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Abstract— The notion of synergistic potential functions has
been introduced recently in the literature and has been used as
the basis for the design of hybrid feedback laws that achieve
global asymptotic stabilization of a point on a compact manifold
(without boundary) such as S

1, S
2, and SO(3). Here, synergistic

potential functions are generalized—to synergistic Lyapunov
functions—and are shown to be amenable to backstepping. In
particular, if an affine control system admits a (weak) syner-
gistic Lyapunov function and feedback pair then the system
with an integrator added at the input also admits a synergistic
Lyapunov and feedback pair. This fact enables “smoothing”
hybrid feedbacks, or implementing them through a chain of
integrators. In this way, hybrid control designed at a kinematic
level can be redesigned for control through forces, torques,
or even the derivative of these quantities. We demonstrate the
backstepping procedure for attitude stabilization of a rigid body
using a quaternion parametrization.

I. INTRODUCTION

Hybrid feedback is a powerful tool for achieving robust

global asymptotic stabilization in situations where topolog-

ical constraints preclude achieving this goal with classical

feedback. Such situations include point stabilization for

systems having states evolving on a compact boundaryless

manifold [1], or, more generally, point stabilization for

systems whose state space is not contractible [2] or diffeo-

morphic to some Euclidean space [3], [4]. Also included

in this list of situations is stabilization to a disconnected

set of points in a connected state space [5], which arises

naturally when considering point stabilization of rigid-body

attitude with a unit quaternion parametrization [6], [7]. These

topological obstructions to global asymptotic stability have

been emphasized recently in a series of papers [8]–[11]

where the notion of a family of synergistic potential functions

has been introduced and used to achieve global asymptotic

stability of a point by hybrid feedback for systems whose

state space is not diffeomorphic to any Euclidean space.

Roughly speaking, a family of potential functions is syner-

gistic in the sense of [9] if, at each point where the gradient

of one of the potential functions vanishes (other than at the

point being stabilized), there is another potential function in

the family whose value is strictly less than the value of the
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given potential function. A synergistic family of potential

functions gives rise to a simple hybrid controller based on

hysteretically choosing the minimum potential function and

its corresponding feedback control law for global asymptotic

stability. This “min-switch” hybrid control paradigm has ap-

peared in the literature in various contexts over the past two

decades. In particular, an early application of this idea for

implementing hysteresis in adaptive control was presented in

[12], which was later made scale independent in [13]. Later,

[14] proposed this method (without hysteresis) for multi-

controller systems where it has been applied for the problem

of stabilizing a pendulum on a cart in [15] and for control

of a double-tank system in [16] (which suggests a similar

form for the hysteresis used in this paper); see also [17].

Ideas related to synergistic potential functions also appear in

[18]–[20] where multiple Lyapunov functions are proposed

for analysis and control design.

In this paper, we extend the notion of synergistic potential

functions to a larger class of functions, which contains

synergistic potential functions as a special case. We call these

functions synergistic Lyapunov functions. We show that if an

affine control system admits a family of (weak) synergistic

Lyapunov functions, then the system with an integrator added

at the input also admits a family of synergistic Lyapunov

functions. In turn, since synergistic Lyapunov functions

admit global hybrid stabilizers, this result shows that hybrid

feedback can be smoothed or implemented through multiple

integrators. This observation is significant for extending

hybrid feedback designs from a kinematic level to a dynamic

level or further through multiple integrators in an effort to

avoid exciting unmodeled dynamics that might be sensitive

to jump discontinuities in the control variable.

The backstepping feature of synergistic Lyapunov func-

tions has its antecedent in the nonlinear control literature

of the late 1980s and early 1990s. A summary of the

important references in integrator backstepping can be found

in the notes and references of [21, Chapter 2]. Our result

on passing from a family of weak synergistic Lyapunov

functions and feedbacks for an affine control system to a

family of synergistic Lyapunov functions and feedbacks for

the system extended with an integrator at the input parallels

the integrator backstepping idea summarized in [21, Lemma

2.8(ii)]. See also [22, Theorem 5.3]. Similar backstepping

results for switched systems have appeared in [23]; however,

the crucial notion of synergism ensuring global asymptotic

stability does not appear in [23].

