm approach. For the experimental results, BiWi, Bi-

articularly actuated and Wire driven manipulator is proposed.

In Section II, main features and statics of bi-articularly

actuated manipulators are described. In Section III, 2−norm

and ∞−norm approaches for actuator redundancy resolution

are introduced. In Section IV, Biwi, Bi-articularly actuated

and Wire driven manipulator is described together with

the feedforward control strategy used in the experiment. In

Section V, the proposed ∞−norm approach is compared

with 2−norm approach in terms of maximum output force

at the end effector. Finally, in Section VI, the advantages of

the ∞−norm approach are summarized. The proof of the

closed form solution of the ∞−norm approach is reported

in Appendix I.

II. CHARACTERISTICS AND MODELING OF

BI-ARTICULAR ACTUATED MANIPULATORS

In conventional manipulators each joint is driven by one

actuator. On the contrary, animal limbs present a complex

musculo-skeletal structure based on two types of muscles:

1) Mono-articular muscles, which produce a torque on

one joint.

2) Multi-articular muscles, which produce torque on two

or more consecutive joints at the same time. Gastroc-

nemius is a bi-articular muscle in the human leg.

A simplified model of the complex animal musculo-skeletal

system is shown in Fig. 1. This model is based on 6

contractile actuators — extensors (e1, e2 and e3) and flexors

( f1, f2 and f3) — coupled in three antagonistic pairs.

• e1– f1 and e2– f2: pairs of mono-articular actuators which

produce torques about joints 1 and 2, respectively.

• e3– f3: pair of bi-articular actuators which produce

torque about joints 1 and 2 contemporaneously.

The statics of the arm driven by bi-articular actuators of

Fig. 1 are shown in Fig. 2 where:

• T1 and T2 are total torques at joints 1 and 2, respectively.
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Fig. 1. Scheme a two-link arm with 4 mono- and 2 bi-articular actuators

Fig. 2. Statics of a two-link arm with mono and bi-articular actuators

• τ1 and τ2 are torques produced by mono-articular actu-

ators at joints 1 and 2 respectively, calculated as:

τ1 = ( f1 − e1)r (1)

τ2 = ( f2 − e2)r (2)

where r is the distance between the joint axis and the

point where the force is applied.

• τ3 is the bi-articular torque produced at both joints:

τ3 = ( f3 − e3)r (3)

• F is a general force at the end effector.

The statics of this system are therefore expressed by:
{

T1 = τ1 + τ3

T2 = τ2 + τ3
(4)

Manipulators equipped with bi-articular actuators have nu-

merous advantages: dramatical increase in range of end

effector impedance that can be achieved without feedback

[1], realization of path tracking and disturbance rejection

using just feedforward control [12], improvement of balance

control for jumping robots that do not use force sensors
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Fig. 3. Maximum output force at the end effector for conventional and
arm driven by bi-articular actuators

[15]. Moreover, multi-joints actuators such as tri-articular

actuators, increase the efficiency in force production [16].

Another advantage of arm equipped with bi-articular actu-

ators is the ability to produce a maximum output force at the

end effector in a more homogeneously distributed way [17].

In Fig. 3 the maximum output force at the end effector for

a two-link traditional manipulator and a robot arm equipped

with bi-articular actuators is shown for comparison. In the

case of traditional manipulator, two actuators with maximum

joint torque T1 = T2 = 10 Nm are considered. On the other

hand, for the bi-articular actuators driven arm three actuators

with maximum joint torque τ1 = τ2 = τ3 = 6.66 Nm are

taken into account. Therefore, the total maximum actuator

torque in the two cases is the same. The conventional

quadrilateral shape becomes an hexagon for arms driven by

bi-articular actuators that therefore produce a maximum force

at the end effector more homogeneously distributed in respect

to output force direction. This aspect is peculiar for appli-

cations which interact with humans such as rehabilitation

robots, as well as for jumping and waking robots [4] [15].

