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Sparsity-Promoting Optimal Control for a Class of Distributed Systems

Makan Fardad, Fu Lin, and Mihailo R. Jovanovié

Abstract— We consider a linear quadratic optimal control
problem with an additional penalty on the number of commu-
nication links in the distributed controller. We reformulate this
combinatorial optimization problem as a sequence of weighted
{1 problems, where the weighted /; norm approximates the
counting of the communication links. We identify a class of
systems for which the weighted /; problem can be formulated
as a semidefinite program and therefore its solution can be com-
puted efficiently. Application of the developed algorithm to the
optimal control of vehicular formations reveals communication
topologies that become sparser as the price of inter-vehicular
communications is increased.

Index Terms— Communication architecture, convex opti-
mization, /; minimization, reweighting, semidefinite program,
sparsity-promoting optimal control, vehicular formations.

I. INTRODUCTION

Traditional optimal control design does not take into
account the price and feasibility of communication among
system components. Consequently, the resulting optimal
controllers are ‘centralized’, implying that the actuation
signals are formed using information from all subsystems.
As the size of the system becomes larger, such expectations
become increasingly unrealistic.

The synthesis of distributed controllers for interconnected
systems has received considerable attention in recent years
[1]-[12]. Particular motivation to search for ‘localized’
controllers comes from [1], where it was shown that
optimal controllers for spatially-invariant systems, although
centralized, have an inherent spatial-decay property. For
these systems, the dependence of the distributed controller on
information coming from other parts of the system decays
exponentially as one moves away from that controller.
Similar results were generalized to systems over graphs
in [10].

In this paper we consider an optimal control problem
which, in addition to the standard performance requirements,
penalizes the number of communication links. The
controllers that result from this formulation are ‘sparse’
feedback matrices, where the level of sparsity is determined
by the relative importance of performance versus
communication cost in the objective function. We note
the contrast between this framework and approaches in
which the communication architecture, and thus the sparsity
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structure, are specified a priori.

Counting the number of communication links leads to
a combinatorial optimization problem, which is intractable
in general. We therefore propose a meaningful relaxation
of the problem using the ¢; norm. For a special class of
distributed systems, encountered in the control of vehicular
formations, we demonstrate that the ¢;-relaxed problem can
be formulated as a semidefinite program (SDP) and thus
efficiently solved.

Our presentation is organized as follows. We formulate
the sparsity-promoting optimal control problem in Section II.
Motivated by the reweighted ¢; algorithm [13], that is
reviewed in Section III, we propose an algorithm for our
optimal control problem in Section IV. For a class of
distributed systems, we demonstrate in Section V that the
optimal control problem can be formulated as a semidefinite
program. An illustrative example for the control of vehicular
formations is provided in Section VI. The paper is concluded
with a summary of our contributions in Section VII.

II. MOTIVATION AND PROBLEM FORMULATION

Consider the following control problem

Y = Ay + Bid + Bsu,
z = CyY + Du, (1)
_K,(/Jv

u =

where C = [Q1/? O}T and D = [0 Rl/z}T. The matrix
K denotes a state feedback gain, and the closed-loop system
is given by
Y = (A— ByK)9 + Bid,
Q1/2
z = {—RUQK .

Here, the input d denotes exogenous signals and the
performance output z encapsulates both state and control
penalties.

(CL)

The design of the optimal state feedback gain K, subject to
structural constraints that dictate its zero entries, was recently
considered in [14], [15]. Let the subspace S embody these
constraints and let us assume that there exists a stabilizing
K € S. References [14], [15] then search for K € S that
minimizes the H, norm from d to z in (CL). Mathematically,
the problem of {5 norm minimization for the system in (CL)
subject to K € S can be reformulated as

trace (PB1BY)
(A— ByK)TP + P(A— ByK)
— (Q+K"RK), K €8.

minimize

subject to (SH2)
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In the absence of structural constraints on K, problem (SH2)
simplifies to the standard LQR problem.

