
 
 

 

  

Abstract— This paper presents a method to control the 
surface temperature of a plastic sheet using model predictive 
control (MPC). Although control techniques have been 
developed for the heating phase of the thermoforming 
process, oven heater temperatures in the thermoforming 
industry are still largely adjusted by trial and error based on 
the experience of the operator. MPC is one of the advanced 
methods for process control that has been used in different 
plants since the 1980s. Even though the MPC controller can 
handle a multivariable process, the large number of 
computations makes it difficult to apply to large systems such 
as multi-zone temperature control in a thermoforming 
machine. In this paper, the design of a model predictive 
controller is reported and implemented on a complex 
thermoforming oven with a large number of inputs and 
outputs for precise control of sheet temperatures under hard 
constraints on heater temperature and their rates. 

I. INTRODUCTION 
LASTIC products are increasingly supplanting 
products made of conventional and expensive 

materials such as aluminum, glass, wood and paper 
because of their numerous advantages. This encourages 
researchers to develop cost-effective and accurate 
controllers for polymer forming processes [1-6]. The 
thermoforming process consists of three phases, namely 
heating, forming, and solidification. The first and most 
important part in thermoforming is heating the sheet to the 
softening temperature, which is the heating phase. As 
heating is the first phase of the process, the remaining 
phases depend on the outcome of the heating phase.  
    At present, in some cases standard proportional-
integral-derivative (PID) controllers are used. But this 
type of controller cannot handle process constraints such 
as the maximum and minimum heater temperatures, as 
well as limited heating and cooling rates of the heaters. 
Because of the limited heating and cooling rate, it is 
typically observed that the heaters fail to track the control 
inputs from the controller. Moreover, PID controllers do 
not take into consideration the model information to 
calculate the optimal control input. PID controllers also 
have a serious drawback in controlling an MIMO system 
as the inverse heating problem (IHP) has to be solved in 
real time to decouple the system. Even though PID 
controllers usually work well in near steady-state 
conditions, the plastic sheet will melt before it reaches 
steady state, forcing the controller to operate in transient 
condition within the cycle time [8]. Some researchers have 
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developed cycle-to-cycle control techniques to control the 
thermoforming process [6,9].  
The idea is to use information from past cycles to help the 
closed-loop system better track the desired trajectory 
across cycles. Control during sheet reheat is also 
complicated by the fact that there is a high level of 
uncertainty surrounding the process, particularly with the 
material properties. The fact that this is a multi-input, 
multi-output (MIMO) problem with a high degree of 
coupling between inputs and outputs also introduces 
additional complexity. Moreover, environmental 
conditions may change between cycles because of the 
nonlinearity and time dependency of the system that make 
the controller delay in achieving the correct input signal. 
Sometimes a cycle-to-cycle controller converges very 
slowly resulting in lots of discarded parts.  

MPC has some nice features. For example, it can 
automatically compensate for process interaction and 
measure the disturbances as well as handle difficult 
process dynamics, e.g., dead-time dominant. Another 
important advantage of this type of control is its ability to 
cope with hard constraints on controls and states. So MPC 
can optimize the performance by allowing for operation 
close to the system constraints.  

An MPC predicts future control inputs solving the 
optimization problem over an output horizon. This 
involves the minimization of a cost function using the 
model of the system at each sampling instant. The 
computation of the optimization problem at every 
sampling instant may require complex calculations 
demanding a very fast processor [10]. Due to the online 
optimization at every sampling instant, MPC has not been 
an effective technique to deal with large multivariable 
constrained systems that increase computational 
complexity in solving the optimization problem. 
Moreover, although several issues like stability, feasibly 
and performance of linear MPC control are well 
developed and understood [11, 12], much work needs to 
be done in the field of nonlinear MPC to make it popular 
in industry. Thus, the large system size and the presence 
of nonlinearities in the heating phase of thermoforming 
seem to have discouraged control engineers from using 
optimal control techniques for this kind of system. 
Recently, some works [13-16] have developed explicit 
solutions of the optimization problem and proposed a new 
framework to deal with a nonlinear system as a 
combination of piecewise affine hybrid systems. These 
results extend the applicability of the MPC controller to 
low-cost, slow processors and improve software 
adaptability and ratability in real-time implementation. 
Multi-parametric quadratic programming helps in solving 
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the model predictive optimization problem offline which 
reduces the real-time computational burden of the 
controller. Thus, in this paper, we explore MPC using the 
explicit solution of the optimization problem for 
temperature control of a thermoforming machine. In 
section II, we introduce MPC for controlling the process 
whereas in section III and IV, we discuss the multi-
parametric quadratic programming used to solve the 
online optimization with an offline strategy in the 
development of MPC for the heating phase of 
thermoforming process. Section V reviews the model of 
the heating phase whereas in section VI, a multi-
parametric MPC is developed for the heating phase of the 
thermoforming process. The performance of the controller 
is investigated thereafter. 

