
Distributed Averaging with Flow Constraints

Miroslav Barić and Francesco Borrelli∗

Abstract— A network of storage elements is considered. Each
storage element is an integrator which can exchange stored
resource with neighboring elements. The flow between the
elements as well as the amount of the resource that each element
can store are subject to constraints. The problem of averaging
the state of each element is addressed. The particularity of this
problem compared to standard consensus–based averaging is
that the elements exchange not only the information but also
the stored resource. Thus the elements are controlled–coupled
through the flow constraints. A distributed algorithm for flow
control is proposed. The algorithm is non–iterative and does
not require centralized design procedure. The proposed scheme
guarantees asymptotic convergence of states of all nodes to the
same value equal to the average of initial values.

I. INTRODUCTION

Networks of integrators are commonly used as a model of

large–scale systems comprising smaller sub–systems whose

primary purpose is to store some resource (water, goods,

energy, data, etc.). Additionally these elements are often

required to exchange the resource with other storage el-

ements in the network or to satisfy external demand. In

this note we address a problem which is often associated

with networked storage devices - the balancing problem. In

many applications it is preferable to store the resource in a

manner which utilizes the available storage evenly across

the whole network. One such example is a network of

battery cells used in modern electric vehicles. In order to

avoid potential damage caused by over– or under–charging

of the individual cells, it is desirable to have the amount

of charge (normalized to the cell’s capacity) stored in the

particular cell as close as possible to the normalized amount

of charge stored in any other cell. Similar problem occurs in

data storage networks in which balancing of the stored data

helps avoiding data throughput bottlenecks caused by uneven

distribution of the stored data over the nodes in the network.

If the number of storage elements and their connections

is large the centralized balancing may become intractable.

In such cases one may consider consider decentralized or

distributed algorithms for balancing. In its most distilled

form the problem of balancing reduces to the problem of

reaching an agreement on the stored amount of resource in

each storage element, i.e. the problem of consensus.

In general, consensus protocols are distributed control laws

used by agents (dynamical systems) to reach an agreement on

a common value of some variable. The attribute “distributed”

Miroslav Barić is with the United Technologies Research Center
(e–mail: baricm@utrc.utc.com) and Francesco Borrelli is with
the Department of Mechanical Engineering, UC Berkeley (e–mail:
fborrelli@me.berkeley.edu). This work was supported by U.S.
Air Force Office of Scientific Research (AFOSR) under Grant FA9550-
09-1-0106.

in this context means that the applied control policy uses

only local information, i.e. each agent exchanges information

only with its neighbors, where a “neighborhood” is typi-

cally formalized through a notion of communication graph.

Consensus protocols have been considered as a tool for

parallel (distributed) computation, including asynchronous

averaging protocols ([1], [2]) and protocols that lead to an

agreement on general functions ([3], [4]). Most recently

consensus algorithms have been applied in areas like mobile

robotics and distributed sensing [5], [6]. For a more thorough

overview of various applications the reader is referred to [7].

Convergence properties of consensus algorithms have been

studied under different assumptions, utilizing existing theory

and developing new tools. For instance in [8] the authors

apply methods of algebraic graph theory to give conditions

for convergence of consensus protocols for directed and

undirected communication graphs, possibly time–varying

and in presence of comunication time–delays. A general

framework for stability analysis of various discrete–time

consensus protocols with time varying graph topologies is

proposed in [9], introducing a notion of set–valued Lyapunov

functions, and in [10], using the concept of averaging maps.

When considering application of consensus algorithms for

resource balancing in storage networks, one must confront

the facts that in every real instance of the problem the

capacity of the links used for the resource transfers be-

tween the storage devices in the network is bounded and

that each device can store limited amount of the resource.