Our paper is organized as follows. In the next section,

we give some preliminaries including a description of the

hybrid systems framework we use. In Section III we de-
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fine synergistic Lyapunov function and feedback pairs. In

Section IV we show how to build a globally asymptoti-

cally stabilizing hybrid feedback from synergistic Lyapunov

function and feedback pairs. In Section V, we define weak

synergistic Lyapunov function and feedback pairs, while in

Section VI we show that if an affine control system admits a

family of weak synergistic Lyapunov function and feedback

pairs then the system with an integrator added at the input

admits a family of (non-weak) synergistic Lyapunov function

and feedback pairs. In Section VII, we apply the method

to the problem of rigid-body attitude stabilization using a

unit-quaternion parameterization. Finally, we provide some

concluding remarks in Section VIII.

II. PRELIMINARIES

A. Notation

In this paper, R denotes the real numbers, R≥0 the non-

negative real numbers, R
n denotes n-dimensional Euclidean

space, and N denotes the natural numbers including 0. Given

a vector x ∈ R
n, |x| denotes the Euclidean vector norm.

Given a set S ⊂ R
n and a point x ∈ R

n, |x|S denotes the

distance from x to S, i.e., |x|S := infy∈S |x − y|. For a

closed set X ⊂ R
n × Q, where Q ⊂ R is a finite set, and

a smooth function V : X → R, we use ∇V (z, q) to denote

gradient of V relative to z, with q considered to be constant.

Given a smooth function κ : X → R
m, we use Dκ(q, z) to

denote the Jacobian matrix of κ relative to z, i.e., Dκ(z, q)
is an R

m×n matrix with ij-th entry given as
∂κi(z,q)

∂zj
.

B. Hybrid Systems

Hybrid systems are dynamical systems with both continu-

ous and discrete dynamics. For the purposes of this paper we

consider the framework used in [24]. Here, a hybrid system

H is defined by the following objects:

• A set C ⊂ R
n called the flow set.

• A set D ⊂ R
n called the jump set.

• A map f : C → R
n called the flow map.

• A set-valued map G : R
n

⇉ R
n called the jump map.

The flow map f defines the continuous dynamics on the flow

set C, while the jump map G defines the jump dynamics on

the jump set D. A hybrid system H is written compactly as

H : x ∈ R
n

{

ẋ = f(x) x ∈ C

x+ ∈ G(x) x ∈ D .
(1)

Solutions are given on extended time domains by functions

that satisfy the conditions suggested by (1). More precisely:

Definition 1 (hybrid time domain). A set E ⊂ R≥0 × N is

a compact hybrid time domain if

E =

J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ... ≤
tJ . It is a hybrid time domain if for all (T, J) ∈ E, E ∩
([0, T ] × {0, 1, ...J}) is a compact hybrid time domain.

Definition 2 (hybrid arc). A function x : domx→ R
n is a

hybrid arc if domx is a hybrid time domain and, for each

j ∈ N, t 7→ x(t, j) is locally absolutely continuous.

Definition 3 (solution to H). A hybrid arc x : domx 7→ R
n

is a solution to the hybrid system H if x(0, 0) ∈ C ∪D;

(S1) ∀j ∈ N such that Ij := {t : (t, j) ∈ domx} has

nonempty interior

x(t, j) ∈ C for all t ∈ [min Ij , sup Ij)

ẋ(t, j) = f(x(t, j)) for almost all t ∈ Ij ;

(S2) ∀(t, j) ∈ domx such that (t, j + 1) ∈ domx,

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)) .

