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Abstract— Detection of gear cracks from vibration data
is a difficult task. This paper investigates an alternative to
the linear predictor residual fault detection based on the
nonlinear adaptive control system concept of frequency esti-
mators. The frequency estimator model takes advantage of
the sinusoidal nature of vibration and adapts the system
model during operation. The low-computational requirements,
no-priori knowledge, sinusoidal-based prediction, and on-line
model adaption makes this model ideal for on-line gear crack
fault detection. Performance is evaluated through both synthetic
and experimental data while comparing to the autoregressive

linear predictor model.

I. INTRODUCTION

Gear crack faults in rotating machinery are a serious prob-

lem which can cause possible machine catastrophic failure

and potential loss of life [1]. Recently in vibration-based

fault detection there has been a trend in the field towards

detecting these faults through vibration measurements using

autoregressive (AR) matched model prediction error signals

[2], [3], [4]. AR models are linear models matched to the

vibration signal under no-fault conditions, and the model is

applied to predict the next vibration sample and compared to

the actually measured sample. This error in prediction, the

residual, is well-suited to extract the impulse-like features

associated with gear crack vibration.

Although a vibration signal is well-modelled as a linear

system, such as an autoregressive model, due to the nature

of vibration being sinusoidal it can be improved through

prediction based on a sinusoid restriction [5]. Recently,

adaptive system theory has been applied towards real-time

estimation of multiple frequency components of signals [6].

This frequency estimator (FE) is in the form of an adaptive

state-space model and forms a nonlinear system. This model

is not only able to predict future samples based on a sum

of sinusoids model, but also adapts the sinusoidal model

during operation. This results in the ability to predict samples

on-line even with time-variant sinusoid components and

no priori-knowledge requirements such as the data fitting

required in the AR approach. Despite the relatively complex

operation of the FE method, this paper demonstrates that it

is of comparable calculations-per-sample to a low order AR

algorithm. Clearly the FE model is well-suited to the nature

of vibration signals and poses application in improving the

field of gear-crack fault detection and other fields.
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This paper investigates the application the adaptive system

concept of FE for the detection of gear-crack faults in

rotating machinery. Firstly, a discrete-time (DT) version of

the continuous-time N-component FE proposed by M. Hou

[6] is derived. Next a novel amplitude-invariant adaptive

identifier is proposed. Finally, general model parameters are

selected for a 2 and 3 component FE using a non-linear

least-squares (LSQ) approach. For performance evaluation,

the standard AR predictive model is compared to the FE

predictive model in complexity, simulation performance, and

experimental performance on a controlled gear-crack.

II. AUTOREGRESSIVE (AR) RESIDUAL METHOD

Towards detection of gear tooth faults in on-line vibration

data, the autoregressive (AR) method is considered very

effective due to the low computational requirements and

little priori knowledge requirements [3]. The AR model is

a linear time-invariant system of model order M . The AR

model parameters are estimated using the windowless Burg’s

lattice-based approach.

The AR method first involves selecting a model order for

the linear model. Similar to other gear crack applications [2],

[3], [4], the minimum Akaike Information Criterion (AIC)

[7] is applied to select the optimal model order. The AIC

simplified for model comparison is calculated as

AIC = 2n+K ln(RSS),

where n and K refer to the number of estimated parameters,

and number of samples respectively. RSS refers to the

residual sum of squares of the data fit, resulting in a balance

between minimizing the prediction error while penalizing a

high model order. For the duration of this paper, the AIC is

calculated for model orders of M = 1, 6, 11, ..., 146, and the

optimal model order is selected as the order corresponding

to the minimum AIC.

Figure 1 illustrates the prediction residual method used

for detecting gear cracks. The AR model is fit to the data

under no-fault condition, and the AR model is then used to

compare the predicted vibration level of each sample with

the actual vibration level of each sample during machine

operation. Because gear-crack faults are known to develop

as impulse-like disturbances, ideally this residual signal will

resemble an impulse repeating every gear rotation during a

gear crack.

This prediction residual can then be further processed for

fault detection.
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Fig. 2. N-component DT system model

III. N-COMPONENT FREQUENCY ESTIMATOR (FE)

Based on the N-component FE model by M. Hou [6]

for continuous-time, a low complexity discrete-time sample

predictor is first derived. The derivation starts from the zero-

order hold discretized model of the sum of sinusoid system

for N-components, Figure 2.