II. MULTI-PARAMETRIC QUADRATIC MPC FOR HEATING 
PHASE OF THERMOFORMING  

MPC is a good choice for controlling the heating phase. 
Although the heating phase of thermoforming machines is 
a slow process, the number of system equations is high 
when multiple sensors are used. Thus, much computation 
and expensive hardware is required to implement MPC for 
the system due to the online minimization of the cost 
function. Even though an advanced nonlinear 
programming algorithm for optimization may be used, the 
speed and accuracy of the solution is not guaranteed. 
Multi-parametric quadratic programming was introduced 
to compute the online optimization offline to express the 
solution as a combination of affine functions of the state 
and input to overcome the implementation problem of the 
conventional MPC controller [13].  The solution is 
computed offline and the controller obtains its control 
move based on the value of the state using some affine 
function, which eases the computational burden of online 
optimization. In this paper, multi-parametric quadratic 
MPC for heating phase of the thermoforming machine is 
proposed. The model developed for the heating phase of 
the thermoforming machine is nonlinear [8]. So the model 
equations are linearized around the operating point 

* *( , )x u  to control the system using multi-parametric 
quadratic MPC.  
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In the rest of the paper, we use t as the present value 

and t k+  for k -th future value predicted at time t . The 
linear state-space equations for the system are,  

( 1) ( ) ( )x t Ax t Bu t+ = + ,    ( ) ( )y t Cx t=    
(2) 

where n nA ×∈ , n mB ×∈ . With the linearized system 
equation, by substituting 
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optimization problem of MPC can be reformulated 
following some algebraic manipulation as [13]: 
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t t NU u u + − is the optimization vector 

and , , , , ,H F Y G W E  are obtained from the weighting 

matrices ,Q R . Defining 1 ( )Tz U H F x t−+ , the 
problem can be transformed into 
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and the current state ( ) ox t x=  can be taken as a vector 
of parameters. If there are q inequalities in (4), then 

.m Nz ∈ , . .m N m NH ×∈ , .q m NG ×∈ , 1qW ×∈ , 
q nS ×∈ and n qF ×∈ . In [14], it is shown that the 

explicit solution of the optimization is a continuous 
piecewise affine function defined over the partition of the 
parameter space. Following [14], we propose an algorithm 
for the offline computation of the optimization problem 
for the heating phase of the thermoforming process and 
hence implement it in MPC control of the process. The 
whole algorithm is described by the flow chart in Fig.1. 
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Set the piecewise affine function and 
the corresponding critical region in 
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which the state belongs to
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Fig.1: (a) Algorithm for offline optimization of the objective function for 
MPC (b) Algorithm for incorporating the solution of offline optimization 
into the controller 
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III. MODELING OF SHEET REHEAT PHASE IN 
THERMOFORMING 

As the MPC uses the process model to predict the 
output over the output horizon for an input vector and 
optimize the performance objective function, it is 
important to discuss the model used in designing the 
MPC. The model used in this section is primarily 
developed in [8]. The interested reader can get details of 
the model therein, but it is briefly discussed here to 
illustrate the proposed multi-parametric quadratic MPC. 
Each IR temperature sensor points at an area on the plastic 
sheet to perform the temperature measurement.  Each such 
area is designated as a “zone”.  To facilitate modeling, we 
assume that there are two IR sensors for each zone of the 
plastic sheet, one looking at the sheet from above and the 
other from below (Fig.2). 

