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Abstract-A passivity-based adaptive sliding-mode control is 

proposed for speed tracking of interior permanent magnet 
synchronous motor drive systems. Firstly, a nonlinear model of 
the IPMSM is given with uncertainties embeded. Through 
adaptive feedback passivation design, the closed-loop system is 
shown to be feedback equivalent to a strictly passive system 
with a designated input. The unknown system parameters are 
dealt with by designed adaptation laws in parallel with the 
design of the controller. Maximum torque per ampere 
condition is met through the design of d- and q-axis currents, 
which serve as the inputs to the motor. Asymptotic stability of 
closed loop system is proven by passivity theorem and 
Barbalat’s lemma. Simulation results show good speed tracking 
response and good performance.  1 

I. INTRODUCTION 

The interior permanent magnet synchronous motor 
(IPMSM) has been widely used in industry because of its 
high efficiency, high torque/ampere ratio, and rugged 
structure. Several passivity-based controllers have been 
developed for AC and DC motors to enhance their 
performance in the past [1]-[3]. Gökdere and Simaan 
proposed a passivity-based method for induction motor 
control [1]. The performance of the method still relies on 
two proportional-integral (PI) controllers to achieve the 
current-loop control. Although stability of the system can be 
guaranteed by passivity theorem, poor control performance 
caused by parametric uncertainties might arise. A passivity-
based composite adaptive position control scheme for an 
induction motor was attempted in [2]. This method can 
compensate some unknown but slowly varying parametric 
uncertainties in the system. Another passivity-based sliding-
mode controller was proposed to improve the performance 
of induction motors in [3]. The external load torque was 
estimated by an adaptive law. However, signum function is 
used in the controller, resulting in chattering. 

Through the feedback passivation approach, the input-
output feedback linearization design method can make the 
closed-loop system strictly passive with respect to the 
designated input [4]. Following that, the asymptotic stability 
of the closed-loop system can be guaranteed, based on 
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passivity theory. Adaptive backstepping sliding-mode 
control methodologies are widely used for motion control of 
AC motors. For example, Lin et al proposed an adaptive 
backstepping sliding-mode control for induction motor 
drives in [5]. Using that technique, one can effectively 
reduce the effect of the unknown but slowly varying 
parameters on the system. Although good performance can 
be obtained, the systems may still suffer chattering due to 
switching. To overcome the chattering problem resulting 
from traditional sliding-mode control approach, several 
papers have addressed the issue [6], [7]. For example, Xu 
proposed a chattering free robust control for nonlinear 
systems [6]. The time-varying feedback gain, however, is 
very difficult to obtain in real-time implementation. 
Shahnazi et al. proposed yet another novel adaptive fuzzy PI 
sliding-mode control for induction and DC servomotors in 
[7]. Through simulation results, their method showed good 
tracking performance without chattering. 

We propose in this paper a passivity-based adaptive 
sliding-mode controller for speed tracking of the IPMSM. 
To design the controller that satisfies the passivity property, 
we employ an unconventional initial step in this paper in 
which the time-derivative of the storage function is provided 
firstly to start the design procedure but only symbolically. 
The specifications of the partial-derivatives of the storage 
function’s components are tailored so as to fulfill the energy 
balance equation. After that, an adaptive sliding-mode 
control is used to enhance the performance against system 
uncertainties and external load torque disturbance. In 
addition, to reduce chattering caused by switching functions, 
a PI-saturation function is utilized to approximate the 
signum function within the boundary layer. Different from 
traditional passivity-based approaches toward this problem 
which keep the d-axis current constant, our method can 
maintain the d- and q-axis currents on the MTPA trajectory. 
To the authors’ best knowledge, no researchers have 
published papers of passivity-based adaptive sliding-mode 
MTPA control for IPMSM drive systems. This motivates us 
to study the issue. Our simulation results do show feasibility 
of the proposed control scheme. 

