
Finite-time Consensus of Multi-agent Networks with Inherent Nonlinear

Dynamics Under an Undirected Interaction Graph

Yongcan Cao, Wei Ren, Fei Chen, and Guangdeng Zong

Abstract— This paper studies finite-time consensus of multi-
agent networks with inherent nonlinear dynamics where each
agent is driven by a nonlinear term based on its state under
an undirected interaction graph. We propose two distributed
nonlinear algorithms to guarantee finite-time consensus. To
facilitate the stability analysis of the closed-loop system using
the proposed nonlinear algorithms, we present a general com-
parison lemma. The general comparison lemma provides an im-
portant tool in the stability analysis of linear/nonlinear closed-
loop systems by making use of known results in linear/nonlinear
systems. With the aid of the general comparison lemma, the

two nonlinear algorithms are shown to guarantee finite-time
consensus by comparing the original closed-loop systems with
one or more predesigned closed-loop systems that can guarantee
finite-time consensus.

I. INTRODUCTION

The past decade has witnessed an increasing research

interest in the study of distributed control of multi-agent net-

works. The main objective of multi-agent networks is to de-

sign proper local controllers for a team of networked agents

such that a desired group behavior can be accomplished.

As one of the fundamental research topics in distributed

control of multi-agent networks, consensus over multi-agent

networks has been studied extensively. The main objective

of consensus is to design distributed algorithms such that a

group of agents reach an agreement on some state of interest.

The study of consensus and its extensions can be roughly

categorized as leaderless consensus, consensus tracking, and

containment control based on the number of leaders involved

in a team of networked agents. Leaderless consensus refers

to the agreement of a group of agents on some state which is

not specified beforehand. Leaderless consensus has been in-

vestigated under different scenarios, including deterministic

interaction setting [1]–[3], stochastic interaction setting [4]–

[6], and finite-time convergence [7]–[9]. Consensus tracking

refers to the case where a group of agents tracks a time-

varying leader’s state. Consensus tracking has also been

investigated under different scenarios, including continuous-

time setting [10], [11], discrete-time setting [12], and finite-

time convergence [13], [14]. Containment control refers to

the convergence of some agents, designated as followers, into

the minimal geometric space formed by the other agents, des-

ignated as leaders. Containment control is mainly studied for

single-integrator kinematics [15], [16] and double-integrator

dynamics [17]. In the aforementioned papers, consensus is
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studied either when there is no leader or when the leaders’

states are some known external signals.

When each agent has its own reference state driven by an

external signal, the authors in [18] study the dynamic average

consensus problem where all agents reach an agreement on

the average of all the reference states. When the reference

states have steady-state values, a dynamic average consensus

algorithm is proposed and analyzed by using a frequency-

domain approach. In [19], two dynamic average consensus

algorithms, i.e., proportional-like (P-like) and proportional-

and-integral-like (PI-like) algorithms, are proposed. In par-

ticular, the PI-like algorithm is efficient when the reference

states are constant. However, when the reference states are

varying, accurate average dynamic consensus cannot be guar-

anteed. In [20], the authors study second-order consensus of

multi-agent systems with inherent nonlinear dynamics under

a directed fixed interaction graph. Although the nonlinear

dynamics can be considered external signals, the nonlinear

dynamics in [20] are not necessarily bounded while the

external signals in [18], [19] are assumed to be bounded.

In this paper, we study the finite-time consensus problem

for multi-agent networks with inherent nonlinear dynamics

where each agent is driven by a nonlinear term based on

its state under an undirected interaction graph. Although

finite-time consensus and consensus with inherent nonlinear

dynamics have been studied previously, finite-time consensus

with inherent nonlinear dynamics has not been investigated

yet. First, we propose two nonlinear algorithms to guarantee

finite-time consensus with inherent nonlinear dynamics. We

then present a general comparison lemma which serves as the

main tool used in the following stability analysis. The general

comparison lemma provides an important tool in the stability

analysis of linear/nonlinear closed-loop systems by making

use of known results in linear/nonlinear systems. With the

general comparison lemma, the two nonlinear algorithms are

shown to guarantee finite-time consensus by comparing the

original closed-loop systems with one or more predesigned

closed-loop systems that can guarantee finite-time consensus.

