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Abstract

We consider nonlinear regulation of systems with para-
metric uncertainty. Under mild conditions, these sys-
tems can be brought into a psuedo-linear form known
as extended linearization. Under this formulation, con-
ventional linear control synthesis methods can be ap-
plied. One popular technique that mimics the LQR
method of optimal linear control is referred to as the
State-Dependent Riccati Equation (SDRE) approach.
SDRE control relies on a non-unique factorization of
the system dynamics known as the State Dependent Co-
efficient (SDC) parameterization. Under system uncer-
tainty, each SDC parameterization will produce its own
radius of stability in a region of interest in the state
space. In this paper a method to compute the radius
of stability in a special class of systems is used to ob-
tain the SDC parameterization which results in the max-
imum radius of stability for the original nonlinear sys-
tem in the region of interest. It is shown that the prob-
lem of finding the maximum radius of stability from a
hyperplane of SDC parameterizations can be reduced
to constrained minimization of the spectral norm of a
comparison system.

1. Introduction

For the infinite-horizon, autonomous, nonlinear
regulator problem that is affine in input

ẋ = f (x)+g(x)u (1)

We seek the control, u, that minimizes

1
2

∫
∞

t0
(xT Q(x)x+uT R(x)u) dt (2)

over the infinite horizon. Here x ∈ Rn represents the
state vector, u ∈ Rm, denotes the control, both f (x) and
g(x) are Ck functions with the mappings f : Rn −→ Rn

and g : Rn −→Rn×m. Q(x) is a continuous positive semi-
definite state weighing matrix. The variable R(x) repre-
sents a penalty associated with the control effort.

There are various methods for analysis and design
of nonlinear systems [1]. In the method of extended
linearization [2], also known as State-Dependent-
Coefficient (SDC) representation, Eq (1) is factored into
a linear-like structure with State-Dependent matrices. A
continuous, nonlinear matrix-valued function, A(x), can
always be obtained by mathematical factorization if:

Condition 1. f (0) = 0

Condition 2. f (x) is continuously differentiable, that is

f (x) ∈C1

If these conditions are met, f (x) can be factored as:

f (x) = A(x)x (3)

Note that, as shown by Cloutier in [3], the factorization
in Eq (3) is non-unique for n > 1. Denoting g(x) = B(x),
the system in Eq (1) becomes:

ẋ = A(x)x+B(x)u (4)

Eq (4) possesses a desirable linear structure with
SDC matrices A(x) and B(x). Under this formulation,
conventional linear control synthesis methods can be
applied. One popular technique that mimics the LQR
method of optimal linear control is referred to as the
State-Dependent Riccati Equation (SDRE) approach or
the State-Dependent LQR methodology (SDLQR). This
approach consists of three steps:

1. Bring the system in Eq (1) to SDC form (Eq 4).

2. Solve the state dependent matrix Riccati equation:

S(x)A(x)+AT (x)S(x)−
S(x)B(x)R−1(x)BT (x)S(x)+Q(x) = 0

(5)
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3. Form the control pointwise:

u(x) = −R−1(x)BT (x)S(x)x (6)

This method requires that the pair (A(x),B(x)) be
pointwise stabilizable in the linear sense ∀x. One suffi-
cient check for this condition is to form the controllabil-
ity matrix just as it is done for linear systems and then
to check that the controllability matrix has full rank in
the domain of interest.

Ultimately, the SDRE control procedure, or
SDLQR, leads to a closed-loop system matrix

A(x)cl = A(x)−B(x)K(x) (7)

that is pointwise Hurwitz stable ∀x. The origin at x = 0
of an SDRE controlled system is locally asymptotically
stable as shown in [3, 4].

Partly due to its ease of application and design flex-
ibility, SDRE has enjoyed widespread success in a num-
ber of applications. It has been utilized to explore op-
timal treatment modalities for HIV & AIDS, Missile
Guidance, Satellite & Spacecraft design and to control
the growing film thickness in high pressure chemical
vapor deposition (HPCVD). Furthermore, SDRE has
been applied to the design of advanced flight control
systems, utilized in automotive control systems and has
applications in process control.

As shown in [3], SDRE has been extended to
nonlinear H∞ control. In [5] the robustness proper-
ties of Extended Linearization systems are discussed
and a result pertaining to the closed loop stability un-
der matched disturbances is presented. Nonlinear sys-
tems with parametric uncertainty have been reported
by many authors (see [6] and references therein). The
author of [7] addresses parametric uncertainty of the
SDRE control method, albeit through a design study.
In [8], the stability region of convergence is addressed
through a method that involves a comparison system
which is overvalued.

