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Abstract-An adaptive backstepping PI sliding-mode control is 

proposed for speed control of the drive of an interior 
permanent magnet synchronous motor (IPMSM) subjected to 
load disturbances. First, a nonlinear model with uncertainties is 
derived for the IPMSM, and then an adaptive backstepping 
sliding-mode controller incorporating a linear load torque 
estimator is designed. Next, the parametric uncertainties of the 
model are handled with adaptive laws in the design of the 
controller. To attenuate the chattering problem without 
sacrificing the feature of the sliding-mode control, an adaptive 
PI-saturation function is used to approximate the signum 
function within the boundary layer. Asymptotic stability of the 
proposed control method is proven by Lyapunov stability 
theory and Barbalat’s lemma. A digital signal processor, 
TMS320LF2407, is adopted to implement the proposed control 
scheme. The experimental results show that the proposed 
system can effectively reduce the chattering phenomenon and 
has fast transient response, good load disturbance rejection 
response, and good tracking response.  1  

I. INTRODUCTION 

The interior permanent magnet synchronous motor 
(IPMSM) has been widely used in industry because of its 
high efficiency, high torque/ampere ratio, and rugged 
structure. Several adaptive backstepping sliding-mode 
controllers have been developed for AC motors or DC 
motors to increase their control performance [1]-[3]. For 
example, Lin et al. proposed an adaptive backstepping 
sliding-mode control for linear induction motor drive [1]. 
The designed control laws can compensate lumped 
uncertainty in the motion control system. Moreover, an 
adaptive law was developed to handle the parametric 
uncertainty in real-time implementation. Shieh and Shyu 
proposed an adaptive backstepping sliding-mode control for 
induction motor drives [2]. By using an adaptive 
backstepping technique, the adverse effect of the unknown 
but slowly varying parameters in the system can be 
effectively alleviated. Besides, the proposed method 
employed the input-output feedback linearization technique; 
therefore, the nonlinear coordinate transformation is needed 
to derive the d-q axis control inputs. In [3], an adaptive 
backstepping controller was proposed to control an IPMSM 
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drive system. The external load torque of the IPMSM was 
estimated by an adaptive law; however, the performance of 
the load estimation was not shown in their experimental 
results. In addition, the convergence of the load estimation 
error cannot be guaranteed even if the persistent excitation 
condition is satisfied. The reason is that the external load 
torque is treated as the external disturbance rather than a 
parameter of the IPMSM. In the above schemes, excellent 
dynamic and steady-state performances are shown; however, 
the systems may suffer chattering due to discontinuous 
switching functions. To overcome the chattering problem 
resulting from sliding-mode control, several papers have 
addressed such an issue [4], [5]. For example, Xu proposed 
chattering free robust control for nonlinear systems [4]. 
However, the time-varying feedback gain is very difficult to 
obtain in real-time implementation. Shahnazi et al. proposed 
a novel adaptive fuzzy PI sliding-mode control for induction 
and DC servomotors [5]. Through the simulation results, 
their method indeed showed good tracking performance 
without chattering.  

In this paper, an adaptive backstepping PI sliding-mode 
control to achieve speed tracking of an IPMSM drive system 
is proposed. Different from the traditional sliding-mode 
control, an adaptive PI-saturation function is used to 
approximate the signum function within boundary layer, 
which can effectively eliminate chattering. Such results 
appear to be new in the literature dealing with speed control 
with IPMSM. In addition, to make the controller more 
promising for future practical employment, we adopt a DSP 
to execute the controller, and the experimental results have 
successfully demonstrated plausibility of the proposed speed 
control scheme.  

II. MODELING OF IPMSM 

The nonlinear state equation of an IPMSM in the d-q 
reference frame can be written as follows [6]: 
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where vd and vq are d- and q-axis voltages, sr  is stator 
resistance, id and iq are d- and q-axis currents, dL  and qL  are 
the d- and q-axis inductances, d/dt is the differential operator, 
Po is the number of pole-pairs, ωrm is motor speed, LT  is 
external load torque, mJ  is moment of inertia of rotor, mB  is 
viscous friction coefficient, and λm is flux linkage. 