Nevertheless, the problem of consensus under constraints

on dynamic behavior of agents, which is of particular

importance for our purposes, has attracted relatively little

attention. In [11] authors introduce consensus on several

variables that are separated by hard constraints. Consensus in

multi–agent systems with various constraints (on the agents’

dynamics, connectivity and mission objectives) is discussed

in [12]. In [13] the authors propose algorithms used by

multiple agents for distributed computations of an estimate

of some variable, with a restriction that the estimate of each

agent lies in the corresponding constraint set. In particular,

the proposed algorithm performs standard consensus–type

averaging in which an agent updates its estimate using a

convex combination of its neighbors’ estimates and projects

it on its set of constraints. The approach was subsequently

applied to consensus problem of constrained linear systems

in [14]. In [15] the authors deploy distributed receding–

horizon control approach for consensus in a time–varying

network of agents exhibiting single– and double–integrator

dynamics and in the presence of control constraints.

In the above cited work dealing with constrained con-

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 4834

sensus the constraints are imposed on the control decision

of each agent or on the consensus value. In all mentioned

references the control decisions remain decoupled, i.e. each

agent chooses a control within its own constraint set and

does not consider current control decisions of other agents.

In our problem, however, the agents (storage elements)

exchange not only information locally, but are expected to

exchange stored resources over links with limited capacity at

each discrete–time instance. Therefore, at each time instance

the agents must reach an agreement on the value of the

constrained flow through the links. Furthermore, the decision

on the exact value of the flow must be reached in finitely

many iteration and the generated sequence of generated flows

should ensure convergence of the amount of the resource

stored by each agent to the same common value. In this

paper we propose one such protocol which allows agents

to reach a quick agreement on local flow values. We show

that the proposed algorithm, which is optimization–based and

in general generates non–linear control policies, guarantees

convergence to the consensus value in which each agent’s

state equals to the state of its neighbors in the graph. We

compare the performance of our algorithm to linear protocols

considered in [2], which we modify to satisfy flow constraints

in our problem. Computationally, our algorithm requires a

solution to a quadratic program in each node of the network,

while linear control policies demand very little implemen-

tational resources. On the other hand our algorithm is truly

distributed in nature and does not require a centralized design

procedure like the algorithm in [2]. Also, as indicated in

Section III-B, the proposed distributed averaging algorithm

is applicable also in case of time–varying network topology.

Notation and basic definitions: The set of real number

is denoted by R, the set of non–negative (greater or equal to

0) real numbers as R+ and the set of strictly positive (greater

than 0) real numbers as R++. N is the set of natural numbers,

i.e. N := {1, 2, . . . }. N[q1,q2] stands for {q1, . . . , q2}, where

q1, q2 ∈ N and q1 ≤ q2. Empty set is denoted as ∅. Given

any set S , 2S denotes power set of S , i.e. the set of all

subsets of S . Cardinality of a set S is denoted as |S|.

II. PROBLEM STATEMENT

Consider a graph G = (N , E) where N = N[1,n] is the set

of nodes and E ⊆ N×N is the set of unordered pairs, edges.

The network stores a resource in its nodes. The most basic

notion in our study is the flow of such resource between the

nodes. The flow is constrained by the capacity associated to

the edges.

Definition 2.1: A flow is a function f : N ×N → R such

that for (i, j) ∈ N :

(a) f(i, j) = −f(j, i), and

(b) f(i, j) ≤ c(i, j),

where c : N ×N → R
++ is the capacity function.

We use a more convenient notation fij = f(i, j). Each node

i ∈ N is a discrete–time dynamical system with the state

update equation:

x+
i = xi + φi, (1)

where x+
i denotes the state at the next discrete time instance

given the current state xi. The state xi ∈ R represents the

current amount of the resource stored in the node i, whose

level is controlled by the total net inflow φi into the node i,
defined as:

φi :=
∑

j∈Ai

fji. (2)

The set of nodes adjacent to node i ∈ N is denoted as:

Ai = {j : (i, j) ∈ E} .

For later convenience we introduce the sets A+
i and A−

i

denoting, respectively, adjacent nodes that supply the node

i or demand the stored resource from it. Formally, given a

flow f(·, ·):

A+
i := {j ∈ Ai : fji > 0} , (3a)

A−
i := {j ∈ Ai : fji < 0} . (3b)

We can separate the total net inflow φi into the amount of the

resource that is supplied to the node i, φ+
i , and the amount

that is taken from the node i, φ−
i :

φi = φ+
i − φ−

i ,

where:

φ+
i :=

∑

j∈A+

i

fji, and φ−
i :=

∑

j∈A−

i

fij .