III. APPROACHES FOR ACTUATOR

REDUNDANCY RESOLUTION

A two-link manipulator with the statics shown in Fig. 2

is driven at least by three actuators, resulting in actuator

redundancy. Given τ1, τ2 and τ3, it is possible to determine

T = [T1,T2]
T , and so F = [Fx,Fy]

T by using the transpose

Jacobian:
[

T1

T2

]

= JT

[

Fx

Fy

]

(5)

where

J =

[

−l1sin(θ1)− l2sin(θ1 +θ2) −l2sin(θ1 +θ2)
l1cos(θ1)+ l2cos(θ1 +θ2) l2cos(θ1 +θ2)

]

(6)

Fx and Fy are the orthogonal projection of F on the x-

axis and y-axis, respectively. On the other hand, given F,

and therefore T, it is generally not possible to determine

uniquely τ1, τ2 and τ3 (see (4)).

In the following two approaches to resolve actuator re-

dundancy — 2−norm and ∞−norm — are described. It is

assumed that τmax
1 = τmax

2 = τmax
3 , where τmax

i (i = 1,2,3) is

the maximum joint torque that the actuator i produces.
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A. 2−norm approach

Given the desired joint torques T1 and T2, three actuators

joint torques τ1, τ2 and τ3 are calculated using 2−norm by

solving the following problem:

minimize

√

(τ1)2 +(τ2)2 +(τ3)2 (7)

subject to

{

T1 = τ1 + τ3

T2 = τ2 + τ3

(8)

The solution of the problem is:






τ1 =
2
3
T1 −

1
3
T2

τ2 =− 1
3
T1 +

2
3
T2

τ3 =
1
3
T1 +

1
3
T2

(9)

B. ∞−norm approach

Given the desired joint torques T1 and T2, three actuators

joint torques τ1, τ2 and τ3 are calculated using ∞−norm by

solving the following problem:

minimize max{|τ1|, |τ2|, |τ3|} (10)

subject to

{

T1 = τ1 + τ3

T2 = τ2 + τ3

(11)

A closed form solution of the problem is determined on

the basis of the values of T1 and T2 as follows:

• if T1T2 ≤ 0






τ1 =
T1−T2

2

τ2 =
T2−T1

2

τ3 =
T1+T2

2

(12)

• if T1T2 > 0 and |T1| ≤ |T2|






τ1 = T1 −
T2
2

τ2 =
T2
2

τ3 =
T2
2

(13)

• if T1T2 > 0 and |T1|> |T2|






τ1 =
T1
2

τ2 = T2 −
T1
2

τ3 =
T1
2

(14)

Proof of (12), (13), and (14) is reported in Appendix I. It is

trivial to verify that (12), (13), and (14) are continuous in all

the domain D = {T1,T2}.

Given a generic force at the end effector F, the actuators

inputs τ1, τ2 and τ3 are calculated in the following way.

1) Calculate the joint torques by using (5), T = JT F.

2) According to calculated T1 and T2, the desired actuators

inputs are directly determined using linear equations:

• if T1T2 ≤ 0 use (12)

• if T1T2 > 0 and |T1| ≤ |T2| use (13)

• if T1T2 > 0 and |T1|> |T2| use (14)

Therefore, the proposed ∞−norm approach is based on the

manipulator Jacobian to determine the required joint torques,

and uses only linear functions to resolve actuator redundancy.

Fig. 4. BiWi:Bi-articularly actuated and Wire driven manipulator

TABLE I

BIWI CHARACTERISTICS

Parameter value

Link 1 = Link 2 112 [mm]
Pulleys diameter (all) 44 [mm]

Thrust wire 30 [mm]

TABLE II

ACTUATOR AND SENSOR SYSTEM

Motors Sanyo T404-012E59

Servo system TS1A02AA

Force sensor Nitta IFS-67M25A15-I40

τ1
*

2τ*

τ3
*

6

motor

torque

ref

calc

PT=J  F
T

Redundancy 

resolution:

