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Abstract— The decision by the bacterium Bacillus subtilis
to produce spores has been an area of intense study in the
molecular cell biology field. Though mechanisms describing
how the decision is made are becoming better understood,
the reasons why the decision is made are still nebulous. Spore
formation is known to be a survival mechanism, but the cir-
cumstances under which it is preferred over other mechanisms
have not been carefully examined. In an attempt to address
this issue quantitatively, we introduce simple models and a
control framework to compare two bacterial survival strategies:
sporulation and a simple reduction in metabolic activity. Our
findings provide evidence that the decision to sporulate may
be the outcome of an underlying optimal control problem to
contend with expected future environmental challenges.

I. INTRODUCTION

Bacillus subtilis is a soil-dwelling bacterium that is able
to form resilient, dormant, and morphologically distinct cell
types, called spores. Spores are capable of reanimation in the
future [1], [2]. This process, called sporulation, is primarily
triggered by nutrient deprivation and protects against possible
environmental stressors such as heat, radiation, and harmful
chemicals [3], [4], [5], [6]. Sporulation is an evolutionary
trait to deal with unfavorable environmental conditions,
possibly enabling the maximization of the “fitness” of the
species. This “fitness” metric can be defined in several
different ways, but for a quickly-reproducing population, it
often refers to number of progeny [7], [8].

Once triggered, sporulation is an irreversible process [9],
[10]. Therefore, if nutrient deprivation triggers sporulation,
subsequent introduction of additional nutrients will be dis-
regarded. The decision to sporulate should consequently
not be taken lightly by the cell. Indeed, the species must
accommodate the possibility that higher fitness may be
realized by delaying the commitment to sporulate. To deal
with this important decision, each B. subtilis cell possesses
a relatively complex signal integration network called the
phosphorelay [1], [11]. This activates a “master regulator”
protein by donating or removing phosphate from proteins
within the relay [1], [12], [13], [14]. Phosphate is added to
the phosphorelay by nutrient deprivation [12], [15], [16] and
removed by putative sensing of low population density [17],
[18], [19]. For a single cell, once the number of activated
“master regulator” molecules passes a certain threshold,
sporulation is initiated [20], [21].

Once a B. subtilis cell commits to sporulation, a spe-
cialized cell division takes place [22]. Instead of forming
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two identical daughter cells, sporulating cells form distinct
daughter cells that act together to create a single spore. One
daughter cell, the “mothercell,” engulfs the other “prespore”
daughter cell shortly after division in a process similar
to phagocytosis [22]. The prespore continues to develop
with the help of the mothercell until it is fully mature,
at which point the mothercell releases the spore by lysing
(bursting). Mothercell lysis provides an additional source of
nutrients for other growing cells, though the event takes place
several hours after the initial commitment to sporulation [23].
Thus, the sporulation process not only reduces the number
of growing cells that are consuming nutrients, but it also
provides an additional source of food when the mothercell
lyses. This may give rise to “population heterogeneity,”
which is a heterogeneous timing (across the population) of
the decision to commit to sporulation [23], [24]. This phe-
nomenon is observed in florescence microscopy images of
an isogenic colony of B. subtilis cells growing in a nutrient-
poor environment. Whatever its underlying cause, population
heterogeneity suggests that the sporulation decision may be
viewed as a population-level control problem to maximize
the fitness of the colony.

Sporulation is one of several survival strategies used
in response to nutrient limitation, collectively classified as
“dormancy” [25]. In contrast to sporulation, which results
in the formation of a morphologically distinct structure,
other survival strategies observed in laboratory settings are
realized by a sharp reduction in metabolic activity without
the formation of a distinct dormant cell [25], [26], [27].
Examples of these morphologically indistinct cells include
viable but non-culturable cells and persisters [25], and, like
sporulation, they exhibit population heterogeneity [27]. Com-
mon across the microbial world [28], metabolic reduction
(or “dormancy” in the sequel) provides many of the benefits
of sporulation without the complexity and energetic costs
of spore formation [25]. This leads to the question of the
possible benefits of sporulation over dormancy. By casting
each survival strategy as an optimal control problem, we can
quantitatively investigate a particular situation where sporu-
lation is preferred over dormancy. This paper will provide
a framework for the analysis of sporulation and dormancy,
starting with simple models in Section II, a formulation of a
control problem behind the survival strategies in Section III,
and results comparing sporulation to dormancy in Section
IV. We close in Section V by summarizing our findings and
detailing future work.
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II. MODEL