Dynamics of the whole network can be compactly written

as:

x+ = x+ φ,

where x = [x1 x2 . . . xn]
T

and φ = [φ1 φ2 . . . φn]
T

. In

addition to flow constraints, we also assume that the amount

of resource that can be stored in each node is bounded, i.e.

that xi ∈ X . Any control problem for a given network with

the capacity c(·, ·) can be formalized as selection of the flow

f(·, ·) (in this case the selection of |E| values fij) such that

the constraints xi ∈ X , i ∈ N , hold for all time. We state

our distributed consensus problem as follows.

Problem 1 (Constrained Distributed Consensus): At

each time instance k select the flow f(·, ·) such that: (a) for

a given xi(k) ∈ X the successor state xi(k + 1) ∈ X , and

(b) for all i ∈ N the values of xi(k) converge to the same

x̄ ∈ X as k → ∞. The following restrictions apply at each

time instance:

(a) each node i ∈ N knows the value of xi,

(b) each node i ∈ N knows the capacity values c(i, j) and

c(j, i) for j ∈ Ai,

(c) each node i can communicate and exchange information

only with adjacent nodes, i.e. with nodes j ∈ Ai,

(d) the decision on the value of fij is made in one of the

nodes i or j.

In order to have a solution for the above problem, an

additional condition on the graph connectedness will be

imposed later. Clearly, in that case the common limit value x̄
corresponds to the average of initial values. We now propose

an algorithm which solves the Problem 1 and discuss its

properties.

4835

III. FLOW–CONSTRAINED CONSENSUS PROTOCOL

Assume that each node is associated to an agent which

computes the flow values over the incident edges at each

discrete–time instance k. To make the presentation more

clear, we divide the algorithm executed by each agent into

“computational” part, where the flow values for each edge are

computed, and “implementational” part in which the actual

values of the flows are implemented.

A. The Algorithm

First we present the algorithm used by each agent for

computing of the flow values that are to be implemented

in the second part of the process. Each agent computes

these flow values using only the limited information from its

neighborhood, as specified in Problem 1. The aim of each

agent is to bring the state of the associated node close to

the average of its own state and the states of its neighbors.

In order to prevent agents to act selfishly in pursuing their

goal of bringing or keeping their node’s state close to the

average, restrictions are imposed on the minimum flow that

agents must allow in order to facilitate the resource transfer

between the nodes in their neighborhood. As it will become

apparent further in the text, such restrictions are essential for

establishing convergence of the states xi(k) to the common

value. At time instance k ≥ 0, agent at node i computes the

candidate flows using the Algorithm 1. Here is the summary

of the algorithm clarifying the key points:

• In steps 1–2 the agent i measures the state xi(k),
receives the measurement of the states xj(k) from its

neighbors, determines minimal and maximal values of

the states in nodes {i} ∪ Ai and computes the average

x̄i of the states xi and xj , j ∈ Ai.

• In step 3 the agent i decides to be supplied only by

neighboring nodes which have more resource stored and

to supply only the neighboring nodes storing strictly less

resource. Agent i expects 0 flow from the neighbors

containing the amount of resource equal to xi. This

is formally done, with some notational overloading, by

assigning the nodes to the sets A+
i and A−

i defined in

(3).

• In step 4 the agent decides on upper bounds of the

incoming and outgoing flow represented by variables

c+i and c−i , respectively. These bounds are determined

by the corresponding edge capacities and the differences

of the state xi and the states xj , j ∈ A+
i ∪ A−

i .