In contrast to the optimal control problem (SH2),
where the communication architecture of the controller is
determined a priori, in the present work our emphasis is
on identifying favorable communication structures without
any prior assumptions on the sparsity patterns in the matrix
K. We propose an optimization framework, using the £y
norm, in which the sparsity of the feedback gain is directly
incorporated into the objective function. The ¢y norm of a
vector/matrix is equal to the number of nonzero elements
of that vector/matrix.

We consider the following optimization problem

trace (PB1BY) + | K¢,

(A—ByK)TP + P(A— B3K)
= —(Q+ K"RK),

minimize

subject to (LO)

where ||K|;, denotes the number of nonzero entries of
the matrix K. Thus, the incorporation of || K||¢, into the
objective function promotes sparsity of the communication
architecture. The positive scalar v characterizes our emphasis
on the sparsity of K; a larger v encourages a sparser K,
while v = 0 renders a centralized gain that is the solution
of the standard LQR problem. Via examples we demonstrate
that as ~ increases, the elements of K that correspond to
long-range and less-critical links become identically zero.

III. ENHANCING SPARSITY BY REWEIGHTED
{1 MINIMIZATION

Problem (LO), as formulated, is not convex both because
of its nonconvex constraint and because the ¢y norm is a
nonconvex function of its argument. In fact, problem (LO)
is a combinatorial optimization problem and thus intractable
in general. In this section, we give a brief overview of the
use of ¢; minimization as a proxy for ¢y minimization.
The interested reader is referred to [13] for additional details.

The ¢; norm, although nondifferentiable, is a convex
function of its argument. In optimization problems where
sparsity is desired, a common approach is to relax the
{y norm of the optimization variable to its ¢; norm [13].
Recently, it was proved in [16] that for the specific problem
of reconstructing a sparse signal from a small number of
measurements, under certain conditions an optimization
problem formulated using the ¢; norm is capable of
recovering the sparse signal exactly.

To better approximate the ¢y norm, [13] uses a weighted
¢1 norm,
Z W; |U’L'|7
i

where w; are positive weights. The weighted ¢; norm reduces
to the regular ¢; norm when w; = 1 for all 7. On the
other hand, if the weights w,; are chosen to be inversely

proportional to the magnitude of v;,
Vi 7& 07

Ui:07

w; = 1/vi,
w; = 00,

then the weighted ¢; norm of v and the ¢y norm of v coincide,
> wilvi| = [[v]le,-
i

Now consider an optimization problem in which the
objective function includes the ¢y norm of the variable v,

minimize f(v) + [|v]|¢,-

Let v* be a solution of this optimization problem. Then the
solution of the problem

minimize f(v) + sz [vil s (RW)
i

with

w; = 00, v =0,

{w=mm, v #0,

has the following properties:

(a) it has the same sparsity structure as v*, and

(b) for v = v* the value of the objective function in (RW)
coincides with that of the original optimization problem.

To see why property (a) holds, suppose v; = 0 for some

j. Then w; = oo and thus the solution of (RW) is forced

to satisfy v; = 0, otherwise the objective function incurs a

value of infinity.

The above weighting scheme, however, cannot be imple-
mented, since the weights themselves depend on the solution
we seek. Reference [13] proposes an algorithm that attempts
to produce these weights.

Reweighted {1 minimization algorithm

1. Set the iteration count j to zero and set wgo) =

1, 7 = 1,...,N. Choose the positive scalar ¢
sufficiently small.

2. Solve the minimization problem (RW) to find the
optimal solution v(#),

3. Update the weights,

wit = % i=1,...,N.
lv;" |+
4. Terminate on convergence. Otherwise, increment j
and go to Step 2.

The small positive number ¢ is introduced to ensure that the
weights are well-defined when UEH) = 0. It is also possible to
decrease the value of ¢ at every iteration or select a different
¢ for different entries of the weighting matrix.