Forming the transfer function for each sinusoidal compo-

nent,

Yi(z) =
N(z)

Di(z)
U(z) =

(z + 1)2

z2 − 2 cos (Tωi)z + 1
U(z),

the complete transfer function follows as

Y (z) = U(z)

N
∑

i=1

Yi(z) =
P (z)

Q(z)
U(z),

where P (z) and Q(z) refer to the numerator and denomina-

tor polynomial of the complete transfer function,

Q(z) =

N
∏

i=1

(z2 − 2 cos (Tωi)z + 1)

= z2N + θN−1z
2N−1 + θN−2z

2N−2 + · · ·

+ θ0z
N + · · ·+ θN−2z

2 + θN−1z + 1, (1)

and θi’s refer to the resulting expanded polynomial coeffi-

cients. By introducing a Hurwitz polynomial,

α(z) = z2N + α2N−1z
2N−1 + · · ·+ α1z + α0

we rewrite the transfer function as

Y (z) =
P (z)

α(z) + (Q(z)− α(z))
U(z).

Rearranging we have,

Y (z) =
α(z)−Q(z)

α(z)
Y (z) +

P (z)

α(z)
U(z)

and taking U(z) = 0 we have

Y (z) =
α(z)−Q(z)

α(z)
Y (z)

with estimator state-space realization of

x[n+ 1] = Ax[n] +By[n]

ŷ[n] = Ĉx[n]
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, Ĉ = αT − θ̂TV

α =















αN−1

αN−2

...

α1

α0 − 1















, θ̂ =











θ̂N−1

θ̂N−2

...

θ̂0











V =











1 0 · · · 0 · · · 0 1 0
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where the system output, ŷ[n], is the signal estimation and θ̂
corresponds to the estimated frequency components ω̂ by

Equation 1. The parameter α is tunable and controls the

convergence behaviour of the system, and the selection of

these parameters are discussed in Section V. The θ̂ estimates

are adapted according to the residual as described in the

following section.

IV. ADAPTIVE IDENTIFIERS

Updating the frequency estimates, ω̂, is achieved through

updating the related Hurwitz parameters, θ̂. The θ̂ parameter

is updated according to the prediction residual, r[n] =
y[n]− ŷ[n], such that the system converges θ̂ → θ. A simple

adaptive identifier can be formed by simply adjusting θ̂ such

that the residual decreases:

θ̂[n] = θ̂[n− 1]− γV x[n− 1]r[n− 1]

where γ is a tunable scalar parameter controlling the rate

at which θ̂ is adapted. A smaller value will result in a

longer convergence time but is more robust to noise, while a

larger value improves the convergence time but reduces noise

tolerance. One drawback of this possible adaptive identifier

is the amplitude sensitivity. By multiplying the input signal

by a scalar, y[n] = ks[n], we have

x[n+ 1] = Ax[n] +Bks[n]
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x[n+ 1]

k
=

Ax[n]

k
+Bs[n]

kŝ[n] = Ĉx[n]

then redefining x̄[n] = x[n]/k, we have the system

x̄[n+ 1] = Ax̄[n] +Bs[n]

ŝ[n] = (αT − θ̂TV )x̄[n]

θ̂[n] = θ̂[n− 1]− γV kx̄[n− 1](ks[n]− kŝ[n])

clearly resulting in a k2 factor increase in the changes to

θ̂[n] each iteration and in turn resulting in significantly larger

changes to the estimated frequencies ω̂. Ideally, the change

to θ̂[n] should be independent of the signal amplitude such

that the parameter γ does not need to be tuned for each

input signal. By introducing a state-normalization factor to

the adaptive identifier, the amplitude sensitivity issue can be

addressed,

θ̂[n] = θ̂[n− 1]−
γV x[n− 1](y[n− 1]− ŷ[n− 1])

‖x[n− 1]‖2

and following a similar procedure as above with input signal

y[n] = ks[n],

θ̂[n] = θ̂[n− 1]−
γV kx̄[n− 1](ks[n− 1]− kŝ[n− 1])

‖kx̄[n− 1]‖2

= θ̂[n− 1]−
γV x̄[n− 1](s[n− 1]− ŝ[n− 1])

‖x̄[n− 1]‖2

where the change to θ̂[n] is now independent of the input

signal amplitude. This proposed change introduces a singu-

larity at |x[n]| = 0, and the adaptive identifier is slightly

adjusted such that

θ̂[n] = θ̂[n− 1]−∆θ̂[n− 1]

∆θ̂[n] =

{

γV x[n](y[n]−ŷ[n])
‖x[n]‖2 if‖x[n]‖2 > ǫ

0 otherwise

where ǫ is a small positive scalar. Although this simplifies

the model by being amplitude invariant, the selection of

α and γ is still a difficult process due to the non-linear

characteristics of the system. For the rest of the paper only

this FE State-Normalized adaptive identifier is studied, as the

results generalize to any input amplitude. The next section

presents a least-squares minimization approach to selecting

these parameters.