• The crucial part of the algorithm is setting up the

constraints on incoming and outgoing transfers φ+
i

and φ−
i in step 5. The total net inflow to node i,

given by φ+
i − φ−

i must be smaller than the amount

of resource the node can receive, i.e. smaller than

(xi
max − xi), and greater than the amount the node

can give away, i.e. (xi − xi
min). Lower bound for φ+

i

and φ−
i is set to the same value φi

low which is strictly

positive for xi ∈
(

xi
min, x

i
max

)

and is equal to 0 only

for xi ∈
{

xi
min, x

i
max

}

. This way a node with states

between xi
min and xi

max acts as a “middle–man”, always

Algorithm 1 Computations done by an agent i at time k

Require: xi(k) ∈ X and xj(k) ∈ X , j ∈ Ai

1: xi = xi(k), xj = xj(k), j ∈ Ai

2: xi
min = min

j∈{i}∪Ai

xj , xi
max = max

j∈{i}∪Ai

xj

x̄i :=
(

xi +
∑

j∈Ai
xj

)

/ (1 + |Ai|)

3: A+
i = {j ∈ Ai : xj > xi},

A−
i = {j ∈ Ai : xj < xi}

4:

c+i =

{

0, if A+
i = ∅,

∑

j∈A+

i
min {xj − xi, c(j, i)} , otherwise

c−i =

{

0, if A−
i = ∅,

∑

j∈A−

i
min {xi − xj , c(i, j)} , otherwise

5: define the constraints:

φi
low = min{xi

max − xi, xi − xi
min, c

+
i , c

−
i },

∆i
max = xi

max − xi,

∆i
min = xi − xi

min,

Φi =

{

(φ+
i , φ

−
i) :

φi
low ≤ φ+

i ≤ min{c+i ,∆
i
max}

φi
low ≤ φ−

i ≤ min{c−i ,∆
i
min}

}

,

6: compute:

(φ̃+
i , φ̃

−
i) =arg min

(φ+

i
,φ

−

i
)∈Φi

(

xi + φ+
i − φ−

i − x̄i

)2
+

+ ρφ+
i φ

−
i ,

for some ρ > 0.

7: compute f i
ji, j ∈ A+

i , which minimize:

∑

j∈A+

i

(

f i
ji

)2
, subj. to











φ̃+
i =

∑

j∈A+

i
f i
ji,

f i
ji ≤ min{xj − xi, c(j, i)},

j ∈ A+
i

8: compute f i
ij , j ∈ A−

i , which minimize:

∑

j∈A−

i

(

f i
ij

)2
, subj. to











φ̃−
i =

∑

j∈A−

i
f i
ij ,

f i
ij ≤ min{xi − xj , c(i, j)},

j ∈ A−
i

transferring the resource from nodes in A+
i to A−

i . As

it will become clear later, this fact is important for

establishing convergence of values xi to the common

consensus value.

• In step 6 the values of incoming and outgoing flows

φ̃+
i and φ̃−

i are computed, optimal from the node i’s
perspective. Chosen cost is the distance from the local

average x̄i. The second term in the cost ρφ+
i φ

−
i is added

to make the problem strictly convex and any choice of

ρ ∈ (0, 2) would do. This term can be used to tune the

behavior of the algorithm, typically resulting in larger

4836

values φ̃−
i and φ̃+

i for smaller ρ.

• In steps 7 and 8, given the values φ̃−
i and φ̃+

i , the values

of the flow for the edges incident to node i are selected.

The upper bounds for f i
ij and f i

ji are determined by

the capacity values for the corresponding edges and the

differences |xi − xj |. The constraints on φ−
i and φ+

i in

steps 3–5 ensure that the optimization problems in steps

7 and 8 are feasible.

The values f i
ij for j ∈ A−

i and f i
ji for j ∈ A+

i computed at

node i in general differ from the values f j
ij and f j

ji computed

at an adjacent node j ∈ Ai. Hence, these values must be

“negotiated” before the implementation and the simplest way

to achieve that is to implement the flow for which fij =

min
{

f i
ij , f

j
ij

}

. We will show later that with such choice the

feasibility and required convergence as stated in Problem 1

are ensured for connected graph G. The implementation part

of the consensus protocol is therefore given by the following

procedure.