Hybrid arcs, and solutions to H in particular, are

parametrized by pairs (t, j), where t is the ordinary time

component and j is the number of jumps accrued. A solution

x is said to be nontrivial if domx contains at least one point

different from (0, 0), maximal if there does not exist another

solution x′ such that x is a truncation of x′ to some proper

subset of domx′, complete if domx is unbounded, and Zeno

if it is complete but the projection of domx onto R≥0 is

bounded. Maximal solutions to H may not be unique, not

only due to the jump dynamics being set-valued map, but

also because when C ∩D 6= ∅, solutions from C ∩D jump

and, depending on the flow map, may be able to flow as

well.

The stability definitions below are generalizations of the

standard stability concepts to the setting where completeness

or even existence of solutions is not required. It is a natural

stability notion for hybrid systems since, often, local exis-

tence of solutions is not guaranteed because the set C ∪D
does not cover R

n. For the hybrid control problem studied

here, the flow and jump sets will be subsets of the form

M ×Q, where M is a closed subset of an Euclidean space

and Q is a finite set, hence, not covering R
n for some n.

Nonetheless, in our applications, local existence of solutions

will hold.

Definition 4 (asymptotic stability). Consider a hybrid system

H. Let A ⊂ R
n be compact. Then:

• The compact set A is stable for H if for each ε > 0
there exists δ > 0 such that any solution x to H with

|x(0, 0)|A ≤ δ satisfies |x(t, j)|A ≤ ε for all (t, j) ∈
domx.

• The compact set A is attractive for H if there exists

δ > 0 such that any solution x to H with |x(0, 0)|A ≤ δ

is bounded and if it is complete then x(t, j) → A as

t+ j → ∞.

• The compact set A is asymptotically stable if it is both

stable and attractive.

The set from which all solutions are bounded and the

complete ones converge to A is called the basin of attraction

of A. The compact set A is globally asymptotically stable

when the basin of attraction is equal to R
n.

By definition, the basin of attraction contains a neighbor-

hood of A. Points in R
n \ (C ∪ D) always belong to the
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basin of attraction since there are no solutions starting at

such points.

Definition 5 (weak invariance). For a hybrid system H in

R
n, the set S ⊂ R

n is said to be

(a) weakly forward invariant if for each x(0, 0) ∈ S, there

exists at least one complete solution x to H starting

from x(0, 0) with x(t, j) ∈ S for all (t, j) ∈ domx;

(b) weakly backward invariant if for each q ∈ S, N > 0,

there exist x(0, 0) ∈ S and at least one solution x to

H starting from x(0, 0) such that for some (t∗, j∗) ∈
domx, t∗ + j∗ ≥ N , we have x(t∗, j∗) = q and

x(t, j) ∈ S for all (t, j) � (t∗, j∗), (t, j) ∈ domx;

(c) weakly invariant if it is both weakly forward invariant

and weakly backward invariant.

III. SYNERGISTIC LYAPUNOV FUNCTION AND FEEDBACK

In this section, a synergistic Lyapunov function and feed-

back pair is defined for the affine control system

ż = φ(z, q) + ψ(z, q)ω

q̇ = 0

}

(z, q) ∈M ×Q (2)

where the functions φ and ψ are smooth1, ω ∈ R
m is the

control, the set M ⊂ R
n is closed, and the set Q is discrete.

Smooth functions V : M × Q → R≥0 and κ : M × Q →
R

m form a synergistic Lyapunov function and feedback pair

candidate relative to the compact set A ⊂M ×Q if

• ∀r ≥ 0, {(z, q) ∈M ×Q : V (z, q) ≤ r} is compact;

• V is positive definite with respect to A;

• For all (z, q) ∈M ×Q,

〈∇V (z, q), φ(z, q) + ψ(z, q)κ(z, q)〉 ≤ 0 . (3)

Given a synergistic Lyapunov function and feedback pair

candidate (V, κ), define

E := {(z, q) ∈M ×Q :
〈∇V (z, q), φ(z, q) + ψ(z, q)κ(z, q)〉 = 0}

(4)

and let Ψ ⊂ E denote the largest weakly invariant set for the

system

ż = φ(z, q) + ψ(z, q)κ(z, q)

q̇ = 0

}

(z, q) ∈ E . (5)

Let

ρV (z) = min
q∈Q

V (z, q) (6)

and define

µ(V, κ) := inf
(z,q)∈Ψ\A

V (z, q) − ρV (z), (7)

using the convention that µ(V, κ) = ∞ when Ψ\A is empty.