Because the choice of A(x) is non-unique, differ-
ent factorizations may be considered which can lead
to different robustness characteristics. Under system
uncertainty, estimating the radius of stability of the
SDRE controlled system is difficult since the closed-
loop system equations are not available explicitly. Con-
sequently, difficulties may arise for the designer wish-
ing to assess the robustness and performance tradeoffs
associated with each parameterization. In this paper,
it is shown that maximizing the radius of stability un-
der SDC parameterization for a multivariable SDRE
controlled system corresponds to minimizing the con-
strained spectral norm of a parameterized comparison
system. Our result is based on the work in [9] and is

intended to address the problem of choosing the most
robust parameterization arising in a hyperplane defined
by two or more valid SDC parameterizations.

2. Robust SDC Parameterization

Cloutier has shown in [3] that for the multivariable
case there always exists an infinite number of SDC pa-
rameterizations. This is because the state vector x has,
by definition, at least two components x1 and x2 in the
multivariable case. Suppose there exists a nonlinear
scalar term fi(x) in one of the state equations. Then
in that state equation at least two representations can be
found corresponding to fi(x)/x1 and fi(x)/x2. Using
any two valid SDC representations A1(x) and A2(x), an
infinite number of parameterization can be constructed
from the convex set

A(x,α) = αA1(x)+(1−α)A2(x), α ∈ [0,1] (8)

In general for k+1 valid SDC parameterizations α

will be of dimension k and A(x,α) will be the hyper-
plane

A(x,α) = (1−αk)Ak+1(x) (9)

+
k

∑
i=1

(
k

∏
j=i

α j)(1−αi−1)Ai(x)

where α0 , 0.
Parametric uncertainty in linear systems can be ex-

pressed as [10]:

ẋ = [A+D∆E]x

Now let the SDC parameterization of a nonlinear sys-
tem be represented by

ẋ = A(x,α)x+B(x)u (10)

then it can also be put into the robust formulation. If
there is uncertainty in the system parameters, the non-
linear SDC parameterization simply includes a term for
system uncertainty.

Definition 1. Let the SDC parameterization with struc-
tured uncertainty be represented by

ẋ = [A(x,α)+D∆E]x ∀x ∈ Rn (11)

where it is assumed that A(x) is pointwise stable or
stabilized according to Eqn (7). Then Eqn (11) is called
the parameterized robust SDC representation of the
nonlinear system, where D and E are n× r and s× n
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dimensional structured matrices, α ∈ [0,1] and ∆ is an
unknown uncertainty matrix confined to a region of
interest.

To our knowledge, no systematic approach has
been introduced for choosing α that will result in the
SDC parameterization that is maximally robust with re-
spect to parametric uncertainty.

3. SDC Comparison System

This section is devoted to overvalueing the SDC pa-
rameterization by using a comparison system possess-
ing Metzlerian structure.

3.1. Preliminary Analysis

In order to address the problem of maximizing the
radius of stability for a family of SDC parameterizations
under uncertainty using SDRE, a region of interest in
the state space needs to be defined. By overvaluing the
SDC parameterization in this region, the overall system
is brought into a form that possess special properties.
The resulting comparison system will be Metzlerian and
will be used to ascertain the parameter that robustifies
the SDC parameterization.

Theorem 1. [11] The matrix M : Rn → Rm×m defines
an overvaluing system of Eq (10) with respect to the
vector norm p(x) if and only if the following inequality
is verified for each corresponding component:

D+ p(x)≤M(x,α)p(x) ∀x ∈ Rn

Where D+ is the upper Dini derivative operator [1].
Denote Ii and I j as the sets of the indices of the rows
and columns of the blocks Ai j of any matrix A(x,α). If
pi(x) is the maximum of the modulus of each component
of xi, then:

M(x,α) = µi j(x,α), µi j : Rn→ R
µi j(x,α) = max

s∈Ii
[ass + ∑

l∈Ii,l 6=s
|asl |]

µi j(x,α) = max
s∈I j

[∑
l∈I j

|asl |]

The resulting M(x,α) system is an overvaluing ma-
trix. Then, µi j is the greatest sum of all components in
each row of the block in A. The following lemmas will
be of interest in determining the special properties of the
system matrix, A(x,α). The proofs are found in [12].

Lemma 1. Let a psuedo-overvalued matrix M(x,α) of
A(x,α) be defined with respect to the vector norm p(x).
Then any one of the following conditions hold:

i) The off diagonal elements µi j(x,α),(i 6= j) of
M(x,α) are nonnegative.

ii) If λA(x) denotes any of the n eigenvalues of
A(x,α), λM(x) any of the k eigenvalues of M(x,α)
and λm(x) the maximal real part of λM(x), then the
following holds:

ℜ(λA(x))≤ℜ(λM(x))≤ λm(x) ∈ R ∀x ∈ R

iii) When all the real parts of the λM(x) are negative,
or even if M satisfies the Koteliansky conditions
then M(x,α) admits an eigenvector um(x), called
the importance vector of M(x,α), whose compo-
nents are strictly positive and which is associated
with the real, maximal and negative eigenvalue
λm(x).