Algorithm 2 Implementation of the flow by an agent i at

time k

Require: the sets A+
i and A−

i and the values f i
ij , j ∈ A−

i ,

and f i
ji, j ∈ A+

i , computed using Algorithm 1.

1: send: f i
ij to nodes j ∈ A−

i ,

f i
ji to nodes j ∈ A+

i , and

f i
ij = 0 to nodes j /∈ A−

i ∪ A+
i

2: receive: f j
ij from nodes j ∈ A−

i ,

f j
ji from nodes j ∈ A+

i

3: for all j ∈ Ai such that j < i do

4: if j ∈ A−
i then

5: implement fij = min
{

f i
ij , f

j
ij

}

6: else if j ∈ A+
i then

7: implement fji = min
{

f i
ji, f

j
ji

}

8: else

9: implement fij = 0
10: end if

11: end for

The procedure given by Algorithms 1–2 clearly terminates

in finite time. The requirement is, however, that the decisions

made by agents are synchronized: the actual flow cannot be

implemented before all agents complete their computations

and exchange the results. It should be clear that the selected

rule prescribing that maximum of the nodes i and j im-

plements fij is arbitrary and does not affect the resulting

dynamic behavior of the network.

Next step is to demonstrate that the procedure in Algo-

rithms 1–2 can actually be used to solve the Problem 1.

B. Convergence

We start with some auxiliary observations highlighting the

relevant features of the Algorithms 1–2. In particular, we

show that the flow value fij will be non–zero if and only

if the difference xi − xj is non–zero and use this to prove

local “contractive” property of the generated flows, namely

that the successor state x+
i is in the relative interior (if one

exists) of the interval [xi
min, x

i
max]. Finally, we show that

the generated flow values change continuously with the state

vector x. All these properties are then used to prove the main

result stated by Theorem 3.1.

Unfortunately, due to the lack of space we are able only

to list above properties. Detailed proof and the discussion is

provided in the technical report [16].

Lemma 3.1:

(a) Let ∆ij := xi−xj , for i ∈ N and j ∈ Ai. The value f i
ij

computed by the agent i using the Algortihm 1 equals 0

if and only if ∆ij = 0. In particular, f i
ij > 0 if and only

if ∆ij > 0 and f i
ji > 0 if an only if ∆ij < 0.

(b) Let φi be the actual (implemented) net inflow for the

node i, i.e. given the actual flow f(·, ·) computed

in Algorithm 2, φi =
∑

j∈Ai
fji. Then xi + φi ∈

[

xi
min, x

i
max

]

, where xi
min and xi

max are specified in

Algorithm 1, step 1. Moreover, xi + φi ∈
{

xi
min, x

i
max

}

if and only if xi = xi
min = xi

max.

(c) Let φi : X
n → R be the mapping from x ∈ Xn to the

total net inflow of the node i computed by the Algorithms

1–2. The mapping φi(·) is continuous.

We can now make a claim about the distributed algorithm

that solves the Problem 1.

Theorem 3.1: Let the graph G = (N , E) be connected.

Then the distributed algorithm given by Algorithms 1–2

solves the Problem 1. In particular, given an initial xi(0),
sequences {xi(k)}

∞
k=0 for i ∈ N converge to the mean value

1
|N |

∑

i∈N xi(0).
We remark that the the properties of our algorithm stated

in Lemma 3.1 satisfy Assumption 1 in [9], which consid-

ers much more general framework including time–varying

network topologies. In that respect, we can simply refer to

the result in [9] and claim the convergence for the general

case of time–varying graphs. For the particular case of time–

invariant graphs the proof of Theorem 3.1 is provided in [16].

IV. NUMERICAL EXAMPLE

In this section we compare the proposed distributed av-

eraging algorithm to the fastest distributed linear averaging

(FDLA) algorithm in [2]. In [2] the authors consider flows,

for a given x, generated by linear feedback laws:

fij(x) = kij(xi − xj), (i, j) ∈ E .

The gains kij which ensure optimal convergence rate (with

respect to the considered asymptotic convergence factor, cf.