The pair (V, κ) is called a synergistic Lyapunov function and

feedback pair if µ(V, κ) > 0, in which case µ(V, κ) is called

1Here and in the rest of the paper, “smooth” means continuously
differentiable enough times so that all used derivatives are well defined
and continuous. For k steps of backstepping, it is enough for φ and ψ to
be Ck−1.

the synergy gap. When µ(V, κ) > δ > 0 we say that the

synergy gap exceeds δ.

Remark 6. In the setting of [9], Ψ is a set corresponding to

the critical values of the potential function, which is finite

under some mild conditions.

IV. HYBRID CONTROL USING A SYNERGISTIC LYAPUNOV

FUNCTION AND FEEDBACK

In this section, we develop a hybrid feedback for the

control system (2) using a synergistic Lyapunov function and

feedback pair relative to the compact set A that globally

asymptotically stabilizes A. Let (V, κ) be a synergistic

Lyapunov function and feedback pair with gap exceeding

δ > 0. We propose the hybrid controller

C = {(z, q) ∈M ×Q : V (z, q) − ρV (z) ≤ δ}

ω = κ(z, q)

D = {(z, q) ∈M ×Q : V (z, q) − ρV (z) ≥ δ}

G(z) = {q ∈ Q : V (z, q) = ρV (z)},

(8)

where C,D ⊂M ×Q, resulting in the closed-loop system

ż = φ(z, q) + ψ(z, q)κ(z, q)

q̇ = 0
︸ ︷︷ ︸

(z, q) ∈ C

z+ = z

q+ ∈ G(z)
︸ ︷︷ ︸

(z, q) ∈ D.

(9)

Theorem 7. Suppose that (V, κ) is a synergistic Lyapunov

function and feedback pair relative to the compact set A
with synergy gap exceeding δ for the system (2). Then,

the compact set A is globally asymptotically stable for the

closed-loop system (9).

Proof of Theorem 7: Consider the synergistic Lyapunov

function V and feedback κ and note that (3) holds for all

(z, q) ∈ M × Q. In particular, (3) holds for all (z, q) ∈ C.

Also, by the construction of D and G in (8), for all (z, q) ∈
D and g ∈ G(z), we have V (z, q) − V (z, g) ≥ δ > 0.

In particular, V is nonincreasing along flows of (9) and

strictly decreasing over jumps of (9). Using the properties

of V , it follows that the set A is stable and all solutions are

bounded. It remains to establish that all complete solutions

converge to A. By the invariance principle in [25], since

{(z, q) ∈M×Q : V (z, q)−V (z, g) = 0, g ∈ G(z)}∩D = ∅,

all complete solutions to (9) converge to the largest weakly

invariant set contained in the set E ∩C, where E was defined

in (4). From the definition of the closed-loop system (9),

computing such a set amounts to finding the largest weakly

invariant set of

ż = φ(z, q) + ψ(z, q)κ(z, q)

q̇ = 0

}

(z, q) ∈ E ∩ C. (10)

According to the definition of Ψ, this weakly invariant set

must be contained in Ψ∩C. Since V is positive definite with

respect to A, V (z, q) − ρV (z) = 0 ≤ δ for all (z, q) ∈ A
which implies that A ⊂ C. Then, it follows that Ψ ∩ C ⊂
((Ψ \ A) ∪ A) ∩ C = ((Ψ \ A) ∩ C) ∩ A. But then, since

µ(V, κ) > δ > 0, it follows that (Ψ \ A) ∩ C = ∅, so that

all complete solutions to (9) converge to A.
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The next corollary follows from Theorem 7 together with

the fact that C ∪D = M ×Q.