II. PRELIMINARIES

A. Graph Theory Notions

For a team of n agents, we model the interaction among

the n agents by an undirected graph G = (V ,W), where

V = {v1, v2, · · · , vn} and W ⊆ V2 represent, respectively,

the agent set and the edge set. Each edge denoted as (vi, vj)
means that agents i and j can obtain information from each

other. That is, vi and vj are neighbors of each other. A path

is a sequence of edges of the form (v1, v2), (v2, v3), · · · ,
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where vi ∈ V . An undirected graph is connected if there is

an undirected path between every pair of distinct agents.

Two matrices are frequently used to represent the inter-

action graph: the adjacency matrix A = [aij ] ∈ R
n×n with

aij > 0 if (vj , vi) ∈ W and aij = 0 otherwise, and the

Laplacian matrix L = [ℓij ] ∈ R
n×n with ℓii =

∑n
j=1,j 6=i aij

and ℓij = −aij , i 6= j. In particular, we let that aii =
0, i = 1, · · · , n, (i.e., agent i is not a neighbor of itself) and

aij = aji (i.e., A and L are symmetric). It is straightforward

to verify that L is symmetric semi-definite and L has at least

one zero eigenvalue with a corresponding left eigenvector

1
T
n and a corresponding right eigenvector 1n, where 1n is

an n× 1 all-one column vector.

B. Notations

We use R to denote the set of real number. 0n ∈ R
n

is used to denote the n × 1 all-zero column vector. In ∈
R

n×n is used to denote the identity matrix. We use sgn(·) to

denote the signum function. Define sig(x)α = sgn(x) |x|α.

Let f : [0,∞) 7→ J ⊆ R
n be a continuous function. The

upper right-hand derivative of f(t) is given by D+f(t) =
lim suph→0+

1
h
[f(t+ h)− f(t)].

III. FINITE-TIME CONSENSUS WITH INHERENT

NONLINEAR DYNAMICS

Consider a group of n agents with dynamics given by

ṙi = f(t, ri) + ui, i = 1, · · · , n, (1)

where ri ∈ R is the state of the ith agent, f(t, ri) ∈ R

is the inherent nonlinear dynamics for the ith agent, and

ui ∈ R is the control input for the ith agent. Note that each

agent is driven by a nonlinear term f(t, ri). Here we assume

that |f(t, ri)− f(t, rj)| ≤ γ |ri − rj |, where γ is a known

positive constant.

The objective here is to design ui such that∣∣∣ri(t)− 1
n

∑n
j=1 rj(t)

∣∣∣ → 0 in finite time. That is, all

agents’ states converge to the average of all rj(t) in finite

time. We propose the following two nonlinear finite-time

consensus algorithms for (1) as

ui = −β

n∑

j=1

aij(t)sgn(ri − rj), (2)

ui = −β

n∑

j=1

aij(t)sig(ri − rj)
α(|ri−rj |), (3)

where β is a positive constant, aij(t) is the (i, j)th entry

of the adjacency matrix A(t) characterizing the interaction

among the n agents at time t, and α(|ri − rj |) satisfies that

α(|ri − rj |)

{
= α⋆ ∈ (0, 1), 0 ≤ |ri − rj | < 1,
= 1, |ri − rj | ≥ 1,

where α⋆ is a positive constant. Note that the existence of the

solution to (1) using (2) (respectively, (3)) can be guaranteed

by Proposition 3 in [21].

We assume that the adjacency matrix A(t) is constant for

t ∈ [ti, ti+1) and switches at time ti+1, i = 0, 1, · · · . Let

Gi, Ai, and Li denote, respectively, the directed graph, the

adjacency matrix, and the Laplacian matrix associated with

the n agents for t ∈ [ti, ti+1). We assume that ti+1−ti ≥ tL,

where tL is a positive constant. We also assume that each

nonzero and hence positive entry of Ai has a lower bound a

and an upper bound a, where a and a are positive constants.

A. Stability Analysis for Algorithm (2)

In this subsection, we analyze the stability of (1) when

using (2). Before moving on, we need the following lemmas.