The paper is organized as follows. An introduction is 
given firstly. In Section II, a mathematical model of IPMSM 
is provided. The design of passivity-based adaptive sliding-
mode MTPA control is presented in Section III. Simulation 
results are shown and discussed in Section IV. Section V 
concludes this paper. 
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II. MODELING OF IPMSM 

The governing (voltage) equations in d-q axis for the 
IPMSM can be expressed as: 

d
d s d d o rm q q

div r i L P L i
dt

ω= + −  (1) 

q
q s q q o rm d d o rm m

di
v r i L P L i P

dt
ω ω λ= + + +  (2) 

where vd and vq are d- and q-axis voltages, sr  is stator 
resistance, id and iq are d- and q-axis currents, dL  and qL  are 
d- and q-axis inductances, d/dt is the differential operator, Po 
is the number of pole-pairs, and ωrm is motor speed. The 
equation for the speed is 

1 ( )rm
e L m rm

m

d
T T B

dt J
ω ω= − −  (3) 

in which 
3 ( )
2e o m q d q d qT P i L L i iλ⎡ ⎤= + −⎣ ⎦  (4) 

Here eT  is electromagnetic torque of the motor, LT  is 
external load torque, mJ  is moment of inertia of rotor, mB  is 
viscous friction coefficient, and λm is flux linkage. 

III. PASSIVITY-BASED ADAPTIVE SLIDING-MODE MTPA 
CONTROL  

According to (3), the dynamic equation of speed with 
system uncertainties can be expressed as [5]: 

3rm m L
rm

mo mo mo

e

mo

B FT
J J
T

J J
ωω = − − +  (5) 

where 
3 3F F<  (6) 

Here 3F  stands for lumped uncertainty whose upper bounded 
is denoted as 3F , which is known. moJ  refers to the nominal 
value of mJ . We will assume the lumped uncertainty 3F  is 
constant (but unknown) within a sampling period due to the 
fact that its variation is negligible in a sampling interval. As 
a result, the lumped uncertainty 3F  can be roughly estimated 
by an adaptive estimation law [5]. Due to their very different 
natures, the load torque and 3F are not aggregated into one 
entity. 

A. Feedback Passivation  

Consider the dynamic equation (3), and define the speed 
tracking error as follows, where and throughout this paper a 
variable with a superscript “٭” refers to its desired value. 

*
1 rm rme ω ω= −  (7) 

The time derivative of speed tracking error is written as 
*

1

*

rm rm

e rm m L
rm

m m m

e
T B T
J J J

ω ω
ωω

= −

= − + +
 (8) 

To make the error dynamics of (8) strictly passive via 
feedback passivation, we choose eT  as the input and 1e  as 

the output, and define the associated storage function and its 
time-derivative (symbolically) as follows  

( )11 1V V e=  (9) 

1
1 1

1

V
V e

e
∂

=
∂

 (10) 

Substituting (8) into (10), one obtains 

*1
1

1

e rm m L
rm

m m m

T BV T
V

e J J J
ωω

⎛ ⎞∂
= − + +⎜ ⎟∂ ⎝ ⎠

 (11) 

To make (8) an output strictly passive system, its input eT  
and 1 1/V e∂ ∂  are chosen as 

*
1 1 1e m rm L m rmT J T B v k eω ω= + + − +  (12) 

1
1

1
m

V
J e

e
∂

=
∂

 (13) 

where 1v  is a new input, and 1k  is a positive constant gain. 
Substituting (12) and (13) into (11), one gets 

2
1 1 1 1 1V e v k e= −  (14) 

Integrating both sides of (14), we get the energy balance 
equation as 

( ) ( ) 2
1 1 1 1 1 10 0

0
t t
e v d V t V k e dτ τ= − +∫ ∫  (15) 

which implies that the error dynamics of speed tracking is 
output strictly passive with the new input 1v  [3]. 
Substitution of (12) into (8) with 1 0v = , yields  

1 1 1 0mJ e k e+ =  (16) 

B. Adaptive Feedback Passivation  

In practice, the values of the parameters in (12) cannot be 
measured precisely. In addition, the external load torque is 
unknown. As such, the parameter uncertainties and/or the 
unknown external disturbances would naturally degrade the 
system’s overall performance. To deal with this problem, an 
adaptive feedback passivation approach is used. Let us 
rewrite the speed tracking error dynamics using (5) as 

( ) ( ) ( )( )
( )

( ) ( )