V. LEAST-SQUARES (LSQ) PARAMETER SELECTION

Parameter selection in a non-linear system is a difficult

process. This problem is approached as a minimization

problem where the input parameters, γ and α, are adjusted

to minimize the error in the estimated θ̂[n]. Minimizing the

estimated frequency error, ω̂[n], is not considered due to the

complexity involved with calculating ω̂[n] from θ̂[n]. LSQ

minimization is performed as

min
γ,α

‖fθ‖
2
2

where fθ is defined as the error in θ estimates in K-sample

trajectories for L randomly generated input signals. Each

input signal includes additive white Gaussian noise and N
frequency components with uniformly-distributed frequency

and initial phase. The L input signals are known and their

corresponding correct θ is calculated by Equation 1. This

forms the cost matrix,

fθ =
[

eθ[0] eθ[1] · · · eθ[K − 1]
]

eθ[n] =











θy0
− θ̂y0

[n]

θy1
− θ̂y1

[n]
...

θyL−1
− θ̂yL−1

[n]











used for the LSQ minimization. Minimizing this least-

squares non-linear minimization problem is approached

using the Levenberg-Marquardt with line-searching al-

gorithm [8], [9]. LSQ initial parameters of α =
[

0 0 · · · 0 −1
]T

and γ = 0 are used for the

adaption and simulation initial conditions of x[0] = 0, and

θ̂[0] = 0 are used. Table I indicates the final FE parameter

values after 10 iterations with K = 2000, M = 500, and

additive Gaussian white noise of zero mean and 0.1 standard

deviation.

TABLE I

FINAL VALUES FOR FE PARAMETERS γ AND α BY LSQ MINIMIZATION

N γ α

2 0.522
[

−0.163 0.255 −0.0840 −0.911
]

T

3 1.06
[

0.227 0.834 0.135

0.357 −0.0607 −1.09
]

T

Figure 3 plots the convergence behaviour of θ̂ for the

first four input signals of the 3-component FE after iterative

parameter selection. It can be seen that the estimates typically

converge correctly in a relatively short number of samples.

VI. COMPUTATIONAL REQUIREMENTS

The computational requirements of both the M-order AR

model and the N-component FE is important for implemen-

tation. For the FE, the back-calculation of the ω̂ from θ̂[n]
is not included because this information is not required in

the context of the proposed fault detection. Table II below

indicates the computational requirements of the M-order AR

model and N-component FE using both adaptive identifiers.

All models were implemented in controllable canonical form

and computations per sample were calculated.

For performance comparison purposes, an AR model of

order M = 9 is included in the comparison as it is of similar

complexity to the 3-component FE model.

VII. SIMULATION RESULTS

For validation, a simulated gear-crack vibration signal is

generated with varied levels of fault. The vibration signal

is formed as harmonics of the motor vibration of 60 Hz
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Fig. 3. Convergence of θ estimates for the three-component FE for the
first four input signals each composed of three sinusoidal components at
indicated frequencies.

TABLE II

FLOATING POINT CALCULATIONS REQUIRED FOR EACH SAMPLE OF

PREDICTED OUTPUT AS A FUNCTION OF MODEL ORDER, M, OR NUMBER

OF FREQUENCY COMPONENTS, N.

Method Additions
per sample

Multiplications
per sample

AR 2M − 1 2M
FE Classical 5N − 1 3N + 2

FE State-Normalized 6N − 2 5N + 3

plus fault modelled as time-localized decaying exponential

enveloped sinusoid vibrations repeating at the gear rotational

period. The motor harmonics of 60 Hz, 120 Hz, ..., 360

Hz have amplitudes of 0.5, 0.2, 0.1, 0.02, 0.03, and 0.01

respectively and initial phase of 1.04, 1.82, 6.60, 2.83, 4.08,

and 0.00 rad respectively. Additive white Gaussian noise with

zero mean and 0.001 standard deviation is included. The

disturbance gear crack vibration signal is added to the signal

at a period of 83 milliseconds (12 Hz) and is composed of a

decaying exponential envelope with time constant 2e-3 and

carrier frequency of 360 Hz. Figure 4 plots the simulated

vibration signal for a gear-crack peak disturbance of 0.362

and sampling rate of 10 kHz.

Figure 5 presents the residual results when model-

matching the AR models to the no-fault vibration data,

and applying the FE and resulting AR models to the fault

vibration signal in Figure 4.