[2]) can be obtained by solving the following optimization

problem:

min
kij

ρ(W − 1
T
1/n), (4a)

subj. to W = I −B diag(kij)B
T , (4b)

where ρ(·) denotes the spectral radius of the argument

matrix, B is the incidence matrix for the considered network

and arbitrary graph orientation, diag(kij) represents diagonal

matrix with gains kij on the diagonal, 1 is the vector whose

entries are all equal to 1 and I is the identity matrix of

4837

appropriate dimension. Optimization problem (4) must be

solved for the given network as a whole. As shown in [2],

for symmetric weights, i.e. for kij = kji, the problem (4)

can be solved by convex optimization. In order to satisfy

capacity constraints imposed by Problem 1 we augment the

constraints in (4) with the set of linear inequalities:

|kij(xmax − xmin)| ≤ min{c(i, j), c(j, i)}, (i, j) ∈ E , (5)

where xmin and xmax correspond to the minimal and maxi-

mal possible value of the integrator state.

We consider the network used as an example in [2],

consisting of 8 nodes and 17 edges whose graph is depicted

in Figure 1. The performance of our distributed algorithm is

1

2

3

4

5

6

7

8

Fig. 1: Graph of the network used in the numerical example.

compared to the FDLA algorithm in [2] with and without

constraints (5) on linear control laws. We assume that all

capacities in the network are equal to 1, i.e. c(i, j) =
c(j, i) = 1 for all (i, j) ∈ E . The initial amount of resource

in each node (the state) is selected randomly in the interval

[0, 10]. Time evolution of the states and the flow values

generated by the proposed Algorithms 1–2 is depicted in

Figure 2.

We computed1 the gains kij for the FDLA algorithm

without imposing the constraints (5). The resulting spectral

radius ρ(W −1
T
1/n) is 0.6, which is the value reported for

the same example in [2]. Performance of the unconstrained

linear averaging (FDLA) algorithm is shown in Figure 3.

Finally, we computed the gains for the FDLA algorithm

with capacity constraints (5), resulting with the spectral

radius ρ(W − 1
T
1/n) equal to 0.84774. The performance

of the constrained FDLA algorithm is shown in Figure 4.

As can be seen clearly from the Figures 2 and 3, our

distributed algorithm, which in general induces non–linear

averaging control laws, provides practically the same perfor-

mance as the fastest linear distributed averaging algorithm,

while generating flows which satisfy capacity constraints. On

the other hand, the original FDLA algorithm as presented

in [2] generates flows which do not conform to the existing

capacity constraints c(i, j) ≤ 1, as can be seen in Figure 2(b).

If we introduce capacity constraints (5) in the computation

of FDLA gains, the performance of the linear algorithm

expectedely deteriorates, as shown in Figure 4.

V. CONCLUSION

We propose an algorithm for distributed averaging (con-

sensus) in networks of storage elements subject to constraints

on the states and the control inputs. Unlike standard consen-

sus problems in the literature where each agent is actuated

1With the help of YALMIP [17].

k

x
(k
)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

(a) State evolution.

k

f i
j
(k
)

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1

(b) Generated flows.

Fig. 2: Time evolution of states and flows for the Algo-

rithms 1–2. Generated flows respect capacity bounds [−1, 1].

independently, in our problem we include constraints on

the flows between the individual storage elements. In a

distributed setup this type of constraints requires an agree-

ment between the agents on the flows along the common

edges and this agreement must be reached in finitely many

iterations in order to generate the appropriate flow between

the storage elements. We compare our algorithm to the

distributed averaging scheme reported in [2], based on linear

policies. As shown on the simple example, our algorithm

provides fast convergence, while satisfying all constraints,

which is not an inherent feature of the linear distributed

algorithm.

As a future research direction, one may consider the

extension in which certain nodes can select the set of their

neighbors with the aim of improving the convergence rate.

Another research topic of immediate interest is the influence

of time–delays, measurement and communication noise and

dynamic disturbances.