IV. SPARSITY-PROMOTING OPTIMAL CONTROL

Motivated by the reweighted minimization framework
presented in the previous section, we propose an iterative
algorithm for solving (LO). For any matrix K = [k;;], we
define its £, norm as [|K|[e, =, ; [kij]-

We now introduce the main algorithm of the paper.
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Sparsity—promoting optimal control algorithm

1. Set the iteration count /4 to zero and form the matrix
WO = [wl(;])] with its 4jth entry given by
wz(;)) = 1.
Choose the positive scalar ¢(*) sufficiently small.
2. Solve the weighted ¢; minimization problem

minimize trace (PByBY) + v ||[WWoK|,
(A— B:K)T'P+ P(A— B3K)
= —(Q+ K"RK),
(WL1)
to find the optimal solution K (*). The symbol o

denotes elementwise matrix multiplication.
3. Update ¢,

subject to

clutl) — as(“)7

with 0 < o < 1.
4. Update the weights,

wity - 1
R AR

where kZ(J“ ) is the i jth element of the matrix K ("),
Form the matrix W (#+1) = [w%”l)].

5. Terminate on convergence. Otherwise, increment x
and go to Step2.

Even though the nonconvexity caused by the ¢, norm in
problem (LO) has been removed by using the reweighted
{1 norm, the optimization problem (WL1) in Step2 of the
algorithm may still be nonconvex, due to its nonconvex
constraint equation. Numerical optimization schemes can
still be employed to obtain local optima of (WL1). In the
next section we restrict our attention to a particular class of
systems, encountered in the control of vehicular formations,
for which (WL1) is indeed convex.

Finally, we point out that the reweighted minimization
algorithm presented here can also be implemented using the
{5 norm; see Appendix for details.

V. SDP FORMULATION FOR A CLASS OF DISTRIBUTED
SYSTEMS

In this section, we identify a class of distributed systems
for which the optimization problem (WL1) becomes an
SDP and can therefore be solved efficiently. These systems
are encountered in network consensus problems [17]-[19],
control of vehicular formations [18], [20], and distributed
averaging [21].

Consider a network of N single-integrator systems

:vlzul—i—d“ ’L:l,7,Z\/v7 (2)

where u; and d; are the control input and the disturbance
acting on the ith system. Here,

wi = —kiw; — Y kij(v — ),
i

implying that the control of the ith system is formed using its
own state and a weighted average of the relative difference
between its own state and the states of other systems. In
matrix form, the dynamics of the network is described by

T =—Kx +d,

where K is a state feedback gain. Furthermore, for bi-
directional communication links we have k;; = kj;, and
therefore the matrix K is symmetric.

Thus, we consider a dynamic network with its state-space
representation given by (1) and

A=0, Bi=1 By=1,
R=rI, Q>0, 3)
K = KT,

where 7 is a positive scalar. Problem (WL1) then becomes
trace (P) + v [|[WoK||e,
subject to KP + PK = Q+rKK.

minimize

Since A =0 and K = K7, the stability of the closed-loop
system is equivalent to K being a positive definite matrix.
Multiplying both sides of the Lyapunov equation from the
right by K~! and using

trace (KPK ') = trace (PK~'K) = trace(P),
we obtain
trace (P) = (1/2)trace (QK ™' + rK).
The optimization problem thus simplifies to
J = (1/2)trace (QK ' + 7K) + v [|[WoK||,
subject to K > 0.

minimize
Jn
The objective function in (J1) can be rewritten as

J = (1/2) trace (QK ' +7rK)
+ vy trace (M (WoK o sign(K))),

where M is a matrix whose entries are all equal to one,

[M]ij; = 1,
and the ijth entry of the matrix sign (K) is determined by
1, kij >0,
H@Nij: 0, kij =0,
-1, k‘ij < 0.

Proposition 1: The optimization problem (J1) is equiva-
lent to the semidefinite program
J = (1/2)trace (X + rK) + ytrace (MY)

subject to K >0

X Q1/2
[ g k|70
-Y j WOK j Y7

minimize

(P1)
where < denotes elementwise matrix inequality, and the

2052



optimization variables are the symmetric matrices K and
X, and the matrix Y whose entries are nonnegative.