*
1

*
1 3 3

*

1

3 3

1 ˆ ˆ  

ˆ
1   =

ˆ ˆ

rm rm

e mo rm rm m L L
mo

e mo rm rm m m
m

mo mo L L

e

T J e B T T F F
J

T J B BB e
J J T T F F

ω ω

ω ω

ω ω

∗

∗

= −

= − + + − + − − −

⎛ ⎞− + + −
⎜ ⎟− + ⎜ ⎟⎜ ⎟+ − − −⎝ ⎠

 (17) 
where ˆ

m m mB B B= − , ˆ
L L LT T T= − , 3 3 3

ˆF F F= −  and a 
variable with a hat denotes its estimated value, which is a 
notation adopted throughout the whole paper. Define the 
storage function 2V  and its time-derivative (symbolically) as 
follows  

( )12 2 3, , ,m LV V e B T F=  (18) 

2 2 2 2
2 1 3

1 3

ˆ ˆ ˆ
m L

m L

V V V V
V e B T F

e B T F
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

 (19) 

Substituting (17) into (19), one obtains 
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( )*2
2 3

1

2 2 2
1

1 1

32 2 2 2
3

1 3 1

1 ˆ ˆ ˆ

ˆ

ˆ ˆ

e mo rm rm m L
mo

m rm m
m

mo m mo

L
L

L mo mo

VV T J B T F
e J

B BV V Ve B
e J B J e

FV T V V VT F
T J e F J e

ω ω

ω

∗

∗

∂= − + + + −
∂

⎛ ⎞∂ ∂ ∂− + −⎜ ⎟∂ ∂ ∂⎝ ⎠
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂+ − + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (20) 

To make (17) output strictly passive, we may specify eT , 

2 1/V e∂ ∂ , 2 / mV B∂ ∂ , 2 / LV T∂ ∂ , and 2 3/V F∂ ∂  as follows: 
*

3 2 1 1
ˆ ˆ ˆ

e mo rm L rm mT J T B F v k eω ω∗= + + − − +  (21) 

2
1

1
mo

V J e
e

∂ =
∂

, 2

1

m

m

V B
B γ

∂ =
∂

, 2

2

L

L

V T
T γ

∂ =
∂

, 2 3

3 3

V F
F γ

∂ =
∂

 (22) 

where 2v  is a new input, and 1γ , 2γ , and 3γ  are adaptation 
gains. From (20)-(22), we can get the following adaptation 
laws  

1 1
ˆ

m rmB eγ ω∗=  (23) 

2 1L̂T eγ=  (24) 

3 3 1F̂ eγ= −  (25) 
Substituting (21)-(25) into (20), one obtains 

( ) 2
2 1 2 1 1mV e v B k e= − +  (26) 

Integrating both sides of (26), we get the energy balance 
equation as 

( ) ( ) ( ) 2
1 2 2 2 1 10 0

0
t t

me v d V t V B k e dτ τ= − + +∫ ∫  (27) 

The new input 2v  can be designed to be of nonlinear type 
such that the system of (17) is asymptotically stable. 

C. Controller Design  

The objectives are to combine the adaptive sliding-mode 
control with passivity property to maintain the speed on the 
desired trajectory. Unlike the input-output feedback 
linearization technique used in [8], the method in this paper 
does not require any nonlinear coordinate transformation. 
Besides, the proposed method is more robust than 
conventional adaptive backstepping controls [9] due to the 
fact that the sliding-mode control can effectively compensate 
for fast varying parameters in the system. In addition, the 
proposed controller can compensate for the uncertainties 
caused by the parameter variations and external load 
disturbance. Assume that the estimation errors mB , LT , and 3F  
are bounded as 3 1LF T η− <  and 2mB η<  where 1η  and 2η  are 
known. A sliding-mode control 2v  can be designed as 

2 1 1 2 1sgn( ) sgn( )rmv e eη η ω∗= − −  (28) 
Using (21)-(25) and putting (28) into (20), one obtains 

( ) ( )2
2 1 1 1 2 1 0m rmV B k e eη η ω∗= − + − + ≤  (29) 

which results in a stable system. Increasing the gains 1η  and 

2η  in (28), one can obtain more robustness. However, overly 
large values of the gains do lead to more chattering in the 
controls. To reduce the latter, a PI-saturation function is 
utilized to approximate the signum function [7] 

( )
( )1 1 1

*
1 *1

1 1 1
1

sgn ,

, ,

e if e
e e if e

ρ
⎧ > Φ
⎪= ⎨ + Γ ≤ Φ⎪Φ⎩

 (30) 

where 1Φ  is the thickness of the boundary layer, and *
1Γ  is 

obtained by integration with respect to 1e . It is assumed that 
there exists such a value of *