2-norm or

∞-norm

YF
*

XF
*

1e*

T1
*

2
*T

YF

XF
2e*

3e*

1f*

2f*

3f*

Fig. 5. Feedforward control block diagram

IV. EXPERIMENTAL SET-UP

BiWi, Bi-articularly actuated and Wire driven manipulator,

is shown in Fig. 4. BiWi has 6 motors, each representing one

of the muscles in Fig. 1. The power is transmitted to the joints

through pulleys and polyethylene wires. Basic characteristics

of BiWi and of the actuator and sensor systems are shown

in Tab. I and Tab. II, respectively. Further characteristics of

BiWi are described in [18].

The feedforward control block diagram used to collect the

data is shown in Fig. 5. F∗
x and F∗

y are the desired force at

the end effector. J is the manipulator Jacobian. τ∗1 , τ∗2 and

τ∗3 are the desired actuator joint torques as in Fig. 2, which

are calculated using 2− norm or ∞− norm approach from

the desired joint torques T ∗
1 and T ∗

2 . t∗1 –t∗6 are the 6 actuator

joint torque reference. They are calculated as:

e∗1 =

{

τ∗1 if τ∗1 < 0

0 otherwise
(15)
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f ∗1 =

{

τ∗1 if τ∗1 > 0

0 otherwise
(16)

e∗2 =

{

Ktlτ
∗
2 if τ∗2 < 0

0 otherwise
(17)

f ∗2 =

{

Ktlτ
∗
2 if τ∗2 > 0

0 otherwise
(18)

e∗3 =

{

τ∗3 if τ∗3 < 0

0 otherwise
(19)

f ∗3 =

{

τ∗3 if τ∗3 > 0

0 otherwise
(20)

In order to compensate for the inevitable transmission loss

in the thrust wires the reference motor torques for joint 2 –

e∗2 and f ∗2 – are multiplied by a constant Ktl = 1.33.

The end effector output force (F) is measured by using a

force sensor, and its steady state value is taken into account.

V. RESULTS

The 2−norm and the proposed ∞−norm approaches are

compared in terms of maximum output force at the end

effector, under the same maximum actuator joint torque, that

is τmax
1 = τmax

2 = τmax
3 .

The calculated and measured maximum output force at

the end effector of BiWi, obtained using the 2− norm and

∞−norm approaches, are shown in Fig. 6(a) for θ1 =−60.0◦

and θ2 = 120.0◦, in Fig. 7(a) for θ1 =−45◦ and θ2 = 90◦ and

in Fig. 8(a) for θ1 =−30◦ and θ2 = 60◦. The experimental

results show that the measured force at the end effector

agrees with the calculated one. Moreover, the maximum

output force at the end effector is greater when using the

∞ − norm approach. The relative difference in maximum

output force magnitude between the two approaches:

Fdi f f =
|Fmax

∞−n|− |Fmax
2−n |

|Fmax
2−n |

(21)

is shown in Fig. 6(b), in Fig. 7(b) and in Fig. 8(b) for the

three configurations. In case of robot legs an output force

with θ f = 0 is perpendicular to the ground, an therefore

important for standing, walking and jumping actions [15].

The output force for θ f = 0 using ∞−norm is about 30%

higher than the one using 2−norm.

The actuator joint torque patterns of two approaches are

shown in Fig. 6(c), in Fig. 7(c) and in Fig. 8(c) for the three

configurations. For both the approaches the actuator joint

torque patterns are continuous in respect to the output force

angle (θ f in Fig. 2). Hence, the 3 switching conditions used

for the redundancy resolution in the ∞−norm approach do

not result in torque reference discontinuities, which could

cause instability to the system.

VI. CONCLUSIONS

In this paper, a new approach based on ∞−norm to

resolve actuator redundancy for bi-articular actuated manip-

ulators is proposed. A closed form solution for the proposed

method is derived. The ∞− norm approach maximizes the

force at the end effector given the maximum actuator joint

torques. Therefore, it is an approach to optimize actuators
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Fig. 6. θ1 =−60◦, θ2 = 120◦

design for bi-articularly actuated manipulators. Moreover,

only linear functions are used to resolve actuator redundancy.