Proof: Using K > 0 and the Schur complement [22,
Appendix 5.5], we have

X QY2 -
{ QU2 QK ] >0 <= X>QK QY
and thus

trace (X) > trace (QK ).

The elementwise inequality
=Y, < Wi Kij <Yij,

yields
Wi | Kij| < Vi,

and thus
trace (MY") > trace (M (WoKosign(K))).
Therefore, for any feasible point (K, X,Y") of (P1), we have

J(K,X.Y) > J(K), )
and thus minimum of .J is an upper bound of the minimum

of J(K).

Let K* be the global minimizer of (J1). Then, we can
choose
X* = Q1/2 (K*)71Q1/2

and
Y* = Wo K" osign(K™*)

which ensure that X™* and Y* satisfy the constraints in (P1)
and J(K*, X*,Y*) = J(K*). Let (K, X,Y) be the global
minimizer of J. It follows that
J(K,X,)Y) < J(K*, X*,Y*) = J(K*)
< J(K) < J(K,X,Y),

where the last inequality is from (4). Thus, the above inequal-
ities are indeed all equalities. Since (P1) aims to minimize a
linear function over a convex set [22], the global minimizer
of (P1) is unique. Therefore, K = K* and thus (P1) is
equivalent to (J1). -

The SDP reformulation presented here corresponds only
to Step 2 of the iterative algorithm introduced in Section IV.
For the system (1)-(3), this amounts to replacing the
optimization problem (WL1) with (P1), with the rest of the
algorithm remaining the same. The SDP reformulation can
be solved efficiently using available SDP solvers.

Finally, we note that a similar treatment can be developed
for the case where the ¢; norm is replaced by the ¢ norm;
see Appendix for details.

VI. VEHICULAR FORMATION EXAMPLE

In this section we apply the sparsity-promoting algorithm
of Section IV to the optimal control of vehicular formations.

We consider the network of NV single-integrator vehicles
given by (2). We will henceforth refer to the 1st and the

Nth vehicles as leaders and to the rest of the vehicles
as followers. We assume that each of the followers uses
the relative position errors between itself and all the other
vehicles,

N
wi == > kyla—ay),
J=1,j#i
In addition, the 1st and the Nth vehicles have access to their
own absolute position errors,

i=2,...,N—1.

N
Uy = — E klj(l’l —l‘j) — ki1,
j=2
and
N-1
unN = — E k‘Nj(Z‘N—Z‘j) — ]fNNl‘N.
j=1

Let the relative feedback gains between two vehicles be
equal,
kij = kjia for all Z?é]

Then, in matrix form we have
T =u+d=—-Kz +d,

where =, u, and d are the state, control, and disturbance
vectors, respectively, and K is a symmetric matrix. For
example, for N = 3,

ki1 + k12 + ks —k12 —k13
K = —ki2o k1o + kos —ka3
—ki3 —ka3 k13 + ka3 + k33

Note that the state feedback gain K is a structured matrix
that can be rewritten as

K = FK,E" + K,

where K, € R™*™ [with m = N(N—-1)/2] and K, €
RNV >N are both diagonal matrices, and the incidence matrix

F is defined as
E=1]en es env-yn | € RVX™,

where ¢;; € RY takes 1 and —1 at the ith and Jth entries,
respectively, and 0 otherwise. The main diagonal of K, is

[kll 0 0 ]fNN]ERN,
and the main diagonal of K, is
{ki;} forall ie{l,...,N} and je{i+1,...,N},

where ¢ goes from 1 to N, and for a fixed 7, j goes from
i+ 1 to N. For example, for N = 4,

[k12 kl3 k14 k23 k24 k34}-

We consider the global performance measure that penal-
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Fig. 1: Sparsity structures of K for Q = Q,

izes the absolute position errors of the vehicles,

N

T _ 2

T Qyr = E xj,
i=1

where the performance matrix is (), = I. We also consider
the local performance measure that penalizes the relative
position errors of the vehicles in addition to the absolute
position errors of the 1st and the Nth vehicles,