Lemma 3.1: [22, Theorem 3.5] Let f(t, x, λ) be continu-

ous in (t, x, λ) and locally Lipschitz in x (uniformly in t and

λ) on [t0, t1]×J×{‖λ− λ0‖ ≤ c}, where J ⊂ R
n is an open

connected set. Let y(t, λ0) be a solution of ẋ = f(t, x, λ0)
with y(t0, λ0) = y0 ∈ J . Suppose that y(t, λ0) is defined

and belongs to J for all t ∈ [t0, t1]. Then, given ǫ > 0, there

is δ > 0 such that if ‖z0 − y0‖ < δ and ‖λ− λ0‖ < δ,

then there is a unique solution z(t, λ) of ẋ = f(t, x, λ)
defined on [t0, t1], with z(t0, λ) = z0, and z(t, λ) satisfies

‖z(t, λ)− y(t, λ0)‖ < ǫ for all t ∈ [t0, t1].
With Lemma 3.1, we next present the comparison lemmas

for vector differential equations.

Lemma 3.2: Consider the following vector differential

equation

ż = f(t, z), z(t0) = µ0,

where z = [z1, · · · , zp]T ∈ R
p, f(t, z) =

[f1(t, z), · · · , fp(t, z)]T is defined such that fi(t, z), i =
1, · · · , p, is continuous in t and locally Lipschitz in

zi, i = 1, · · · , p, for all t > 0 and all z ∈ J ⊂ R
p. Let

[t0, T ) (T could be infinity) be the maximal interval of

existence of the solution z, and suppose that z ∈ J for all

t ∈ [t0, T ). Let ω ∈ R
p be a continuous function whose

upper right-hand derivative D+ω satisfies the inequality

D+ω ≤ f(t, ω), ω(t0) ≤ µ0,

where ω ∈ J for all t ∈ [t0, T ). Then ω(t) ≤ z(t) for all

t ∈ [t0, T ).
Proof: The proof is motivated by that of Lemma 3.4 in [22].

Consider the following vector differential equation

ẋ = f(t, x) + λ, x(t0) = z(t0) (4)

for i = 1, · · · , p, where x ∈ R
p and λ = [λ1, · · · , λp]

T is

a positive constant vector. For t ∈ [t0, t1], where t1 > t0, it

follows from Lemma 3.1 that for any ǫ > 0, there is δ > 0
such that if ‖λ‖ < δ, (4) has a unique solution ξ(t, λ) defined

on [t0, t1] and ‖ξ(t, λ)− z(t)‖ < ǫ, ∀t ∈ [t0, t1]. Therefore,

we have that

‖ξi(t, λ) − zi(t)‖ < ǫ, ∀t ∈ [t0, t1]. (5)

Claim 1: ωi(t) ≤ ξi(t, λ) for all t ∈ [t0, t1]. We prove

this by contradiction. Assume that there exist times a, b ∈
(t0, t1] such that ωi(a) = ξi(a, λ) and ωi(t) > ξi(t, λ) for

a < t ≤ b. Accordingly, we have that ωi(t) − ωi(a) >

ξi(t, λ)−ξi(a, λ), ∀t ∈ (a, b], which implies that D+ωi(a) ≥
D+ξi(a, λ) = ξ̇i(a, ξ) = fi(a, ξ) + λi > fi(a, ξ). This

contradicts the inequality D+ω ≤ f(t, ω).
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Claim 2: ωi(t) ≤ zi(t) for all t ∈ [t0, t1]. Again, we

prove this by contradiction. Assume that there exists a ∈
(t0, t1] such that ωi(a) > zi(a). Letting ǫ = ωi(a)−zi(a)

2 and

using (5), we obtain that

ωi(a)− ξi(a, λ) =ωi(a)− zi(a) + zi(a)− ξi(a, λ)

=2ǫ+ zi(a)− ξi(a, λ) ≥ ǫ,

which contradicts the statement of Claim 1.

Lemma 3.3: Suppose that F (t, z) : [t0, T ) × J ⊆ R
p 7→

R
q, is a continuous function satisfying that D+F = f(t, z),

where z ∈ R
p, and f(t, z) is piecewise continuous in t and

is locally Lipschitz in z when f(t, z) is continuous at t.

Let G(t, ω) : [t0, T ) × J ⊆ R
p 7→ R

q be a continuous

function whose upper right-hand derivative D+G satisfies

the differential inequality

D+G ≤ f(t, ω), G[t0, ω(t0)] ≤ F [t0, z(t0)].