1Γ  with which the following 
inequalities hold when 1e  stays inside the boundary layer for 
a finite time [7] 

*1 1
1

1 1

*1 1
1

1 1

1, 0

1, 0

e efor

e efor

⎧ + Γ ≥ >⎪Φ Φ⎪
⎨
⎪ + Γ ≤ − <
⎪Φ Φ⎩

 (31) 

In general, this value of *
1Γ  is found by tuning. Given this, 

we may therefore use an adaptive law to approximate the *
1Γ  

value during a fixed sampling interval [5], [7]. Consider the 
following storage function and its time-derivative 

( )13 3 3 1, , , ,m LV V e B T F= Γ   

3 3 3 3 3
3 1 3 1

1 13

ˆ ˆ ˆ ˆ
m L

m L

V V V V V
V e B T F

e B T F
∂ ∂ ∂ ∂ ∂

= + + + + Γ
∂ ∂Γ∂ ∂ ∂

 (32) 

where *
1 1 1

ˆΓ = Γ − Γ . According to previously results, we can 

choose eT , 3v  , 1Γ̂ , 3 1/V e∂ ∂ and 3 1/V∂ ∂Γ  as follows: 
*

3 3 1 1
ˆ ˆ ˆ

e mo rm L rm mT J T B F v k eω ω∗= + + − − +  (33) 

( )3 1 2 1ˆ ( )rmv eη η ω ρ∗= − +  (34) 

( )1 4 1 2 1
ˆ

rm eγ η η ω∗Γ = +  (35) 

3
1

1
mo

V
J e

e
∂

=
∂

 (36) 

3 1

41

V
γ

∂ Γ
=

∂Γ
 (37) 

where 4γ  is an adaptive gain, 3v  is a sliding-mode control, 
and 1ˆ ( )eρ  is defined as 

( )
( )1 1 1

1 1
1 1 1

1

sgn ,
ˆ ˆ ,

e if e
e e if e

ρ
⎧ > Φ
⎪= ⎨ + Γ ≤ Φ⎪Φ⎩

 (38) 

Substituting (33) and (34) into (17), one can obtain 
( ) ( ) ( )1 1 1 1 2 1 1mo m rmJ e k B e e uη η ω ρ∗ ∗+ + + + =  (39) 

where  
1

Tu = Ω Θ  (40) 

( )1 21 1T
rm rmω η η ω∗ ∗⎡ ⎤Ω = − − − +⎣ ⎦  (41) 

3 1
T

m LB T F⎡ ⎤Θ = Γ⎣ ⎦  (42) 
The closed-loop feedback interconnection for the speed 
control of the IPMSM is shown in Fig. 1. To prove the 
stability of the closed loop system, the passivity property of 
each block in Fig.1 is checked respectively. Using (39)-(42), 
we get 
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( )( )
1 1 1 10

3 1 2 1 10

3 3 1 10 0 0 0
1 2 3 4

2 2 2 2 2 2
3 3

1 2 3

2 2
1 1

4

, :

1 1 1 1

( ) (0) ( ) (0) ( ) (0)
2 2 2

( ) (0)
2

t T
t

t

L rm m rm

t t t t

m m L L

m m L L

e u u e d

T F B e d

B B d T T d F F d d

B t B T t T F t F

t

τ

ω η η ω τ

τ τ τ τ
γ γ γ γ

γ γ γ

γ

∗ ∗

− = −

= − + + + Γ

= + + + Γ Γ

− − −= + +

Γ − Γ+

∫

∫

∫ ∫ ∫ ∫  (43) 

According to the definition [10], the upper block in Fig. 1 is 
passive from 1e−  to 1u . Next, we check the passivity of the 
lower block in Fig. 1. Utilizing (39), we obtain 

( ) ( ) ( )( )
( ) ( ) ( )

1 1 1 10

*
1 1 1 1 1 2 10

2 2
1 1 2

1 10

, :

0
2 2

t T
t

t T
mo m rm

tmo mo
m

u e e u d

e J e k B e e d

J e t J e
k B e d

τ

η η ω ρ τ

τ

∗

=

= + + + +

≥ − + +

∫

∫

∫

 (44) 

According to the definition [10], the lower block in Fig. 1 is 
strictly passive from 1u  to 1e . From (43) and (44), it is not 
difficult to obtain the following two equations 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2
3 1