A. Sporulation model

Since population heterogeneity occurs at the colony level,
population-level dynamics need to be modeled. The decision
to sporulate is made once per cell cycle [29]. Assume
that a group of mV (t) cells makes a decision to commit
p(t) cells to spores at time t. The remaining 1 − p(t)
cells not committed to sporulation will divide to produce
2(1−p(t))mV (t) growing cells. A fraction of this group q(t)
will die during the course of their cell cycles, and at the end
of the cell cycle the decision to sporulate is repeated [24],
[30]. Since spores are resilient to environmental stressors,
they are assumed to not die. We also assume the nutrient level
is not high enough to exit the spore state, so sporulation is
an irreversible process. Denoting one generation as the time
between cell cycles and assuming the cell cycles for all cells
are synchronous, a simple (deterministic) model describing
the colony dynamics is given by Equations 1–3.

mV (t+ 1) = 2(1− p(t))(1− q(t))mV (t) (1)
mS(t+ 1) = mS(t) + p(t)mV (t) (2)

q(t+ 1) =

 0 if z(t) < 0
z(t) if 0 ≤ z(t) ≤ 1
1 if z(t) > 1

(3)

where z(t) = q(t) +KM(t+ 1).
In these equations, the variables used are

M(t) = mV (t)− δp(t−∆)mV (t−∆)−N(t)

mV (t) = number of growing cells
mS(t) = number of cells committed to sporulation
p(t) = decision variable for the fraction of cells that

commit to sporulation
q(t) = fraction of growing cells that perish during a

cell cycle
N(t) = nutrient added over one generation (normalized)

δ = parameter that describes the amount of nutrient
released from mothercell lysis

∆ = time between commitment to sporulation and
mothercell lysis

K = parameter to describe the nutrient consumption
by a growing cell

Since cells are assumed to strictly consume nutrients, δ <
1.

A useful picture for the dynamics of q(t) is offered
in Figure 1. Notice that it is possible for M(t) < 0 if
more nutrients are released from mothercell lysis and/or
exogenously added to the environment than consumed by
growing cells. In this case, the fraction of surviving growing
cells increases. On the other hand, if M(t) > 0, then
the nutrient level decreases and the fraction of dying cells
increases. The motivation for choosing to model the death
fraction dynamically is to capture the fact that without

1− q(t)

M(t)

1− q(t− 1)

1

1
−K

1−q(t−1)
K

−q(t−1)
K

Fig. 1. Dynamics of q(t).

nutrient infusion, the nutrient level will always be decreasing
with time.

B. Dormancy model

A simple, population-level model for dormancy is very
similar to the sporulation model. However, the following
differences need to be accommodated: non-negligible exit
from dormant state even with low nutrient levels [31], and
no mothercell lysis events. The energetic cost of forming a
spore [11] is assumed to be negligibly higher than forming
a dormant cell. We also assume that a dormant cell has no
metabolic activity, so no growth or death are possible in the
dormant state. A simple dormancy model can thus be written
as

mV (t+ 1) = 2(1− α1(t))(1− q(t))mV (t)+

α2(t)mP (t) (4)
mP (t+ 1) = (1− α2(t))mP (t) + α1(t)mV (t) (5)

q(t+ 1) =

 0 if zP (t) < 0
zP (t) if 0 ≤ zP (t) ≤ 1
1 if zP (t) > 1

(6)

where mP (t) is the number of dormant cells, α1(t) and α2(t)
are decision variables for the fraction of cells that commit to
and exit dormancy, respectively, zP (t) = q(t)+KMP (t+1),
and MP (t) = mV (t)−N(t).

III. CONTROL FRAMEWORK

The “choices” of p(t), α1(t), and α2(t) are presumably the
result of natural selection. This implies that values of these
decision variables that lead to higher fitness for a bacterium
will be passed on to future generations, while less successful
decisions will terminate with the cells that were programmed
with the inferior survival strategies. In addition, the decision
variables may be optimal according to a fitness measurement,
the choice of which is discussed below.