Then G(t) ≤ F (t) for all t ∈ [t0, T ).
Proof: The proof of the lemma can be divided into three

cases:

Case 1: q = p. Without loss of generality, assume that

f(t, z) is continuous in t for t ∈ [ti, ti+1), i = 0, 1, . . . . For

t ∈ [t0, t1), consider a new vector differential equation given

by

ẋ = f(t, x), x(t0) = F [t0, z(t0)]. (6)

Because D+F = f(t, z) ≤ f(t, z) and F (t0) = x(t0) ≤
x(t0) are trivially satisfied, it follows from Lemma 3.2 that

F (t) ≤ x(t) for all t ∈ [t0, t1). Noting also that D+(−F ) =
−f(t, z) ≤ −f(t, z) and −F (t0) = −x(t0) ≤ −x(t0) are

trivially satisfied, it follows from Lemma 3.2 that −F (t) ≤
−x(t) for all t ∈ [t0, t1). Combining the two arguments

shows that F (t) = x(t) for all t ∈ [t0, t1). Note that

D+G ≤ f(t, ω) and G[t0, z(t0)] ≤ F [t0, ω(t0)] = x(t0).
It thus follows from Lemma 3.2 that G(t) ≤ x(t) for all

t ∈ [t0, t1). Because F (t) = x(t) for all t ∈ [t0, t1), it

follows that G(t) ≤ F (t) for all t ∈ [t0, t1). Because F (t)
is a continuous function, by employing a similar analysis for

t ∈ [ti, ti+1), i = 1, . . . , it can be shown that G(t) ≤ F (t)
for all t ∈ [ti, ti+1), i = 1, . . . . Therefore G(t) ≤ F (t) for

all t ∈ [t0, T ).

Case 2: 1 ≤ q < p. Define F̃
△
= [FT ,1T

p−q]
T and

G̃
△
= [GT ,1T

p−q]
T . By letting F̃ and G̃ play the role of,

respectively, F and G, it follows from a similar analysis

to that of the case when q = p that G̃(t) ≤ F̃ (t) for

all t ∈ [t0, T ), which implies that G(t) ≤ F (t) for all

t ∈ [t0, T ).
Case 3: q > p. Note that there exists a positive integer

m such that q = mp + qd, where 0 ≤ qd < p is a

nonnegative integer. When qd = 0, G and F can be written

as G = [GT
1 , . . . , G

T
m]T and F = [FT

1 , . . . , FT
m]T , where

Gi ∈ R
p and Fi ∈ R

p for all i = 1, . . . ,m. By applying

the result of Case 1 repeatedly, we have Gi(t) ≤ Fi(t), ∀i =
1, . . . ,m, for all t ∈ [t0, T ). This implies G(t) ≤ F (t) for

all t ∈ [t0, T ). When qd 6= 0, G and F can be written as G =
[GT

1 , . . . , G
T
m, GT

m+1]
T and F = [FT

1 , . . . , FT
m, FT

m+1]
T ,

where Gi ∈ R
p and Fi ∈ R

p for all i = 1, . . . ,m, and

Gm+1 ∈ R
qd and Fm+1 ∈ R

qd . By applying the result

of Case 1 repeatedly, we also have Gi(t) ≤ Fi(t), ∀i =
1, . . . ,m, for all t ∈ [t0, T ). By applying the result of Case

2, we have Gm+1(t) ≤ Fm+1(t) for all t ∈ [t0, T ). This

implies G(t) ≤ F (t) for all t ∈ [t0, T ).
Combining the previous cases completes the proof.

Theorem 3.1: Assume that the interaction graph Gi, i =
0, 1, . . . , is undirected and connected. Using (2) for (1),

|ri(t)− rj(t)| → 0, ∀i, j = 1, . . . , n, in finite time if β >
2(n−1)γ maxi|ri(0)−r(0)|

na
, where

r(t)
△
=

1

n

n∑

i=1

ri(t). (7)

Proof: Define δi
△
= ri − r. We can get

δ̇i = ṙi − ṙ

= −β

n∑

j=1

aij(t)sgn(δi − δj)

−
1

n

n∑

j=1,j 6=i

[f(t, δj + r)− f(t, δi + r)],

where we have used the fact that
∑n

j=1 uj = 0 due to the

symmetry of A(t) to derive the last equality. Define δ
△
=

[δ1, . . . , δn]
T . Consider the nonnegative function G(t, δ) =

maxi |δi|. Then the upper right-hand derivative of G(t, δ)
can be derived as

D+G(t, δ) = lim sup
h→0+

1

h
{G[t+ h, δ(t+ h)]−G[t, δ(t)]}

= lim sup
h→0+

1

h

[
max

i
|δi(t+ h)| −max

i
|δi(t)|

]
. (8)