Corollary 8. Under the conditions of Theorem 7, if for

each (z, q) ∈ M × Q, φ(z, q) + ψ(z, q)κ(z, q) belongs to

the tangent cone of M at z then each maximal solution is

complete.

V. WEAK SYNERGISTIC LYAPUNOV FUNCTION AND

FEEDBACK

In this section, we introduce the notion of a weak syner-

gistic Lyapunov function and feedback for the system (2).

Given a synergistic Lyapunov function and feedback pair

candidate, define

W :=
{
(z, q) ∈M ×Q : ψ(z, q)⊤∇V (z, q) = 0

}
. (11)

Recall the definition of E in Section III, and let Ω ⊂ E ∩W
denote the largest weakly invariant set for the system

ż = φ(z, q) + ψ(z, q)κ(z, q)

q̇ = 0

}

(z, q) ∈ E ∩W. (12)

Define

µW(V, κ) := inf
(z,q)∈Ω\A

V (z, q) − ρV (z), (13)

using the convention that µW(V, κ) = ∞ when Ω \ A is

empty. The pair (V, κ) is called a weak synergistic Lyapunov

function and feedback pair relative to the compact set A ⊂
M ×Q if µW(V, κ) > 0, in which case µW(V, κ) is called

the weak synergy gap. When µW(V, κ) > δ > 0, we say that

the weak synergy gap exceeds δ.

Lemma 9. If (V, κ) is a synergistic Lyapunov function and

feedback pair with synergy gap exceeding δ then it is also a

weak synergistic Lyapunov function and feedback pair with

weak synergy gap exceeding δ.

Proof. By definition, the set Ω of this section is contained in

the set Ψ in Section III. Thus, µW(V, κ) ≥ µ(V, κ). Hence,

if µ(V, κ) > δ then µW(V, κ) > δ.

VI. BACKSTEPPING

Consider the control system

ζ̇ = φ1(ζ, q) + ψ1(ζ, q)u

q̇ = 0

}

(ζ, q) ∈M1 ×Q (14)

with controls u ∈ R
m, where ζ = (z, ω, p) is the state and

φ1(ζ, q) =





φ0(z, q) + ψ0(z, q)ω
0

v(z, p, q)



 ψ1(ζ, q) =





0
1
0



 . (15)

For an appropriate choice for the function v we construct a

(non-weak) synergistic Lyapunov function and feedback pair

with synergy gap exceeding δ > 0 for (14) by supposing we

have a weak synergistic Lyapunov function and feedback pair

with weak synergy gap exceeding δ for the reduced system

ż = φ0(z, q) + ψ0(z, q)ω

q̇ = 0

}

(z, q) ∈M0 ×Q (16)

with controls ω ∈ R
m.

Let (V0, κ0) be a weak synergistic Lyapunov function and

feedback pair relative to the compact set A0 ⊂ M0 × Q,

where M0 ⊂ R
n is closed and Q is a discrete set, with

weak synergy gap exceeding δ > 0, for the system (16). We

suppose that κ0 : M0 × Q → R
m can be written as linear

in some function of the variable q. In particular, we assume

that there exists a smooth function ϑ : M0 → R
m×L and

some function σ : Q→ R
L, where L ≥ 1, such that

κ0(z, q) = ϑ(z)σ(q). (17)

Remark 10. We note that κ0 can always be decomposed

as in (17). Assuming, without loss of generality, that Q =
{1, . . . , N}, let σ(q) = eq, where ei ∈ R

L denotes the ith

unit vector, and let ϑ(z) =
[
κ0(z, 1) · · · κ0(z,N)

]
. Then,

(17) holds.