III. ADAPTIVE BACKSTEPPING PI SLIDING-MODE CONTROL  

According to (1)-(3) presuming that all the coefficients 
involved are known only up to some precision level, the 
dynamic equation of an IPMSM (1) can thus be re-expressed 
as one subjected to some system uncertainties shown as 
follows : 

( ) ( ) ( )1 1 2 2( ) ( )o o d o q
dx f x f x g g v g g v
dt

= + Δ + + Δ + + Δ  (4) 

where 

1

2

3

( )
( )
( )

ˆ3 3 ( )
2

( )

qo q rmso d

do do
o

so qrm do d rm mo
o o

qo qo qo
o

q mo do qo d q rm mo L

mo mo

o

o o

o o

mo

P

P P

P P

L ir i
L L

f
r iL if

L L L
f

i L L i i B T
J J J

x
f x x

x

ω

ω ω λ

λ ω

⎛ ⎞
⎜ ⎟− +
⎜ ⎟

⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠

+ −⎜ ⎟
− −⎜ ⎟

⎝ ⎠

=  (5) 

1

1 /
0
0

do

o

L
g

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

= , 2

0
1 /

0
o qog L

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=  (6) 

1

2

3

( )
( )
( )

( )
f
f
f

x
f x x

x

Δ⎛ ⎞
⎜ ⎟Δ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

Δ = , 
1

1 0
0

g
Δ⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Δ = , 2 2

0

0
g

⎛ ⎞
⎜ ⎟Δ⎜ ⎟
⎜ ⎟
⎝ ⎠

Δ =  (7) 

with the subscript “o” denoting the nominal value of some 
interested coefficient, L̂T  standing for the estimated external 
load, Δ symbolizing the system uncertainties including 
parameter variations and load estimation error, and 1Δ  , 2Δ  
representing unknown but bounded constants. Reformulating 
(4), one can obtain 

1 2( )o o d o q
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with F  being the upper bound of the lumped uncertainty F . 
Assuming the lumped uncertainty F  and the external load 

LT  are unknown constants. As a result, the lumped 
uncertainty F  and the external load LT  can be 
approximately estimated by adaptive laws and a load torque 
estimator, respectively.  

A. The External Load Torque Estimator  

Assume that the external load torque is an unknown 
constant and its derivative LT  is taken to be zero. For an 
IPMSM, the system can be described as follows [6]: 
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and 
1 rmy ω=  (11) 

The external load LT  can be estimated using the well-known 
load torque estimator [6]:  
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where L̂T  is the estimated value, and 1L  is the estimator gain. 
Unfortunately, in the real implementation, it is difficult to 
obtain rmω  without high frequency noise. To avoid taking 
the derivative of the measured speed, a new variable is 
introduced as  

1 1
ˆ

c L rmx T L ω= −  (13) 
Then, it is not difficult to obtain  
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Letting ˆ
TL L Le T T= − , we can obtain  

1ˆ
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J
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The dynamic behaviour of the estimator can be easily 
determined by the negative estimator gain 1L . The estimated 
load torque is used for the following proposed controller to 
compensate the load disturbance.  

B. Controller Design  

The control purpose is to combine the adaptive 
backstepping sliding-mode control with adaptive PI-
saturation function to maintain the speed and the d-axis 
current along the trajectories with desired performance. 
Unlike the input-output feedback linearization technique 
used in [6], the method in this paper does not require any 
nonlinear coordinate transformation. Besides, the proposed 
method is more robust than the conventional adaptive 
backstepping control in [3] due to the fact that the sliding-
mode control can effectively compensate for fast varying 
parameters in the system [5]. However, the discontinuous 
function (or switching function) is used in the conventional 
sliding-mode controller; as a result, chattering cannot be 
avoided. To overcome the chattering phenomenon, a PI-
saturation function is used here when the state of sliding 
surface is within the boundary layer [5]. By suitably 
adjusting the d-axis current, a MTPA (maximum torque per 
ampere) characteristic can be achieved. In addition, 
combination of adaptive backstepping PI sliding-mode 
controller with external load torque estimator can 
compensate for the uncertainties caused by the lumped 
parameter variations, measurement errors, and external load 
disturbances. Now we define the tracking error variables 
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between the state variables and the reference commands as 
follows: 

*
1 3rme xω= −  (16) 