We next study D+G(t, δ) in the following three cases:

Case 1: maxi |δi(t)| = maxi δi(t) > 0 (i.e., there exists

at least one agent j such that δj(t) > 0 and maxi |δi(t)| =
δj(t), and |mini δi(t)| < maxi |δi(t)|) for some time interval

t ∈ [t, t], where t < t. In this case, it follows from (8) that

D+G(t, δ) = max
i∈arg maxℓ δℓ

D+δi

≤ max
i∈arg maxℓ δℓ

{
− β

n∑

j=1

aij(t)sgn(ri − rj)

−
1

n
γ

n∑

j=1,j 6=i

(rj − ri)

}

= max
i∈arg maxℓ δℓ

{
− β

n∑

j=1

aij(t)sgn(δi − δj)

−
1

n
γ

n∑

j=1,j 6=i

(δj − δi)

}
, (9)

Define ςi
△
= −β

∑n
j=1 aij(t)sgn(δi−δj)−

1
n
γ
∑n

j=1,j 6=i(δj−
δi), i ∈ argmaxℓ δℓ. For i ∈ argmaxℓ δℓ and

t ∈ [t, t], when β >
2(n−1)γ maxi|ri(t)−r(t)|

na
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≥
∣∣∣− 1

n
γ
∑n

j=1,j 6=i(δj − δi)
∣∣∣, we have the following

two statements:

1. D+G(t, δ) ≤ 0 if there exists j ∈ Ni(t) such that

δj(t) 6= δi(t);
2. D+G(t, δ) ≤ 0 if δj(t) = δi(t), ∀j ∈ Ni(t).

Note that Statement 1 holds apparently because D+δi ≤ ςi
from (9), δj 6= δi implies that δj < δi, and δj < δi implies

that ςi < 0. We next briefly prove Statement 2. We prove

this statement by contradiction. Assume that D+G(t, δ) ≤ 0
does not hold for t ∈ [t, t] (i.e., δi(t) increases for some

interval t ∈ [t1, t2], where t1 and t2 are positive constants

satisfying t ≤ t1 < t2 ≤ t). Because δj(t) = δi(t), ∀j ∈
Ni(t), for t ∈ [t1, t2], it follows from Statement 1 and the

assumption that δi(t) increases for some interval t ∈ [t1, t2]
that δk(t) = δj(t), ∀k ∈ Nj(t) for t ∈ [t1, t2]. Repeating

the analysis shows that δℓ(t) = δi(t), ℓ = 1, . . . , n, for

t ∈ [t1, t2] because the interaction graph Gi, i = 0, 1, . . . ,
is undirected and connected. Note from (9) that D+δi ≤ ςi
and that ςi = 0 when δℓ(t) = δi(t), ℓ = 1, . . . , n. It follows

that D+δi ≤ 0, which implies that δi(t) is nonincreasing

for t ∈ [t1, t2]. This contradicts the assumption that δi(t)
increases for some interval t ∈ [t1, t2]. Note also that δi(t)
is continuous with respect to t. Therefore, Statement 2 holds.

Combining Statements 1 and 2 shows that D+G(t, δ) ≤ 0
for t ∈ [t, t], which implies that D+G(t, δ) ≤ 0 for t ∈ [t, t]

when β >
2(n−1)γ maxi|ri(t)−r(t)|

na
.

Case 2: maxi |δi(t)| = −mini δi(t) > 0 (i.e., there exists at

least one agent h such that δh(t) < 0 and maxi |δi(t)| =
−δh(t), and |maxi δi(t)| < maxi |δi(t)|) for some time

interval t ∈ [t, t], where t < t. In this case, it follows from (8)

that

D+G(t, δ) = max
i∈argminℓ δℓ

−D+δi

≤ max
i∈arg minℓ δℓ

{
β

n∑

j=1

aij(t)sgn(δi − δj)

+
1

n
γ

n∑

j=1,j 6=i

(δj − δi)

}
.

By following a similar analysis to that of Case 1, we

can get that D+G(t, δ) ≤ 0 for t ∈ [t, t] when β >
2(n−1)γ maxi|ri(t)−r(t)|

na
.