Define

A1 := {(ζ, q) ∈M1 ×Q : (z, q) ∈ A0,

p = σ(q), ω = κ0(z, q)} . (18)

For a vector ξ ∈ R
r and a symmetric, positive definite matrix

Γ ∈ R
r×r, let λmax(Γ) denote the largest eigenvalue of Γ and

define |ξ|2Γ := ξT Γξ. Consider the function V1 : M1 ×Q→
R≥0, M1 = M0 × R

m × R
L, defined, for each (ζ, q) ∈

M1 ×Q, as

V1(ζ, q) := V0(z, q)+
1

2
|p−σ(q)|2Γ1

+
1

2
|ω−ϑ(z)p|2Γ2

, (19)

where Γ1 ∈ R
L×L and Γ2 ∈ R

m×m are symmetric positive

definite matrices such that

µW(V0, κ0) −
1
2λmax(Γ1) max

s,q∈Q
|σ(s) − σ(q)|2 > δ, (20)

which is possible since the weak synergistic Lyapunov

function and feedback pair (V0, κ0) has a weak synergy gap

exceeding δ and Q is a finite set.

Let θ1, θ2 : R≥0 → R≥0 be continuous, positive definite

functions, and let the smooth functions Θ1 : R
L → R

L and

Θ2 : R
m → R

m satisfy

vT ΓiΘi(v) + Θi(v)
T Γiv ≤ −θi(|v|) ∀i ∈ {1, 2} (21)

where the inequality should hold for all v ∈ R
L for i = 1

and for all v ∈ R
m for i = 2. Let ϑi(z) = ϑ(z)ei. Define

κ1(ζ, q) = Θ2(ω − ϑ(z)p)

− Γ−1
2 ψ0(z, q)

⊤∇zV0(z, q)

+

L∑

i=1

e
⊤
i pDϑi(z)(φ0(z, q) + ψ0(z, q)ω)

+ ϑ(z)v(z, p, q)

v(z, p, q) = Θ1(p− σ(q))

− Γ−1
1 ϑ(z)⊤ψ0(z, q)

⊤∇zV0(z, q).

(22)

The following theorem establishes that (V1, κ1) is a syn-

ergistic Lyapunov function and feedback pair with synergy

gap exceeding δ.
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Theorem 11. Let the compact set A1 be defined as in (18)

and let the pair (V1, κ1) and the function v be defined by

(19), (22). If, for the system (16), the pair (V0, κ0) is a weak

synergistic Lyapunov function and feedback pair relative to

the compact set A0 with weak synergy gap exceeding δ then,

for the system (14)-(15), the pair (V1, κ1) is a (non-weak)

synergistic Lyapunov function and feedback pair relative to

A1 and with (non-weak) synergy gap exceeding δ.

Proof. For all (ζ, q) ∈M1 ×Q,

〈∇ζV1(ζ, q), φ1(ζ, q) + ψ1(ζ, q)κ1(ζ, q)〉 =

〈∇zV0(z, q), φ0(z, q) + ψ0(z, q)ω〉

− 1
2θ1(|p− σ(q)|) − 1

2θ2(|ω − ϑ(z)p|)

− 〈∇zV0(z, q), ψ0(z, q)ϑ(z)(p− σ(q))〉

− 〈∇zV0(z, q), ψ0(z, q)(ω − ϑ(z)p)〉

= 〈∇zV0(z, q), φ0(z, q) + ψ0(z, q)ϑ(z)σ(q)〉

− 1
2θ1(|p− σ(q)|) − 1

2θ2(|ω − ϑ(z)p|)

≤ 0.

(23)

Define

E1 = {(z, q) ∈M1 ×Q :

〈∇ζV1(ζ, q), φ1(z, q) + ψ1(z, q)κ1(ζ, q)〉 = 0} ,

W1 =
{
(z, q) ∈M1 ×Q : ψ1(z, q)

⊤∇ζV1(ζ, q) = 0
}
.