REFERENCES

[1] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed Asynchronous
Deterministic and Stochastic Gradient Optimization Algorithms,”
IEEE Trans. Automat. Contr., vol. 31, no. 9, pp. 803–812, 1986.

[2] L. Xiao and S. Boyd, “Fast Linear Iterations for Distributed Averag-
ing,” Syst. Control Lett., vol. 53, pp. 65–78, 2004.

[3] J. Cortés, “Distributed algorithms for reaching consensus on general
functions,” Automatica, vol. 44, pp. 726–737, 2008.

4838

k

x
(k
)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

(a) State evolution.

k

f i
j
(k
)

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

(b) Generated flows.

Fig. 3: Time evolution of states and flows for the FDLA

algorithm as originally proposed in [2] without capacity

constraints. The capacity bounds [−1, 1] are violated.

[4] D. Bauso, L. Giearré, and R. Pesenti, “Non–linear protocols for
optimal distributed consensus in networks of dynamic agents,” Syst.

Control Lett., vol. 55, pp. 918–928, 2006.

[5] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE Trans.

Automat. Contr., vol. 48, no. 6, pp. 988–1001, 2003.

[6] R. Olfati-Saber and J. Shamma, “Consensus Filters for Sensor Net-
works and Distributed Sensor Fusion,” in Proc. 44th IEEE Conf. on

Decision and Control, Sevilla, Spain, 2005, pp. 6698–6703.

[7] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and Cooperation
in Networked Multi-Agent Systems,” Proc. IEEE, vol. 95, no. 1, pp.
215–233, 2007.

[8] R. Olfati-Saber and R. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Trans.

Automat. Contr., vol. 49, no. 9, pp. 1520–1533, 2004.

[9] L. Moreau, “Stability of multiagent systems with time-dependent
communication links,” IEEE Trans. Automat. Contr., vol. 50, no. 2,
pp. 169–182, 2005.

[10] J. Lorenz and D. Lorenz, “On conditions for convergence to consen-
sus,” IEEE Trans. Automat. Contr., vol. 55, no. 7, pp. 1651–1656,
2010.

[11] K. Moore and D. Lucarelli, “Forced and constrained consensus among
cooperating agents,” in Proc. of IEEE Intl. Conf. on Networking,

Sensing and Control, 2005, pp. 449–454.

[12] M. Franceschelli, M. Egerstedt, A. Giua, and C. Mahulea, “Con-
strained invariant motions for networked multi-agent systems,” in Proc.

American Control Conf., St. Louis, MO, USA, jun 2009, pp. 5749–
5754.

[13] A. Nedić and A. Ozdaglar, “Distributed Subgradient Methods for
Multi-Agent Optimization,” IEEE Trans. Automat. Contr., vol. 54,
no. 1, pp. 48–61, 2009.

[14] B. Johansson, A. Speranzon, M. Johansson, and K. Johansson, “On
decentralized negotiation of optimal consensus,” Automatica, vol. 44,
pp. 1175–1179, 2008.

k

x
(k
)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

(a) State evolution.

k

f i
j
(k
)

0 1 2 3 4 5 6 7 8 9 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(b) Generated flows.

Fig. 4: Time evolution of states and flows for the FDLA

algorithm in [2] with imposed capacity constraints.

[15] G. Ferrari-Trecate, L. Galbusera, M. Marciandi, and R. Scattolini,
“Model Predictive Control Schemes for Consensus in Multi–Agent
Systems with Single– and Double–Integrator Dynamics,” IEEE Trans.

Automat. Contr., vol. 54, no. 11, pp. 2560–2572, 2009.
[16] M. Barić and F. Borrelli, “Distributed averaging with flow constraints,”

UC Berkeley, Tech. Rep., 2011, available from http://www.mpc.
berkeley.edu.

[17] J. Löfberg, “YALMIP : A toolbox for modeling and
optimization in MATLAB,” in Proceedings of the

CACSD Conference, Taipei, Taiwan, 2004, available from
http://control.ee.ethz.ch/˜joloef/yalmip.php.

4839