The proposed approach is compared in terms of maxi-

mum output force at the end effector with Moore-Penrose

pseudo-inverse model which is based on 2− norm. Under

the same maximum actuator joint torques, the proposed

approach allows to obtain a greater output force at the end

effector (up to 30%), especially in output force direction

peculiar for applications which interact with humans such as

rehabilitation robots, as well as for jumping/waking robots.

Biwi, Bi-articularly actuated and Wire driven manipulator,

and a feedforward control strategy are used to experimentally

validate the proposed ∞−norm approach.
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Fig. 7. θ1 =−45◦, θ2 = 90◦

APPENDIX I

PROOF OF CLOSED FORM SOLUTION FOR THE ∞−norm

APPROACH

Actuator redundancy problem based on ∞−norm ap-

proach expressed by (10) and (11) can be written for a

simpler notation as:

minimize max{|x|, |y|, |z|} (22)

subject to

{

T1 = x+ z

T2 = y+ z
(23)

where k1 and k2 are the joint torques T1 and T2, and x, y, z

are the actuator joint torques τ1, τ2, τ3, respectively. A closed
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Fig. 8. θ1 =−30◦, θ2 = 60◦

form solution is determined as in the following.

The searched solution has to satisfy at least one of the

three equations |x| = |y|, |y| = |z|, |x| = |z|. In fact, when

one of three variable’s absolute value decreases at least one

of the other two increases. Therefore, for any solution of

the problem with |x| 6= |y| 6= |z| it is possible to decrease the

higher value among the three so to be equal to at least one of

the other two. Therefore, the searched solution is one among

the following 6:
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1) x =−y:






x+ z = k1

y+ z = k2

x =−y

⇒







x = k1−k2
2

y = k2−k1
2

z = k1+k2
2

(24)

2) y = z:






x+ z = k1

y+ z = k2

y = z

⇒







x = k1 −
k2
2

y = k2
2

z = k2
2

(25)

3) x = z:






x+ z = k1

y+ z = k2

x = z

⇒







x = k1
2

y = k2 −
k1
2

z = k1
2

(26)

4) x = y:






x+ z = k1

y+ z = k2

x = y

(27)

If k1 6= k2 there is no solution. If k1 = k2 = k there are

infinite solution and the best one is






x = k
2

y = k
2

z = k
2

(28)

which is equal to (25) or (26).

5) y =−z:






x+ z = k1

y+ z = k2

y =−z

(29)

If k2 6= 0 there is no solution. If k2 = 0 there are infinite

solution and the best one is






x = k1
2

y =− k1
2

z = k1
2

(30)

which is equal to (26).

6) x =−z;






x+ z = k1

y+ z = k2

x =−z

(31)

If k1 6= 0 there is no solution. If k1 = 0 there are infinite

solution and the best one is






x =− k2
2

y = k2
2

z = k2
2

(32)

which is equal to (25).

Therefore, the searched solution is (24) or (25) or (26).

Among the 3 possible solutions the searched one is directly

selected on the basis of k1 and k2 as follows (the variable

subscript represents the respective equation number):

• if k1k2 ≤ 0






|z24| ≤ |x24|= |y24|
|x24| ≤ |x25|
|y24| ≤ |y26|

(33)

Therefore, solution is (24) which corresponds to (12).

• if k1k2 > 0 and |k1| ≤ |k2|






|x25| ≤ |y25|= |z25|
|y25| ≤ |y26|
|z25| ≤ |z24|

(34)

Therefore, solution is (25) which corresponds to (13).

• if k1k2 > 0 and |k1|> |k2|






|y26| ≤ |x26|= |z26|
|x26| ≤ |x25|
|z26| ≤ |z24|

(35)

Therefore, solution is (26) which corresponds to (14).
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