The notion of fitness as an evolutionary objective is
central to the theory of evolutionary biology. Fitness has
been interpreted as the ability to produce offspring [32];
future reproductive success [33]; viability and fertility [34];
or survival, mating success, and fecundity [35]. A common
theme underlying these definitions is the ability to pass
genetic information to successive generation(s). For example,
an organism is more likely to pass genetic information to the
next generation if it has a high probability of surviving to
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adulthood, finding a mate, and producing several offspring.
If any of the three probabilities are small, then the fitness
of an organism will also be relatively small. Though fitness
may be applied to traits, individual organisms, populations,
or species [33], [36], the general idea of passing genetic in-
formation to the next generation applies universally. Natural
selection favors high relative fitness, and it is appealing to
visualize evolution as an optimization problem where fitness
for a particular environment is maximized.

Though the idea of fitness is clear, measuring fitness is
generally challenging. This makes the idea of “maximiz-
ing fitness” ambiguous because the ability to pass genetic
information to the next generation in a given environment
can be quantified in many different ways. The probability
of surviving to adulthood [33], expected number of off-
spring [34], probability of survival relative to the highest
survival probability in the environment [35], dominant Lya-
punov exponent [26], [37], and expected growth rate of
the population (for both continuous and discrete models)
[35], [38], [39] have all been used to measure fitness. A
generational time scale is almost always used for these
fitness measurements [40], so the fitness of a trait, organism,
population, or species is defined for a specific generation.
This is consistent with defining fitness as the ability to pass
genetic information to successive generation(s) in a given
environment. For example, the fitness of an adult organism
may be the expected number of offspring it produces that
are able to survive to adulthood, or it may involve the ratio
of viable offspring number to fertile parent number. The
fitness may also be defined as the expected number of grand-
offspring it produces that are able to survive to adulthood, or
some multiplicative factor of viable grand-offspring to fertile
parent number.

A natural choice for measuring fitness for B. subtilis is the
number of viable progeny at some number of generations in
the future [7], [8]. This fitness metric is consistent with the
model proposed in Section II because of the generational
time scale, and viable progeny can be interpreted as the
number of genome copies; that is, mV (T ) + mS(T ) or
mV (T ) +mP (T ) for some T generations in the future.

The survival strategies can therefore be assumed to be
solutions to the optimal control problem

u∗ = arg max
u

J(T ) (7)

s.t. system dynamics
0 ≤ u(t) ≤ 1, t = 0, 1, . . . , T − 1

where J(T ) = mV (T ) +mS(T ) or mV (T ) +mP (T ), and
u := {p(0), . . . , p(T − 1)} or {(α1(0), α2(0)), . . . , (α1(T −
1), α2(T − 1))} is the decision policy, depending on the
survival strategy being examined.

Clearly, the solution to Problem 7 depends on the expected
environmental conditions in the future. To gain insight into
the possible reasons why sporulation may be preferable to
dormancy, we must restrict our attention to a situation where
these are the dominant mechanisms for species survival.
Specifically, we will examine the case when constant envi-

ronmental conditions turn catastrophic at the T−1 generation
(T � 1) with the simplification that decision policies are
constant. We assume that N(t) = N is large enough to
support a nonzero growing cell population to the T − 1
generation to avoid the possibility of the trivial sporulation
policy p ≡ 1. By “catastrophic,” we mean that environmental
factors conspire to force q(t) = 1 ∀t ≥ T − 1. We assume
constant decision policies because N is constant and T is
assumed to be very large (much larger than the settling
time of the system dynamics), which will produce a constant
optimal policy over most of the optimization horizon. These
optimal control problems, henceforth denoted “long term
catastrophe” problems, have the objective functions

J(T ) =

{
mS(T ) for sporulation
mP (T ) for dormancy

since mV (T ) = 0 due to the catastrophe. The assumed
environmental conditions and constant policy constraint are
similar to those used in another bacterial survival study [41].