To analyze the propagation of the heat inside the plastic 
sheet, heat transfer equations must be defined for some 
points inside the sheet.  To do so, each zone is divided 
into layers throughout the thickness of the sheet (Fig.3).  
For each node, a differential equation describes the heat 
exchange of the corresponding layer. Since the surface of 
the plastic sheet is an important boundary of energy 
exchange, a node is located directly at the surface, see 
Fig.3.  For each node, a differential equation describes the 
heat exchange of the corresponding layer. There are three 
ways (conduction, convection and radiation) to exchange 
energy between heaters, ambient air and nodes. 
Combining all three forms of heat transfer into the 
equation for 2M heaters, Z zones and 2 nodes for each 
zone, and taking the transmissivity into account in the 
energy transfer from the radiant heaters to the plastic 
sheet, the model for the k-th zone in the heating phase 
becomes, 
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Fig.2: Zone and IR temperature sensors 

 

 
Fig. 3: Layers and nodes 
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The meaning of the symbols used in the model equation 
can be found in reference [8]. Details of the method for 
calculating effective emissivity and view factors can be 
found in [9].    

IV. DESIGN OF MULTI-PARAMETRIC QUADRATIC MPC FOR 
HEATING PHASE OF THERMOFORMING MACHINE 

The design of the MPC controller is discussed in this 
section. At first, the system equation is linearized to obtain 
a linear system equation of the system so that multi-
parametric MPC can be developed using the system 
equation. The next step is to incorporate the constraints 
into the controller. The oven heaters have maximum and 
minimum temperature constraints. The heating and 
cooling rate of the heaters also have some limitations. The 
conventional MPC requires an online solution of the 
optimization problem within a sampling period. As the 
size of the model of heating phase of the thermoforming 
process is large, it is difficult to use online optimization to 
implement MPC. So, the next step is to compute the 
optimization offline using multi-parametric programming. 
This recently developed technique allows solving an 
optimization problem offline for a constrained system 
within a certain range of the parameters. The solution of 
the optimization problem will be provided by a piecewise 
affine function by analyzing several properties of the 
geometry of the polyhedral partition and its relation to the 
combination of the active constraints for different 
polyhedral region. Then, the MPC controller based on the 
model is tuned in such a way that the desired performance 
is achieved. 
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(1) Linearization of the system: 
The nonlinear system equations of the thermoforming 

process need to be linearized at an operating point of the 
system to incorporate the model in the design of the MPC 
controller. On the other hand, because of the nonlinear 
property of the system, the equation obtained by 
linearizing the system at a particular operating point may 
not properly sustain the properties of the actual system at 
another operating point far from the linearization point. 
Thus, the system is linearized at different operating point 
and different controllers are developed for each linear 
system. Based one the operating point, the control input 
will switch among different controllers. In this paper, 
different operating points are selected: 
[ 50 , 200 ],k jT C Cθ= =  