(24)

Let E0, W0, and Ω0 come from the definitions in Section V

for the weak synergistic Lyapunov function and feedback

pair (V0, κ0) for the system (16). It follows from (23),

the properties of θi, the definition of ψ1 in (15), and the

definition of V1 in (19) that

E1 = {(z, q) ∈ E0, ω = ϑ(z)p, p = σ(q)} ⊂ W1. (25)

Let Ψ1 ⊂ M1 × Q denote the largest weakly invariant set

for the system

ζ̇ = φ1(z, q) + ψ1(z, q)κ1(ζ, q)

q̇ = 0

}

(ζ, q) ∈ E1 . (26)

It follows from the definition of u in (22), the fact that ω̇ =
κ1(ζ, q) and the characterization of E1 in (25) that

Ψ1 = {(ζ, q) ∈M1 ×Q : (z, q) ∈ Ω0,

ω = ϑ(z)p, p = σ(q)} . (27)

Then, it follows from (19) that

µ(V1, κ1) = inf
(ζ,q)∈Ψ1\A1

V1(ζ, q) − ρV1
(ζ)

≥ µW(V0, κ0) −
1
2 max

q,s∈Q
|σ(q) − σ(s)|2Γ1

≥ µW(V0, κ0) −
1
2λmax(Γ1) max

q,s∈Q
|σ(q) − σ(s)|2

> δ .
(28)

Thus, the pair (V1, κ1) is a synergistic Lyapunov function

and feedback pair with gap exceeding δ > 0.

Remark 12. It follows by combining Theorems 7 and 11 that

we can use synergistic Lyapunov functions to build hybrid

stabilizers with an arbitrarily number of integrators between

the ideal system and the control variables. At each level of

backstepping, we add L additional states, corresponding to

the state p in (14)-(15).

Remark 13. If κ(z, q) = ϑ(z)σ(q) is independent of q, i.e.,

all of the columns of ϑ(z) are the same, then the variable p

can be removed from the control scheme, by replacing p by

σ(q) in the Lyapunov function in (19).

Remark 14. If the goal is just to make the control ω

continuously differentiable without insisting on controlling

through an integrator, the state ω can be removed from the

control scheme, by replacing ω by ϑ(z)p in the Lyapunov

function in (19). However, in this case, one must begin with

a non-weak synergistic Lyapunov function and feedback pair.

VII. HYBRID CONTROL OF RIGID-BODY ATTITUDE

The attitude of a rigid body is represented by a 3 × 3
rotation matrix R ∈ SO(3) = {R ∈ R

3×3 : RR⊤ = R⊤R =
I, detR = 1}. Consider the kinematic equations of a rigid

body in a quaternion parametrization given by

z =

[
η

ǫ

]

∈ S
3 ż =

1

2

[
−ǫ⊤

ηI + [ǫ]× ω,

]

(29)

where S
3 = {(η, ǫ) ∈ R × R

3 : η2 + ǫ⊤ǫ = 1} is the unit

3-sphere embedded in R
4, z ∈ S

3 is the unit quaternion

representing the attitude, ω ∈ R
3 is the angular velocity, and

[v]× =





0 −v3 v2
v3 0 −v1
−v2 v1 0



 .

A quaternion z = (η, ǫ) is related to a rigid-body attitude

through the Rodrigues formula, R : S
3 → SO(3), defined as

R(z) = I + 2η [ǫ]× + 2 [ǫ]
2
× .

We note that for each R ∈ SO(3) there exist exactly two an-

tipodal unit quaternions satisfying R(±z) = R. Furthermore,

since R(z) = I if and only if z = ±e1 = (±1, 0) ∈ S
3, we

wish to globally asymptotically stabilize the disconnected set

z = ±e1 for the system (29).