After the solutions for the long term catastrophe problems
are computed for each survival strategy, the two optimal
strategies can be compared. Theoretically, the strategy with
the higher fitness would be preferred since it maximizes the
population’s fitness. This does not imply, however, that the
lower-fitness strategy disappears due to competitive advan-
tages that it may offer. In other words, the strategy that
maximizes the fitness of a population does not necessarily
correspond to an evolutionary stable strategy [38], [42].
Nonetheless, we will judge the performance of a survival
strategy based on its fitness measurement J(T ).

IV. RESULTS

Without loss of generality, assume mP (0) = mS(0) = 0.

A. Dormancy strategy for long term catastrophe problem

Since T is assumed to be much larger than the settling time
of the system dynamics, the solution to Problem 7 for the
dormancy strategy is very straightforward because we may
ignore the transient response of the model. The objective
function for constant decision variables is

J(T ) = mP (T ) =

T−1∑
i=0

α1 (1− α2)
i
mV (T − 1− i),

from which it is immediately clear that the optimal resusci-
tation term is α∗

2 = 0 since, although the dormancy model
is generally not stable, mV (t) and q(t) will always remain
bounded (though not necessarily constant). If K is chosen
small enough such that q(t) < 1 ∀t, then mV (t) > 0 ∀t. For
mV (t) and q(t) periodic,

T−1∑
i=0

q(i+ 1)− q(i) =

T−1∑
i=0

KMP (i) ≈ 0

since T is much larger than the system dynamics timescale.
The objective function may be closely approximated by

J(T ) ≈ α1NT. (8)
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Obviously, the argument that maximizes this cost function
(α∗

1) is the maximum allowable α1. From Equation 4,

1

T

T−1∑
i=0

mV (i+ 1)

mV (i)
=

1

T

T−1∑
i=0

2 (1− α1) (1− q(i)) ≈ 1

where the approximation is good when T is much larger
than the system dynamics timescale and mV (t) is periodic
and has an average value much larger than the amplitude of
its oscillations. Since the dormancy model is a population
model, mV (t) should always be large, so the approximation
is valid.

The average value of q(t) is q = 1 − 1
2(1−α1)

. From the
constraint 0 ≤ q < 1, the maximum value of α1 is α∗

1 = 1
2 .

Note that by ignoring the transient response, we have
assumed that the states mV (0) and q(0) were already at the
optimal configuration. Dropping this assumption will give
approximately the same result (if T is large), though α∗

1

will be very slightly less than 1
2 if the optimal states are

not reachable from the initial conditions with α1 = 1
2 and

α2 = 0. Nonetheless, we will assume (α∗
1, α

∗
2) =

(
1
2 , 0
)

is
the optimal dormancy strategy for the long term catastrophe
environment.

B. Sporulation strategy for long term catastrophe problem

The optimal constant decision variable p for the sporula-
tion strategy is found analogously. The cost function is

J(T ) = mS(T ) =

T−1∑
i=0

pmV (i),

where periodicity in q(t) and large T give the following
result, obtained from

∑T−1
i=0 M(i) ≈ 0:

T−1∑
i=0

mV (i) ≈ NT

1− δp

The cost function can therefore be closely approximated by

J(T ) ≈ p

1− δp
NT (9)

subject to the constraint p ≤ 1
2 , which is derived in a similar

manner as the constraint on α1 for the dormancy model.
Since it is assumed that cells do not create nutrients (i.e.
δ < 1), the maximizing p is readily found to be p∗ = 1

2 .
The same caveat about reachability of the optimal states

for the dormancy model applies to the sporulation model.
Also, for both models, the approximations are exact if the
numerical values for the parameters are chosen such that
mV (t) and q(t) approach constant values.

From Equations 8 and 9, it is clear that the sporulation
survival strategy has a higher fitness than the dormancy
survival strategy due to the mothercell lysis term. We may
extend this result to special cases of time-varying decision
policies (with α∗

2 ≡ 0) by further examining the effects of
mothercell lysis, presented in Propositions 4.1 and 4.2. Note
that, when α∗

2 ≡ 0, the dormancy model is equivalent to the
sporulation model with δ = 0.

Proposition 4.1: Let δ = amount of nutrient release
by mothercell lysis. Suppose the decision policy p =
{p(0), p(1), p(2), . . .} and initial conditions are independent
of δ. Suppose

K ≤ 1

2 maxtmδ
V (t)

(10)

and

δ ≥ mδ
V (t)−mV (t)

mδ
V (t)mδ

V (t+ 1−∆)p(t+ 1−∆)K
, ∀t (11)

where mδ
V (t) is the number of growing cells when δ > 0.