Now the robust comparison system can be formed.

Definition 2. Suppose there exist a vector norm p(x)
and a matrix M(x,α) connected with Eq (11) such that
the off diagonal elements of M(x,α) are all nonnegative
and that the equality in Theorem 1 is satisfied along the
solution of Eq (11) . Then the system

ż = (M(x,α)+D∆E)z, ∀z ∈ Rk
+

is a robust comparison system of Eq (11) in the sense
that z(t)≥ p(x(t)) ∀t.

3.2. Metzlerian Systems

Metzlerian systems or continuous time positive
system have been studied by many researchers (see [13]
and references therein) and are found in variety of ap-
plications.

Definition 3. The matrix A = [ai j] ∈ Rn×n is a Met-
zlerian matrix if aii ≤ 0 ∀i and ai j ≥ 0 i 6= j with
i = j = 1,2, . . . ,n.

Remark 1. The necessary condition for stability of Met-
zlerian matrices is aii < 0 which is assumed throughout
this paper.
This leads to the discussion of systems which posses
this important structure.

Definition 4. A system

ż = Mz+Nu z(0) = z0 (12)
y = Wz (13)

is called a Metzlerian system if M is a Metzler matrix,
and N ≥, W ≥ 0 are nonnegative matrices.
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Theorem 2. A Metzlerian system is asymptotically sta-
ble if and only if one of the following equivalent condi-
tions are satisfied:

i) All eigenvalues of the Metzlerian matrix M have
negative real parts.

ii) All coefficients ai(i = 0, . . . ,n− 1) of the charac-
teristic polynomial ∆(λ ) = det(λ I −M) = λ k +
an−1λ k−1 + . . .+a0λ +a0 are positive.

iii) All leading principal minors of the matrix −M are
positive.

iv) The matrix M is nonsingular and −M−1 > 0.

v) There exists a diagonal matrix P such that M′P +
PM < 0.

By the above properties the overvalued system ma-
trices M(x,α) and M will possess Metzlarian structures.
The following theorem, which is proven in [13], can be
used to estimate the region of stability under system un-
certainty.

Theorem 3. Suppose ż = (M+D∆E)z, where M is Met-
zlerian stable, D ≥ 0 and E ≥ 0 are given structured
matrices of appropriate dimensions, say n×r and s×n,
and ∆ is an unknown uncertainty matrix confined to a
certain set of interest. Then, the real and complex sta-
bility radii coincide and are given by the following for-
mulas, depending on the characterization of ∆:

(1) let ‖ · ‖= ‖ · ‖2 be the Euclidean norm and let ∆ =
Rr×s. Then

rR(M,D,E) = rC(M,D,E) =
1

‖EM−1D‖2
(14)

(2) let ∆ be defined by the set ∆ = {P◦∆ : pi j ≥ 0} with
‖∆‖= max{|δi j| : δ i j 6= 0} where [P◦∆]i j = pi jδi j
denotes the Schur product. Then

rR(M,D,E) = rC(M,D,E) =
1

ρ(EM−1DP)
(15)

It is assumed that the A(x,α) system matrix used
for overvaluing is stable. Note, however, that this as-
sumption does not place a general constrain on the
method. If necessary, stability can be achieved by clos-
ing the loop and using Acl(x) in the overvaluing opera-
tion instead.

4. Stability Radius Optimization

For a family of robust comparison systems param-
eterized by α , obtaining the parameter that corresponds
with the maximally robust SDRE parameterization is a
constrained minimization problem. Specifically, min-
imizing the spectral norm of the denominator of Eqn
(14) subject to one of the equivalent stability conditions
from Theorem 2 expressed in terms of α . This produces
the parameter α∗ that leads to the largest radius of sta-
bility. This is captured in the following Theorem.

Theorem 4. For the nonlinear system of the form

ẋ = f (x)+g(x)u

with structured parametric uncertainty given by

ẋ = [A(x,α)+D∆E]x ∀x ∈ Rn

where A(x,α) is a valid parameterized SDC represen-
tation on the hyperplane

A(x,α) = (1−αk)Ak+1(x)+
k

∑
i=1

(
k

∏
j=i

α j)(1−αi−1)Ai(x)

let

Ω = {x ∈ Rn : x ∈ (XL,XU )}

be the domain of interest with XL and XU defining the
lower and upper bound of the domain respectively and
let the psuedo-overvalued constant matrix, M(α), rep-
resenting the robust comparison system

ż = (M(α)+D∆E)z ∀z ∈ Rk
+

be Metzlerian stable, then the SDC parameterization
corresponding to the largest radius of stability

rR(M(α),D,E)≤ r∗R(M(α∗),D,E)

in the original system is given by A(x,α∗), where α∗

is the parameter that minimizes the spectral norm of
EM(α)−1D subject to one of the equivalent stability
conditions in Theorem 2 expressed in terms of α , e.g:

α
∗ = argmin

α∈[0,1]
‖EM−1(α)D‖2

Subject to

det(M(α)) 6= 0
−M(α)−1 > 0
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Proof. Note that maximizing the radius of stability with
respect to the parameter α

max
α

rR(M(α),D,E)

is equivalent to minimizing

min
α
‖EM(α)−1D‖2

It can be shown that

‖EM(α)−1D‖2 = max{σi}

where σi are the singular values of
(EM(α)−1D)T (EM(α)−1D). Now let,

T =
{

max
α

σi; i = 1 . . .n,α ∈ [0,1]
}

be the set whose elements are the largest singular values
of

(EM(α)−1D)T (EM(α)−1D) ∀α ∈ [0,1]

then we seek the desired α according to

α
∗ = arginf

α

T

This establishes the proof for Theorem 4.

The following example illustrates the utility of this
approach.

Example 1. For the nonlinear system:

ẋ1 = −x1 +2x2
1x2

ẋ2 = −x2 +u

Let the parametric uncertainty be captured by

D =
[

1 0
0 1

]
∆ =

[
δ1 0
0 δ2

]
E =

[
1 0
0 1

]
and let:

A1(x) =
[
−1 2x2

1
0 −1

]
A2(x) =

[
0 2x2

1−
x1
x2

0 −1

]
with B = [0 1]T , Q = I2×2, R = 1. Using Eqn (9), the
SDC parameterization is

A(x,α) =
[
−α −2αx2

1 +(1−α)(2x2
1−

x1
x2

)
0 −1

]
Although not necessary in general, here we con-

sider overvaluing the closed loop system matrix,

Figure 1: Variation of k1 and k2 in S

Acl(x,α), to show that the method is applicable to the
closed loop system matrix as well. Since A(x,α) =
A(x1,α), the feedback gains k1 and k2 depend on x1
only. The closed loop matrix Acl(x,α) is:

Acl(x,α) =
[
−α −2αx2

1 +(1−α)(2x2
1−

x1
x2

)
−k1(x1) −1− k2(x1)

]
Let the region of interest be :

S = {x1,x2 ∈ R : |x1|< 1.2, |x2|< 1.2}

The overvaluing matrix M(x,α) for Acl(x,α) is:

M(x,α) = max
x∈S

(−α) max
x∈S
|−2αx2

1 +(1−α)(2x2
1−

x1

x2
)|

max
x1∈S
|− k1(x1)| max

x1∈S
(−1− k2(x1))


The maximum value of k1 and k2 can be deduced from
their variation in Figure 1. Note that

kmax
1 = 0.396 kmin

1 = 0.00 kmax
2 = 1.07 kmin

2 = 0.414

The constant overvaluing matrix M(α) for the domain
of interest becomes:

M(α) =
[
−α α +1.88

0.396 −1.414

]
Note that M(α) is Metzlerian ∀α ∈ (0,1] and it is Hur-
witz stable for ∀α ∈ (0.731,1] [13].

This implies that for any 0.731 < α < 1 the sta-
bility radius can be computed using Theorem 3. The
utility of this fact is that even though α∗ yields the most
robust SDC parameterization with respect to parametric
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Figure 2: Thick solid line corresponds to radius of sta-
bility and thin line corresponds to the matrix norm.

uncertainty, the designer may wish to asses the trade-
off between robustness and closed loop performance by
varying α .

In this example, we seek the α that maximizes the
radius of stability only. Therefore

α
∗ = argmin

α∈(0.731,1]
‖EM−1(α)D‖2

Figure 2 plots the matrix norm of EM−1D and the cor-
responding radius of stability rR(M,D,E) as a function
of α . It can be seen that the maximum radius of sta-
bility occurs at upper boundary of α , so α∗ = 1 with
a radius of stability of rR = 0.084. Therefore, for this
problem A1(x) corresponds to the parameterization that
is maximally robust with respect to parametric uncer-
tainty. Note that when additional constraints are added
to the optimization problem, α∗ may not necessarily be
equal to the upper bound of α .

5. Conclusion

SDC parameterization of nonlinear systems with
parametric uncertainty using the SDRE (or SDLQR)
methodology was considered. Each SDC parameteri-
zation produce its own radius of stability in a region
of interest in the state space. A method to compute
the radius of stability in a special class of systems was
used to obtain the SDC parameterization which results
in the maximum radius of stability for the original non-
linear system in the region of interest. It was shown that
the problem of finding the maximum radius of stability
from a hyperplane of SDC parameterizations is equiv-
alent to minimizing the spectral norm of a constrained
comparison system. The method was illustrated with an
example.
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