N-1
2TQrx = Z(a:l —2i01)? + 2] + 2.
i=1
Here, Q; is a symmetric Toeplitz matrix whose first row is
given by [2 — 1 0...0] € RY. For example, for N = 4,

2 -1 0 0
-1 2 -1 0

Q = 0 -1 2 -1
0 0 -1 2

For Q = Q)4 and small values of v, the sparsity-promoting
algorithm converges to a matrix K populated with non-zero
elements. As v increases, the followers only use information
from the leaders; on the other hand, the leaders use relative
information from all other vehicles (see Fig. 1a). For v > 1,
the sparsity structure of K is given in Fig. 1b, indicating that
the leaders do not use relative position exchange between
each other.

For @ = @, as «y is increased the number of nonzero
sub- and super-diagonals of K decreases and eventually
K becomes a tridiagonal matrix (for v = 0.1 and larger
values); see Fig. 2. In other words, each vehicle interacts
with a smaller number of neighbors as + is increased, and
the nearest neighbor interaction is selected by the algorithm
for large values of ~.

Finally, the sparsity structures of K with Q = Q4 + @
for different values of v are illustrated in Fig. 3. For v =1
(and larger values), the nearest neighbor communication
architecture is observed. We note non-local interaction
patterns employed by the leaders for v = 0.5, 0.2, and
0.1. It turns out that the leaders communicate with the
vehicles that are uniformly distributed along the formation. In
particular, for v = 0.5, the 1st vehicle exchanges information
with the 7th vehicle; for v = 0.2, it communicates with
the 5th and the 7th vehicles; and for v = 0.1, it uses
information from all the even numbered vehicles.

(d) v =0.01 (e) v = 0.02

Fig. 2: Sparsity structures of K for Q = Q)
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Fig. 3: Sparsity structures of K for Q) = Q4 +

VII. CONCLUDING REMARKS

We consider the linear quadratic optimal control problem
in which the objective function is modified to penalize the
number of nonzero elements in the feedback gain. This
promotes sparsity and translates to fewer communication
links used by the distributed controller. We propose an
iterative reweighted ¢; algorithm, and for a class of
distributed systems, we demonstrate that the algorithm
amounts to solving a sequence of semidefinite programs.
We apply this design method to the control of vehicular
formations composed of single-integrator vehicles. A family
of nontrivial communication patterns is revealed by our
optimization algorithm as the price of communication is
increased.

We are currently examining extension of the tools pre-
sented here to more general classes of distributed optimal
control problems. One ongoing direction involves the gradi-
ent projection method proposed in [23], in conjunction with
homotopy, to solve general nonconvex problems (WL1). Our
preliminary results indicate the effectiveness of this approach
in finding sparse feedback gains even for nonconvex prob-
lems.
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APPENDIX

The sparsity-promoting optimal control algorithm in
Section IV, and its restriction to systems described by (1)-
(3), can also be investigated using the ¢ norm.

We consider the optimization problem in Step2 of the
sparsity-promoting optimal control algorithm, and replace
(WL1) with

minimize  trace (PB1BY) 4+~ W oK|2
(A— ByK)"P+ P(A— ByK)
= —(Q+ K"RK),

subject to (WL2)

where the ¢, norm of the matrix K is defined as ||K||7, =
> i ki |2. All other steps of the algorithm remain the same.
Once restricted to the class of systems described by (1)-(3),
problem (WL2) can be rewritten as

(1/2) trace (QK ' + 1K) +~ |[WoK |2,
subject to K > 0.

minimize

J2)
Proposition 2: The optimization problem (J2) is equiva-
lent to the semidefinite program
J = (1/2) trace (X + r7K) + v trace (Z)
subject to K >0

minimize

X QI/Q
[ Q1/2 K Z 0
Z WoK
[ WoK I } 20,

P2)
where the optimization variables are the symmetric matrices
K, X, and Z.

Proof: The proof is similar to the proof of Proposition 1
and thus omitted for brevity. [ ]
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