Then, for all initial conditions,

1− qδ(t) ≥ 1− q(t), ∀t

where qδ(t) corresponds to the case with mothercell lysis
nutrient release, and q(t) corresponds to the case without
mothercell lysis nutrient release.

Equivalently, suppose the policy p and the initial con-
ditions are independent of δ, the death fraction does not
increase too rapidly, and δ is greater than some number.
Then, the fraction of cells surviving to the next generation
with mothercell lysis nutrient release for any δ > 0 is always
greater than or equal to the fraction of cells surviving to the
next generation without mothercell lysis nutrient release.

Remarks: The condition (10) on K ensures that qδ(t) −
qδ(t+ 1) ≤ 1

2 ,∀t. It is possible that condition (11) may not
be satisfied with the constraint δ < 1.

Proof: Denote a variable yδ(t) as being associated with
the case of mothercell lysis nutrient release (δ > 0) and y(t)
(without the superscript) as being associated with the case of
no mothercell lysis nutrient release (δ = 0). The result will
be shown by induction.

(Base step). Since the initial conditions are identical
(qδ(0) = q(0) and mδ

V (0) = mV (0)), and since the decision
policies are the same, then mδ

V (1) = mV (1). Letting
Mδ(1) = mδ

V (1) − δp(1 − ∆)mδ
V (1 − ∆) − N(1) and

M(1) = mV (1) − N(1) = mδ
V (1) − N(1), the definitions

for qδ(1) and q(1) clearly show that 1− qδ(1) ≥ 1− q(1).
(Inductive step). Suppose 1 − qδ(τ) ≥ 1 − q(τ) ∀τ ≤ t.

This implies that mδ
V (τ) ≥ mV (τ) ∀τ ≤ t since the initial

conditions are assumed to be identical and the control p is
identical.

Showing that 1 − qδ(t + 1) ≥ 1 − q(t + 1) is equivalent
to showing that

qδ(t) +KMδ(t+ 1) ≤ q(t) +KM(t+ 1)

⇔ mδ
V (t+ 1)−mV (t+ 1) ≤

δp(t+ 1−∆)mδ
V (t+ 1−∆) +

q(t)− qδ(t)
K

.

(12)
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From the system dynamics,

mδ
V (t+ 1)−mV (t+ 1) =

2(1− p(t))
[
(1− qδ(t))mδ

V (t)− (1− q(t))mV (t)
]

≤ 2mδ
V (t)

[
1− mV (t)

mδ
V (t)

− qδ(t) + q(t)
mV (t)

mδ
V (t)

]
≤ 2mδ

V (t)

[
1− mV (t)

mδ
V (t)

− qδ(t) + q(t)

]
where the first inequality results from 1 − p(t) ≤ 1 and
the second inequality results from mδ

V (t) ≥ mV (t) . From
conditions (10) and (11), respectively,

mδ
V (t+ 1)−mV (t+ 1) ≤ mδ

V (t)−mV (t)

mδ
V (t)K

+
q(t)− qδ(t)

K

≤ δp(t+ 1−∆)mδ
V (t+ 1−∆) +

q(t)− qδ(t)
K

∀t, which satisfies Equation 12. Therefore, 1− qδ(t+ 1) ≥
1− q(t+ 1).

Though Proposition 4.1 may seem obvious, the subtlety
lies in the fact that a decreased fraction of cells dying puts a
larger load on the nutrient supply, which will correspondingly
increase the parameter q(t).

Proposition 4.2: Suppose conditions (10) and (11) hold,
and the initial conditions are independent of δ. Then, for all
T > 0,

max
p

mδ
S(T ) ≥ max

p
mS(T ),

where p = {p(0), p(1), . . . , p(T − 1)}.
Equivalently, suppose the initial conditions are indepen-

dent of δ, q(t) does not increase too rapidly, and δ is greater
than some number. Then, the spore component of the fitness
metric with mothercell lysis is at least as large as the spore
component of the metric without mothercell lysis.