1 3 2 4

2 2 2 2
3 1

1 1
1 2 3 4

2 2 2 2

0 0 0 0
,

2 2 2 2

m L

m L
t

B t F t T t t

B T F
e u

γ γ γ γ

γ γ γ γ

⎛ ⎞Γ
+ + + =⎜ ⎟

⎝ ⎠
⎛ ⎞Γ

− + + + +⎜ ⎟
⎝ ⎠

 (45) 

( ) ( )2 2
1 1

1 1
0

,
2 2

mo mo
t

J e t J e
u e≤ +  (46) 

Combining (45) and (46), we get 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 2 2
3 1 1

1 3 2 4

2 2 2 2 2
3 1 1

1 2 3 4

2 2 2 2 2

0 0 0 0 0
2 2 2 2 2

m L mo

m L mo

B t F t T t t J e t

B T F J e

γ γ γ γ

γ γ γ γ

Γ
+ + + +

Γ
≤ + + + +

 (47) 

which implies ( ) ( )3 3 0V t V≤ . Also, we can get [10] 

( ) 2
3 1 1 0mV k B e≤ − + ≤  (48) 

Since 3V  is negative semi-definite, it implies that 1e , 3F , 1Γ , 

mB , and LT  are bounded. By integrating (48), we can get  

( ) 2
1 1 3 3 30 0

( ) (0) ( )mk B e d V d V Vτ τ τ
∞ ∞

+ ≤ − = − ∞ < ∞∫ ∫  (49) 

From (49), we can guarantee that 1 2Le ∈ . As projection type 
of techniques can be used to ensure boundedness of 
estimated parameters during their estimation process, which 
in turn can ensure the boundedness of eT ; as a result, 1e  is 
also bounded. Using previous results and Barbalat’s lemma, 
we get the following  

1lim ( ) 0
t

e t
→∞

=  (50) 

From (50), we can conclude that the closed-loop system is 
asymptotically stable, given the fact that parameter 
uncertainties, external load disturbances, and estimation 
errors exist. Note that (50) does not imply that the estimated 

errors 3F , 1Γ , mB , and LT  will approach zero without 
satisfying the persistent excitation (PE) condition. With (33) 
being combined with (4), as currents generate torques in a 
motor, the passivity-based adaptive sliding-mode control law 
can be decomposed into d- and q-axis current commands as  

*
di α= Ψ  (51) 

( ) ( ) ( )
*

3 / 2 3 / 2q
o m o d q

i
P P L Lλ α

Ψ=
+ − Ψ

 (52) 

where  

( )
*

3

1 2 1 1 1

ˆ ˆ ˆ

ˆ ( )
e mo rm L m rm

rm

T J T B F

e k e

ω ω

η η ω ρ

∗

∗

Ψ = = + + −

+ + +
 (53) 

where α  is an adjustable parameter which must be negative 
and is used to make d- and q-axis currents satisfy the MTPA 
condition of the IPMSM. Recall that to achieve the MTPA, 
the d- and q-axis currents must satisfy the following 
equation 

2
*2

22( ) 4( )
m m

d q
d q d q

i i
L L L L

λ λ∗ = − − +
− −

 (54) 

Substituting (52) into (54) and using (51), we can get the d-
axis current command as 

( )

2
2

2

2( )

/
4( ) (3 / 2) (3 / 2)

m
d

d q

m d

d q o m o d q d

i
L L

i
L L P P L L i

λ

λ α
λ

∗

∗

∗

= −
−

⎛ ⎞
⎜ ⎟− +
⎜ ⎟− + −⎝ ⎠

 (55) 

From (55), the parameter α  can be obtained as 

( )( )

*

*
*2 (3 / 2) (3 / 2)

( )

d

m d
d o m o d q d

d q

i
ii P P L L i

L L

α
λ λ ∗

=
+ × + −

−

 (56) 

Using iterative method, α  can be obtained in real-time 
implementation [11]. The whole system is shown in Fig. 2, 
which consists of a passivity-based adaptive sliding-mode 
controller, a parameter generator forα , an IPMSM, and the 
parameter/external load estimators. 

3 1
T

m LB T F⎡ ⎤Θ = Γ⎣ ⎦

( ) ( ) ( )*
1 1 1 2 1 1

1
m rm

mo mo

k B e e ue
J J

η η ω ρ∗+ + +
= − +

1e−

1e

−

1u

1
Tu = Ω ΘΘ

TΩ

 
Fig. 1. Closed-loop feedback interconnection of the IPMSM. 