Case 3: maxi |δi(t)| = maxi δi(t) = −mini δi(t) > 0 (i.e.,

there exist at least one agent, labeled as j, such that δj(t) > 0
and maxi |δi(t)| = δj(t) and at least one agent, labeled as

h, such that δh(t) < 0 and maxi |δi(t)| = −δh(t)) for some

time interval t ∈ [t, t], where t < t. In this case, it can be

computed that

D+G(t, δ) = max
i∈argmaxℓ δℓ,j∈arg minj δj

{D+δi,−D+δj}.

By following the analysis in Cases 1 and 2, it fol-

lows that D+G(t, δ) ≤ 0 for t ∈ [t, t] when β >
2(n−1)γ maxi|ri(t)−r(t)|

na
.

Combining the three cases shows that D+G(t, δ) ≤ 0 if

β >
2(n−1)γmaxi|ri(t)−r(t)|

na
. Note that D+G(t, δ) ≤ 0 im-

plies that
2(n−1)γ maxi|ri(t)−r(t)|

na
≤ 2(n−1)γmaxi|ri(0)−r(0)|

na
.

Therefore, D+G(t, δ) ≤ 0 if β >
2(n−1)γmaxi|ri(0)−r(0)|

na
.

Define k1
△
= 2(n−1)γ maxi|ri(0)−r(0)|

na
. We next study

the relationship between
∑n

j=1 aij(t)sgn(δi − δj) and

sgn
[∑n

j=1 aij(t)(δi − δj)
]

and then rewrite D+G(t, δ).

1© maxi |δi| = maxi δi. When δi = maxi |δi| and

δj = δi, ∀j ∈ Ni,
∑n

j=1 aij(t)sgn(δi − δj) = 0 =

sgn
[∑n

j=1 aij(t)(δi − δj)
]
. When δi = maxi |δi| and there

exists at least one j ∈ Ni such that δj < δi, it follows that

n∑

j=1

aij(t)sgn(δi − δj) =
∑

j∈Ni

aij(t)sgn(δi − δj)

≥ min
{j|δj<δi,j∈Ni}

aij(t)

≥ asgn




n∑

j=1

aij(t)(δi − δj)


 , (10)

where we have used the fact that min{j|δj<δi,j∈Ni} aij(t) ≥
a. It can be further computed from (9) that

D+G(t, δ) ≤ max
i∈arg maxℓ δℓ



k1 − β

n∑

j=1

aij(t)sgn(δi − δj)





≤ max
i∈arg maxℓ δℓ



k1 − βasgn




n∑

j=1

aij(t)(δi − δj)







 .

(11)

2© maxi |δi| = −mini δi. When δi = −maxi |δi|, by

following a similar analysis to that of Case 1, it can be

derived that

n∑

j=1

aij(t)sgn(δi − δj) ≤ asgn




n∑

j=1

aij(t)(δi − δj)


 . (12)

It can also be computed that

D+G(t, δ) ≤ max
i∈arg minℓ δℓ




β

n∑

j=1

aij(t)sgn(δi − δj)− k1






≤ max
i∈argminℓ δℓ




βasgn




n∑

j=1

aij(t)(δi − δj)


− k1




 .

(13)

3© maxi |δi| = maxi δi = −mini δi. D+G(t, δ) satisfies

both (11) and (13).

Consider the closed-loop dynamics given by

ξ̇i = −βasgn




n∑

j=1

aij(t)(ξi − ξj)


+ ν, i = 1, . . . , n,

(14)

where ξi ∈ R, ξi(0) = δi(0), and ν = k1. Define F (t, ξ)
△
=

maxi |ξi|, where ξ
△
= [ξ1, . . . , ξn]

T . We also study D+F (t, ξ)
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in three cases:

1© maxi |ξi| = maxi ξi. In this case, it can be computed that

D+F (t, ξ) = max
i∈argmaxℓ ξℓ

D+ξi

= max
i∈arg maxℓ ξℓ




−βasgn




n∑

j=1

aij(t)(ξi − ξj)


+ k1




 .

(15)

2© maxi |ξi| = −mini ξi. In this case, it can be computed

that

D+F (t, ξ) = max
i∈arg minℓ ξℓ

−D+ξi

= max
i∈argminℓ ξℓ



βasgn




n∑

j=1

aij(t)(ξi − ξj)



− k1



 .

(16)

3© maxi |ξi| = maxi ξi = −mini ξi. In this case, it can be

computed that D+F (t, δ) satisfies (15) and (16).