Proof: For any T > 0, the objective functions can be
written as

mS(T ) =

T−1∑
t=0

p(t)2tmV (0)

t−1∏
i=0

(1− p(i))(1− q(i))

mδ
S(T ) =

T−1∑
t=0

pδ(t)2tmV (0)

t−1∏
i=0

(1− pδ(i))(1− qδ(i)).

Denote the optimal policy and states with ∗. By definition,
T−1∑
t=0

pδ∗(t)2tmV (0)

t−1∏
i=0

(1− pδ∗(i))(1− qδ∗(i)) ≥

T−1∑
t=0

p(t)2tmV (0)

t−1∏
i=0

(1− p(i))(1− qδ(i))

for any other policy with elements p(t), including the opti-
mal policy corresponding to the model with no mothercell
nutrient release (with elements p∗(t)). Then,

T−1∑
t=0

pδ∗(t)2tmV (0)

t−1∏
i=0

(1− pδ∗(i))(1− qδ∗(i)) ≥

T−1∑
t=0

p∗(t)2tmV (0)

t−1∏
i=0

(1− p∗(i))(1− qδ(i))

but since 1− q∗(i) ≤ 1− qδ(i) ∀i ≤ T − 1 (both under the
same policy with elements p∗(t)), then

T−1∑
t=0

p∗(t)2tmV (0)

t−1∏
i=0

(1− p∗(i))(1− qδ(i)) ≥

T−1∑
t=0

p∗(t)2tmV (0)

t−1∏
i=0

(1− p∗(i))(1− q∗(i)).

So, end to end, we are left with the inequality

T−1∑
t=0

pδ∗(t)2tmV (0)

t−1∏
i=0

(1− pδ∗(i))(1− qδ∗(i)) ≥

T−1∑
t=0

p∗(t)2tmV (0)

t−1∏
i=0

(1− p∗(i))(1− q∗(i)),

or

max
p

mδ
S(T ) ≥ max

p
mS(T )

for all T > 0.

C. Sporulation versus dormancy

By simple examination of Equations 8 and 9, the sporula-
tion survival strategy has a higher fitness than the dormancy
survival strategy in the long term catastrophe environment
described in Section III. With conditions on K and δ,
Propositions 4.1 and 4.2 extend the selection of sporulation
over dormancy for time-varying decision policies in environ-
ments where α∗

2 ≡ 0 (no exit from dormant state) because
the dormancy model becomes equivalent to the sporulation
model with δ = 0.

The choice of α∗
2 ≡ 0 is corresponds to extremely harsh

environmental conditions, where it is better to “wait out the
storm” and remain dormant instead of risk increased death
in the growing state; indeed, since the cells knew of the
catastrophe T − 1 generations into the future in our partic-
ular example, it was better to devote resources to survival
structures. The quantitative preference of sporulation over
dormancy in extremely harsh environments is also consis-
tent with the morphological differences between spores and
metabolically-inactive cells. Whereas inactive cells survive
by simply not interacting with their environment (thereby
saving energy and resisting antibiotics, for example), spores
are designed to protect the cell from harsh environmental
conditions and have been recognized as the “hardiest known
form of life on Earth” [6]. The results of this modeling
exercise should therefore be expected.

V. CONCLUSIONS AND FUTURE WORK

In this paper, two simple, phenomenological models for
sporulation and dormancy were proposed. A control frame-
work was presented that assumed the survival strategies,
which were the results of natural selection, have evolved
to maximize the fitness of a group of cells. The models and
control framework were applied to a long term catastrophe
environmental profile and sporulation was shown to have
a higher fitness than dormancy in this particular scenario.
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As long as no cells exit dormancy and some conditions
hold, this result can be extended to decision policies that
are allowed to vary in time. Our results are consistent with
the common acknowledgment that spores are able to resist
demanding environmental conditions, and if our models and
evolutionary optimality assumptions are valid, provide a
possible quantitative reason why sporulation has evolved.

We are working on corroborating these findings with
actual experimental data. We have access to fluorescence
microscopy images of sporulating colonies of B. subtilis,
which will allow the validity of the sporulation model to be
assessed. We are also working on other model formulations
to more carefully examine the sporulation decision process
in the context of evolutionary optimality.
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