Let Q = {−1, 1}, A0 = {(z, q) ∈ S
3 × Q : z = qe1},

V0(z, q) = 2k(1 − qη) = 2k(1 − 〈z, qe1〉), and κ0(z, q) =
0. Since V0 is continuous and S

3 is compact, its sub-level

sets are compact and furthermore, it is positive definite with

respect to A0. Since κ0(z, q) = 0, it follows that V0 satisfies

(3), E0 = S
3 × Q, and W = Ω0 = {(z, q) : z = ±e1} so

that Ω0 \ A0 = {(z, q) ∈ S
3 × Q : z = −qe1}. Finally we

see that

µW(V0, κ0) = inf
z=−qe1

V0(z, q) − ρV0
(z)

= V0(−qe1, q) − ρV0
(−qe1)

= 4k > 0,

so that (V0, κ0) is a weak synergistic Lyapunov function and

feedback pair for (29) relative to A0 with gap exceeding any

δ ∈ (0, 4k).
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Consider the angular velocity dynamics

Jω̇ = [Jω]× ω + τ, (30)

where τ ∈ R
3 is a control torque. We let τ = − [Jω]× ω+Ju

so that ω̇ = u and now apply the backstepping procedure

with Γ2 = J and, since κ0 does not depend on q, p =
σ(q) = 0, to obtain

V1(z, ω, q) = 2k(1 − qη) + 1
2ω

⊤Jω

κ1(q, ω, q) = Θ2(ω) − qJ−1kǫ,

where Θ2 satisfies (21). A possible choice for Θ2 is Θ2(ω) =
J−1([Jω]× ω − Φ(ω)), where Φ(0) = 0 and ω⊤Φ(ω) ≥
θ(|ω|) for some positive definite θ : R≥0 → R≥0. Then, it

follows that, with u = κ1,

τ(z, ω, q) = −qkǫ− Φ(ω) (31)

and finally, (V1, τ) is a (non-weak) synergistic Lyapunov

function and feedback pair for (29), (30) relative to A1 =
{(z, ω, q) : z = qe1, ω = 0} with gap exceeding any

δ ∈ (0, 4k). Applying the hybrid controller (8) recovers the

tracking controller of [6] when applied to point stabilization,

which globally asymptotically stabilizes A1 for the closed-

loop hybrid system.

To smooth the torque feedback (31), we can replace q ∈ Q

by p ∈ R in (31) and apply the backstepping procedure

without controlling τ through an integrator. We form the

Lyapunov function

V2(z, ω, p, q) = V1(z, ω, q) + γ 1
2 (p− q)2,

where γ > 0 and 4k − γ > 0 and obtain, through the

backstepping procedure, the dynamics for p ∈ R as

ṗ = v(z, ω, p, q) =
k

γ
ω⊤ǫ− kp(p− q), (32)

where kp > 0. By defining κ2(z, ω, p, q) = τ(z, ω, p), it

follows that (V2, κ2) is a synergistic Lyapunov function and

feedback pair for the system (29), (30), (32), relative to A2 =
{(z, ω, p, q) : z = qe1, ω = 0, p = q} with gap exceeding

any δ ∈ (0, 4k − γ).

VIII. CONCLUSION

We have defined synergistic Lyapunov function and feed-

back pairs, in both weak and non-weak versions. Our main

result has been to show how to pass from weak syner-

gistic Lyapunov function and feedback pairs to non-weak

synergistic Lyapunov function and feedback pairs through

backstepping. In turn, this result permits constructing hybrid

feedback control laws through a chain of integrators. The

latter result is useful in the case where unmodeled dynamics

would be sensitive to abrupt changes in the control signal.

This construction allowed us to recover the hybrid feedback

of [6] for rigid-body attitude stabilization in a quaternion

setting and smooth it through backstepping. In a similar

fashion, this methodology can recover the control laws

proposed in [10], [11] and furthermore, allow those control

laws to be smoothed.
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