Note that D+F (t, ξ) is piecewise continuous in t and

is locally Lipschitz in ξi when D+F (t, ξ) is continuous

at t. Note also that D+G(t, δ) ≤ D+F (t, δ). Because

δ(0) = ξ(0) (i.e., G[0, δ(0)] = F [0, δ(0)]), it follows from

Lemma 3.3 that G(t) ≤ F (t) for all t ≥ 0. Given (14),

if βa > k1 and the directed graph Gi, i = 0, 1, . . . , has

a directed spanning tree, then it follows from Theorem 3.1

in [13] that F (t) → 0 in finite time. Note from the definition

of G(t) that G(t) ≥ 0 for all t ≥ 0. It then follows from

the fact that G(t) ≤ F (t) that G(t) → 0 in finite time.

Combining with the definition of G(t) implies that δi(t) → 0
in finite time. That is, ‖ri(t)− rj(t)‖ → 0, ∀i = 1, . . . , n,
in finite time.

Corollary 3.2: Let f(t, ri) in (2) be given by fi(t) and

|fi(t)| < γ. Assume that the interaction graph Gi, i =
0, 1, . . . , is undirected and connected. Using (2) for (1),

|ri(t)− rj(t)| → 0 in finite time if β >
2(n−1)γ

na
.

Proof: When |fi(t)| < γ, it follows that∣∣∣ 1n
∑n

j=1,j 6=i[fi(t)− fj(t)]
∣∣∣ ≤ 2(n−1)γ

n
. The proof follows

that of Theorem 3.1 by letting k1 = 2(n−1)γ
n

.

B. Stability Analysis for Algorithm (3)

In this subsection, we analyze the stability of (1) when

using (3). Before stating the main result, we need the

following lemma.

Lemma 3.4: [9] For the closed-loop system given by

ẋi = −ǫ

n∑

j=1

aij(t)sig(xi − xj)
α, (17)

where xi ∈ R, ǫ is any positive constant, 0 < α < 1, and

aij(t) is the (i, j)th entry of the adjacency matrix A(t) at

time t. Assume that the interaction graph Gi, i = 0, 1, · · · , is

undirected and connected. Then xi(t) − xj(t) → 0 in finite

time.

We next present the main result for (1) using (3).

Theorem 3.3: Assume that the interaction graph Gi, i =
0, 1, . . . , is undirected and connected. Using (3) for (1),

|ri(t)− rj(t)| → 0 in finite time if β ≥ γ
λ
+ ǫ, where

λ = min infi=0,1,...{λ(Li)|λ(Li) 6= 0} and ǫ is any positive

constant.

Proof: Define δi
△
= ri−r, where r is defined in (7). We have

δ̇i = f(t, ri) + ui − ṙd

= f(t, ri)− β

n∑

j=1

aij(t)sig(ri − rj)
α(|ri − rj |)

−
1

n

n∑

j=1

f(t, rj)

= −β

n∑

j=1

aij(t)sig(δi − δj)
α(|δi−δj |)

−
1

n

n∑

j=1,j 6=i

[f(t, δj + r)− f(t, δi + r)].

Note that |ri(t)− rj(t)| → 0 in finite time if and only

if maxi |δi| → 0 in finite time. In order to show that

maxi |δi| → 0 in finite time, we construct the first closed-

loop system given by

ξ̇i = −ǫ

n∑

j=1

aij(t)sig(ξi − ξj)
α(|ξi−ξj |)

− β

n∑

j=1

aij(t)(ξi − ξj)−
1

n

n∑

j=1,j 6=i

γ(ξj − ξi), (18)

where ξi ∈ R, ξi(0) = δi(0), and β
△
= γ

λ
. Define G1(t, δ)

△
=

maxi |δi| and F1(t, ξ)
△
= maxi |ξi|, where δ

△
= [δ1, . . . , δn]

T

and ξ
△
= [ξ1, . . . , ξn]

T . It follows a similar analysis in the

proof of Theorem 3.1 that G1(t) ≤ F1(t) for all t ≥ 0
under the condition of the theorem. Therefore, to show that

G1(t) → 0 in finite time, it is sufficient to show that F1(t) →
0 in finite time.

Note that F1(t) → 0 in finite time if and only if ξT ξ → 0
in finite time. To show that ξT ξ → 0 in finite time, we

construct the second closed-loop system given by

ẋi = −ǫ

n∑

j=1

aij(t)sig(xi − xj)
α⋆

, (19)

where xi ∈ R and xi(0) = ξi(0). Define x
△
= [x1, . . . , xn]

T .