*
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and 
* *
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where 1k  is the closed-loop feedback constant, and *

rmω  is 
the virtual control variable which is to stabilize the 
acceleration error. To achieve MTPA control, the d-axis 
current command *
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From (16)-(19), together with (8) and (9), the time 
derivatives of tracking errors are written as 
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The sliding surfaces 2s  and 3s  with the integrated error are 
chosen as [7] 
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t
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where sdk  and sqk  are strictly positive constants. To design 
the backstepping control scheme, the Lyapunov function 
with sliding manifold information is selected as 
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To satisfy 1 0V ≤ , the backstepping sliding-mode control 
laws are designed as 
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where dη  and qη  are positive constants. Substituting (24) 
and (25) into (23), one can obtain 

2 2
1 0d d q q d d q qV k s k s s sη η≤ − − − − ≤  (31) 

As one can observe, the derivative of the Lyapunov function 
is less or equal to zero, and it means that the backstepping 
sliding-mode control system is stable. However, the upper 
bounds 1F , 2F , 3F , dη , and qη  need to be determined. 
Assume that the lumped uncertainties 1F , 2F , and 3F  can be 
approximately estimated by adaptive laws under a fixed 
sampling interval; as a result, the requirement of the 
knowledge of the upper bounds 1F , 2F , and 3F  can be 
released. Then, the Lyapunov function can be rewritten as  
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According to (28), we design the adaptive backstepping 
sliding-mode control laws dv  and qv  as 
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Substituting (34) and (35) into (33), the following adaptive 
laws can be obtained  
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Substituting (34)-(38) into (33), one can satisfy 
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From (39), we can see that the designed adaptive 
backstepping sliding-mode control can ensure system 
stability. By increasing the controller gains dη  and qη  in (33) 
and (34), one can improve the robustness. In fact, larger 
values of the controller gains dη  and qη  will lead to more 
chattering in the control inputs. To reduce the chattering, the 
PI-saturation functions are utilized to approximate the 
signum functions as 
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Generally, the optimal values *
dΓ  and *

qΓ  are tuned by trial 
and error. Therefore, using the adaptive laws to approximate 
the optimal values is possible under a fixed sampling 
interval. Consider the following Lyapunov function 
candidate  
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According to (34), (35), and (44), the adaptive backstepping 
PI sliding-mode control laws dv  and qv  are proposed as 
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Substituting (45)-(47) into (44) and assuming (42) hold, we 
can rearrange the derivative of the Lyapunov function as  
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From (52), we can guarantee that 2,d qs s L∈ . It is not 
difficult to check that ds  and qs  are also bounded. 
Combining the previous results and using Barbalat’s lemma, 
we get the following  
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From (53) and (54), we can conclude that the closed-loop 
system is asymptotically stable even if the lumped parameter 
uncertainties, external load disturbances, and estimation 
errors exist. Note that (53) and (54) do not imply that the 
estimated errors 1F , 2F , 3F , dΓ  and qΓ  will approach zero 
without satisfying the persistent excitation condition. The 
closed-loop system is globally asymptotically stable for 
tracking desired trajectories if the optimal values *

dΓ  and *
qΓ  

in (42) hold [5]. To apply the proposed control scheme, the 
reference commands *

di , *
rmω , and *

rmω  are required. The 
whole speed control system is shown in Fig. 1, which 
consists of an adaptive backstepping PI sliding-mode 
controller, a d-axis command generator with MTPA, a space 
vector pulse-width-modulation (SVPWM) inverter, an 
IPMSM, and an external load estimator. 
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Fig. 1. Computation of the control input voltages. 
IV. EXPERIMENTAL RESULTS 

A four-pole 750 W three-phase IPMSM, made by the 
Shin-Ding company, of type 130-750MS-ZK-L2, with rated 
current 4.2 A is used in this paper. The parameters of the 
IPMSM are shown in Table I, and the implemented system 
is shown in Fig. 2. Two phase currents and shaft position of 
the IPMSM can be measured by Hall-effect sensors and a 
shaft encoder with resolution of 1024 pulses/rev, 
respectively. A digital signal processor, TMS320LF2407, is 
used to implement the adaptive backstepping PI sliding-
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mode control algorithm written in assemble language. After 
computing the proposed control algorithm, the d- and q-axis 
control input voltages can be obtained. According to the 
computed d- and q-axis voltages, the IPMSM is driven by a 
three-phase SVPWM inverter with a switching frequency of 
4.73 kHz, and the sampling period of the DSP is set as 211 

sμ . The configuration of the implemented system is shown 
in Fig. 3, which includes five major parts: A is power supply; 
B includes two Hall-effect current sensors and two A/D 
converters; C is DSP board; D is IGBT module; and E 
includes driver and encoder circuit.  