Kurtosis is defined as the fourth standardized moment,

k =
E(x− µ)4

σ4

where E() denotes the statistical expectation, x the signal,

µ the signal mean, and σ the signal standard deviation.
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Fig. 4. Simulated gear crack vibration signal and spectrum.
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a) 2-Component FE : kurtosis = 201

b) 3-Component FE : kurtosis = 128

c) 9th Order AR: kurtosis = 147

d) 146th Order AR: kurtosis = 16.7

Fig. 5. Prediction residual and corresponding kurtosis using the a) 2-
component FE, b) 3-component FE, c) 9th order AR, and d) 146th order
AR model.

Kurtosis is a measure of how outlier-prone a signal is,

and is commonly used as a fault indicator in gear-related

faults due to the impulse-like vibration manifestation. The

kurtosis values are analyzed to evaluate the FE and AR

methods’ ability to detect the gear crack fault. Comparing the

fault peak disturbance versus the kurtosis, Figure 6, the 2-

component FE performs the best for higher fault amplitudes

while the 9th order AR model performs the best at small

amplitudes. However, these results vary drastically according

to the composition of the vibration signal and should not be

interpreted as a general performance trend.

VIII. EXPERIMENTAL DESIGN AND RESULTS

For validation and comparison, vibration data collected

from a controlled gear tooth crack experiment under varying

degrees of crack severity is analyzed. The machine configu-
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Fig. 7. Experimental machine configuration.

ration, Figure 7, is composed of a motor, gearbox, and break.

A tooth crack is introduced in Gear 3 at varying levels

using a cutting knife of width 0.4 mm controlling the depth

and length of the cut. The gears for fault levels of 25%, 50%,

75%, and 100% can be seen in Figure 8.

The experiment consists of recording of the vibration

along the axis of the impact force for three separate mea-

surements during three separate machine start-ups under

each operating condition. The motor operating conditions

are varied between full-load, half-load, and no-load, with

speeds ranging from 800 to 3000 rpm at 200 rpm intervals.

In total, this results in 540 vibration measurements with

approximately 8000 samples each. The sampling frequency

is dependent on the rotation speed of the motor. Figure 9

illustrates the averaged rms vibration of the machine versus

fault level. It can be seen that the vibration trend does not

increase proportionally to the fault level; this is likely as a

result of properties of the five different gears used or slight

changes to the machine as the gear swapping is performed.

For the 540 datasets, the general data processing procedure

is as follows:

1) Subtract the signal mean from each dataset.

2) Fit the AIC selected order and 9th order AR models

to a dataset at no-fault condition at each rpm and load

condition.

3) For each dataset, both AR models are used to predict

the samples using the dataset’s corresponding no-fault

Fig. 8. Experimental gears with tooth cracks at levels of a) 25%, b) 50%,
c) 75%, and d) 100% [10].
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Fig. 9. RMS of measured acceleration according to fault level.

fit model. For example, a dataset measured at 3000

rpm, full-load, 25% fault level would use the AR

models fit to the datasets at 3000 rpm, full-load, 0%

fault level.

4) For each dataset, both FE models are simulated and

the prediction residual calculated.

5) Calculate the kurtosis of each prediction residual signal

while ignoring the first 200 samples to allow for the

AR and FE models to converge.

From this procedure, it is clear that one big advantage of

the FE-based method is the fact that it is a general model

requiring no training to different datasets, different machines,

different motor speeds, or even different applications. As a

result the FE model will perform better under varied machine

conditions. Figure 10 presents the prediction error for all four

methods with the machine at 3000 rpm, full load, and 100%

fault level.

Figure 11 presents the no-fault normalized kurtosis results

for the four predictive models under full-load, half-load, and

no-load. It can be seen that the 2 and 3 component FE

provide a better correlation between increasing fault level

and higher kurtosis values. It is clear that the FE results in

a better gear fault indicator over both AR models, with the

3-component FE performing the best.
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IX. CONCLUSION

In conclusion, this paper suggests the FE-based method

not only detects gear crack faults better than the AR model

based approach, but it requires no data fitting and is of

similar computational requirements to a low order AR model.

The experimental data indicates that the FE-based method

outperforms the AR-based method in gear crack detection,

while the simulation data suggests that the FE model only

performs better at a higher fault level. Neither of these results

are conclusive, but the FE model results proves a promising

no priori-knowledge alternative to the AR model.

Further work should investigate the FE-based method on

additional experimental setups, and additional simulation

models. The maximum entropy deconvolution has been

shown to greatly improve to the AR residual results [4],

and similarly it can be applied to the FE residual. Better

parameter selection, convergence analysis, and higher order

frequency estimators can be investigated for the FE model

approach.
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