IV. SIMULATION RESULTS 

The effectiveness of the proposed passivity-based 
adaptive sliding-mode MTPA control is verified by 
numerical simulations. The parameters of the IPMSM used 
in this paper are shown in Table I. Simulations are 
conducted using three different test conditions. Comparison 
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is made between two adaptive sliding-mode controllers. 
Both controllers are based on (21), (28), and (33)-(34). 

 

*
rmω −

+
1e

ˆ
mB

*
qi

*
di

rmω

α
rmω

*
di α= Ψ

( ) ( )( )
*

3 / 2 3 / 2q
o m o d q

i
P P L Lλ α

Ψ=
+ − Ψ

*
di

( )
* *

3

*
1 2 1 1 1

ˆ ˆ ˆ

ˆ ( )
mo rm L m rm

rm

J T B F

e k e

ω ω

η η ω ρ

⎛ ⎞+ + − +
⎜ ⎟Ψ =
⎜ ⎟+ +⎝ ⎠

3̂FL̂T 1Γ̂

 
Fig. 2. Computation of the control input currents. 

 
TABLE I 

THE PARAMETERS OF IPMSM 

,sor Ω
oP

moλ

moJ

moB

moJ

moB

doL
qoL

 
 

The figures associated with the one without the PI-
saturation function are designated as (a) whereas the one 
using the PI-saturation function, as proposed in this paper, as 
(b). The gains for the two control schemes are chosen to be 
the same as: 1 35k = , 1 1η = , 2 0.05η = , 1 3Φ = , 1 0.16γ = , 

2 0.09γ = , 3 3.4γ = , and 4 15γ = . Fig. 3(a) and 3(b) show the 
simulation results when there is a constant external load of 2 
N.m. As one can observe, both controllers have good speed 
tracking performance. However, compared to Fig. 3(a), there 
is no chattering appears in Fig. 3(b). Fig. 4(a) and 4(b) show 
the simulation results of the two controllers tracking a 
periodic triangular-wave command without an external load. 
The undesirable chattering appears in Fig. 4(a) but not in Fig. 
4(b). Obviously the proposed controller effectively 
attenuates the chattering occurs in the currents. Fig. 5(a) and 
5(b) show the simulation results of the two controllers 
tracking a sinusoidal command with a load of 3.5 N.m. 
Comparing Fig. 5(a) and 5(b), one can see that the chattering 
from the adaptive sliding-mode control is largely removed 
when adaptive PI-saturation function is used. Although the 
adaptive sliding-mode controller can compensate lumped 
uncertainties and load disturbances, its switching function 
still caused unwanted chattering. Chattering seen in Fig. 5(b) 
is caused by the nature of inverter employing hysteresis 
current regulation strategy. From the simulation results we 
see that the proposed controller has significantly improved 
the performance of the adaptive sliding-mode controller for 
IPMSM drive systems. 
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(b) 

Fig. 3. Speed response and d-q axis current responses at 500 rpm with 2 
N.m load (a) adaptive sliding-mode control scheme (b) proposed control 
scheme.  
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(b) 

Fig. 4. Speed response, d-q axis current responses, and speed tracking error 
response of periodic triangular-wave command (a) adaptive sliding-mode 
control scheme (b)  proposed control scheme. 
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(b) 

Fig. 5. Speed response, d-q axis current responses, and speed tracking error 
response of periodic sinusoidal-wave command with 3.5 N.m load (a) 
adaptive sliding-mode control scheme (b)  proposed control scheme. 
 
 

V. CONCLUSIONS 

In this paper, a passivity-based adaptive sliding-mode 
controller for speed tracking is proposed for IPMSM drive 
systems. First, the feedback passivation approach is used to 
make the tracking error dynamics a strictly passive system 
with a designated input. After that, we applied an adaptive 
sliding-mode technique to obtain the current control input to 
the motor, which is further decomposed into d- and q-axis 
current commands that satisfy the MTPA condition. To 
reduce chattering, we employed an adaptive PI saturation 
function to approximate the signum function within 
boundary layer. Simulation results showed satisfactory 
performance and verified numerically the effectiveness of 
the proposed scheme.  
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