TABLE I 
THE PARAMETERS OF IPMSM 

,sor Ω
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moλ

moJ

moB

moJ

moB

doL
qoL

 
*
av
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reθ
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reθ

*
dv

*
qv

diqi reθ
rmω

*
rmω

*
di

*
rmω

 
Fig. 2. Implemented system. 

 
Fig. 3. Circuits of the implemented drive system. 

The experiments are conducted with three different test 
conditions to show and verify the effectiveness of the 
proposed method and to compare with the traditional 
adaptive backstepping sliding-mode controllers. In practical 
experiments, the adaptive backstepping sliding-mode 
controller and the proposed controller are computed using 
(34)-(35) and (45)-(46), respectively. The gains for the 
proposed control scheme are chosen by trial-and-error as 

1 7k = , 4656dk = , 219qk = , 728dη = , 93qη = , 72sdk = , 289sqk = , 

1 40L = − , 0.03dΦ = , 12qΦ = , 1 0.167γ = , 2 3.21γ = , 3 0.4γ = , 

4 0.00247γ =  and 5 0.02473γ =  to satisfy good performance. 
Also, the gains for the adaptive backstepping sliding mode 
controller are the same. Fig. 4(a) and 4(b) show the 
experimental results of the adaptive backstepping sliding-
mode controller and the proposed controller starting with a 
constant load. As one can observe, when the motor starts 
with a load of 1.5 Nm, the proposed controller can exhibit 
good speed tracking performance as the adaptive 
backstepping sliding-mode controller does. However, 
compared to Fig. 4(a), there is no chattering observed in Fig. 
4(b). Fig. 5(a) and 5(b) show the comparison between the 
adaptive backstepping sliding-mode controller and the 
proposed controller at 500 rpm with 2.5 Nm external load 
torque. The step external load from 0 to 2.5 Nm is added to 
the IPMSM. It is apparent that the speed can be maintained 
by the two controllers even though the external load is step-
increasing. However, some undesirable chattering in Fig. 5(a) 
arises from the excessive supplies of the control input 
voltages. Also, Fig. 5(b) shows that the proposed controller 
effectively attenuates the chattering of the control input 
voltages. 
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qi
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(a) 

rmω*
rmω

*
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(b) 

Fig. 4. Speed response, acceleration response, and d-q axis current 
responses at 500 rpm with 1.5 Nm load (a) adaptive backstepping sliding-
mode control scheme (b) proposed control scheme.  
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Fig. 5. Measured results at 500 rpm with 2.5 Nm load applied (a) adaptive 
backstepping sliding-mode controller (b) proposed controller. 
 

Fig. 6(a) and 6(b) show the experimental results of the 
two controllers tracking periodic sinusoidal commands. 
Comparing Fig. 6(a) and 6(b), you can see that the chattering 
phenomenon of the adaptive backstepping sliding-mode 
control is removed because of the adaptive PI-saturated 
functions. Although the adaptive backstepping sliding-mode 
controller can compensate lumped uncertainties and load 
disturbances, its switching functions may cause unexpected 
chattering. From the experimental results, we can conclude 
that the proposed controller has significantly improved the 
drawbacks of the adaptive backstepping sliding-mode 
controller for the IPMSM. 

 

qi di

rmω

*
rmω

*
rmω
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rmω

*
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*
rmω
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(b) 

Fig. 6. Speed response, acceleration response, and d-q axis current 
responses of periodic sinusoidal-wave command (a) adaptive backstepping 
sliding-mode control scheme (b) proposed control scheme. 

V. CONCLUSIONS 

In this paper, an adaptive backstepping PI sliding-mode 
controller is proposed and implemented for an IPMSM 
speed control system. First, the backstepping sliding-mode 
technique with available upper bounds of lumped 
uncertainties is applied to the dynamic model of the IPMSM. 
To remove the required knowledge of the upper bounds, an 
adaptive backstepping PI sliding-mode controller with 
estimation of the lumped uncertainties is proposed. To 
reduce the chattering, an adaptive PI saturated function is 
employed to approximate the signum function within 
boundary layer. Some experiment results show that the 
proposed system has good transient response, good load 
disturbance response, and good tracking response.  
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