Consider the nonnegative function F2(t, x)
△
= 1

2x
Tx. The

upper right-hand derivative of F2(t, x) is given by

D+F2(t, x) = xT ẋ

= −ǫ

n∑

i=1

n∑

j=1

aij(t) |xi − xj |
α⋆+1

.

Consider the nonnegative function G2(t, ξ)
△
= 1

2ξ
T ξ. Then

the upper right-hand derivative of G2(t, ξ) is given by

D+G2(t, ξ) = −ǫ

n∑

i=1

n∑

j=1

aij(t) |ξi − ξj |
α(|ξi−ξj |)+1

− βξTL(t)ξ +
γ

n
ξT (nIn − 1n1

T
n )ξ.
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Let ξ = ξ‖ + ξ⊥, where ξ‖ is the projection of ξ along the

vector 1n and ξ⊥ is the projection of ξ in the plane that is

perpendicular to the vector 1n. Note that L(t)1n = 0n and

1
T
nL(t) = 0

T
n . It follows that

− βξTL(t)ξ +
γ

n
ξT (nIn − 1n1

T
n )ξ

=− β(ξ‖ + ξ⊥)TL(t)(ξ‖ + ξ⊥)

+
γ

n
(ξ‖ + ξ⊥)T (nIn − 1n1

T
n )(ξ

‖ + ξ⊥)

=− β(ξ⊥)TL(t)ξ⊥ +
γ

n
(ξ⊥)T (nIn − 1n1

T
n )ξ

⊥

≤− βλ(ξ⊥)T ξ⊥ + λmax(nIn − 1n1
T
n )

γ

n
(ξ⊥)T ξ⊥

=− βλ(ξ⊥)T ξ⊥ + γ(ξ⊥)T ξ⊥ = 0,

where we have used Theorem 4.2.2 in [23] to derive the

inequality. Therefore, we have

D+G2(t, ξ) = −ǫ

n∑

i=1

n∑

j=1

aij(t) |ξi − ξj |
α(|ξi−ξj |)+1

− βξTL(t)ξ +
γ

n
ξT (nIn − 1n1

T
n )ξ

≤ −ǫ

n∑

i=1

n∑

j=1

aij(t) |ξi − ξj |
α(|ξi−ξj |)+1

.

It follows from the definition of α(·) that D+G2(t, ξ) ≤
D+F2(t, ξ). Because G2(0) = F2(0), it follows from

Lemma 3.3 that G2(t) ≤ F2(t) for all t ≥ 0. Therefore, to

show that G2(t) → 0 in finite time, it is sufficient to show

that F2(t) → 0 in finite time. From Lemma 3.4, because

0 < α⋆ < 1, yi−yj → 0 in finite time. Therefore, F2(t) → 0
in finite time. Combining with the fact that G2(t) ≤ F2(t)
shows that G2(t) → 0 in finite time. For (18), G2(t) → 0 in

finite time implies that F1(t) → 0 in finite time. Combining

with the fact G1(t) ≤ F1(t) shows that G1(t) → 0 in finite

time. That is, consensus is reached in finite time.

Remark 3.4: Although both (2) and (3) can be used to

solve finite-time consensus for (1), there are fundamental

differences between the two algorithms. On one hand, (2) can

be applied to the case when the inherent nonlinear dynamics

is bounded (see Corollary 3.2) while (3), in general, requires

that the inherent nonlinear dynamics is locally Lipschitz. On

the other hand, the control gain in (2) depends on the initial

states of the agents while the control gain in (3) does not

relies on the initial states of the agents. Therefore, both al-

gorithms have unique features and thus deserve investigation

in this paper.

IV. CONCLUSION

In this paper, we studied finite-time consensus of multi-

agent networks with inherent nonlinear dynamics where each

agent is driven by a nonlinear term based on its state. We

proposed two distributed nonlinear algorithms to solve finite-

time consensus with nonlinear dynamics. We then proposed a

general comparison lemma which was used as the main tool

in the stability analysis. With the general comparison lemma,

we analyzed the stability of the closed-loop system using

the two distributed nonlinear algorithms by comparing the

original closed-loop systems with one or more predesigned

closed-loop systems that can guarantee finite-time consensus.
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