[ 100 , 250 ],k jT C Cθ= = and  

[ 150 , 300 ]k jT C Cθ= =  

(2) Incorporating Constraints: 
There are some input-constraints in sheet heating of the 
thermoforming process such as the maximum and 
minimum heater temperatures as well as maximum heating 
and cooling rates because of the limited input to the 
heater. The heaters are usually made of ceramic that could 
be damaged if heated more than 500°C, which results in a 
constraint in the input heater temperature. On the other 
hand, the heater cannot be cooled less than the 
environment temperature. Ajersch performed some 
experiments to determine the maximum rate of heating 
and cooling to develop a model of the heater bank [8]. 
Although it can give some primary idea about the 
maximum heating and cooling rate, these rates depend on 
the operating condition of the system like the input power, 
heat consumed by the sheet, heat consumed by oven air 
and oven wall (that largely depend on sheet, oven air and 
oven wall temperature). As the maximum electrical power 
input to the heater is bounded, it is quite understandable 
that the maximum heating rate is bounded too. The bound 
on the maximum heating and cooling rates of the heater 
depend on the amount of heat transfer to plastic sheet, 
oven wall by radiation and to oven air by convection. 
With the increase of the heater temperature, the maximum 
cooling rate increases as the heater can lose heat faster to 
the sheet, oven wall and to the environment. As the heater 
loss increases at higher temperature, the maximum heating 
rate will be reduced. On the contrary, at lower temperature 
of the heater the maximum heating rate increases and 
maximum cooling rate decreases. So the input constraints 
about heating and cooling rate are function of the current 
heater temperature. Unfortunately, MPC cannot handle 
this kind of input-constraints that depend on present value 
of the input heater temperature. But the whole operating 
range of the heater can be divided into different sub-range 
and different maximum heating and cooling rate 
constrains could be incorporated in the design of the 
controller.  

(3) Reduction of the number of partitions in offline 
solution of multi-parametric quadratic MPC: 
The number of polyhedral regions depends on a number of 
parameters that include system state, previous control 
input, reference output, measured disturbance and 
prediction horizon as well as the number of free input, 
constraint. The number of polyhedral regions also depends 
on the range of the parameters in the multi-parametric 
quadratic programming used to solve the optimization 
problem. Because of the large number of inputs, state 
variables and constraints in thermoforming, multi-
parametric quadratic programming (mp-QP) results in a 
large number of polyhedral regions, with a piecewise 
affine function for each region, which is practically not 
possible to implement. So the next challenge in 
implementing MPC for this process is to reduce the 
number of region in the offline solution. One of the 
possible ways to reduce the number of regions is to reduce 
the size of the system input and hence reduce the number 
of parameters as well as number of the input constraints. 
The model of the heating phase of the thermoforming 
process has all of the constraints in its inputs.  It can be 
proven that as the rank of the S matrix in the constraint of 
equation (4) is less than or equal to the number of 
constraints, the number of regions for piecewise affine 
solutions will remain the same for any number of 
parameters that is higher than the number of the 
constraints. In the case of the heating phase of this 
process, the number of parameters is much higher than the 
number of constraints. Therefore, the number of partitions 
or region of the parameter space defining the optimal 
controller is insensitive to the dimension of the parameter 
vector or the number of parameters involved in the mp-
QP. Thus, if we can reduce the number of input 
constraints, the number of partitions will be reduced. In 
the case of the MPC design for the thermoforming 
machine, only two of the heaters (top heater and its 
opposite bottom heater) are used at a time to control the 
temperature of the sheet and all other heater temperature 
are considered to stay constant. As the temperature of a 
heater can change at most 1°K per second (where the 
actual heater temperature is within the range 
350°K~700°K), it is reasonable to consider the heater 
temperature to be constant within a sampling period 
(which is 1 second). For each pair of heaters, a different 
MPC will be designed whereas other heater temperatures 
will be considered constant at the starting temperature of 
the sample. If there are 2M heaters in the thermoforming 
oven, then there will be M controllers that have just 2 
inputs with the constraint applicable for those inputs. 
Thus, it is observed that the number of partitions or 
regions is significantly reduced for every MPC controller.     

(4) Choosing the weight matrix of the controller 
There are M controllers for the process and each 

controller computes reference heater temperatures for a 
pair of heaters. If the same weights are given for output 
tracking at every point’s temperature of the sheet, then the 
controller will try to force the heater temperature in such a 
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way that it tries to heat every point of the sheet to achieve 
the desired temperature. But some zones on the sheet are 
so far from the heater that the heater has very little 
influence on them, so the sensitivity of those parts of the 
sheet is very low with the change of heater temperature. 
This will force the heater to attain a very high temperature, 
even at the cost of a higher temperature at the nearest zone 
on the sheet from the heater. This could even burn some 
parts of the sheet. As the heaters are distributed all over 
the oven, every heater can be used more to heat those 
zones of the sheet that are closer to them. This could be 
attained by using an appropriate weight matrix for 
reference outputs. The elements of the weight matrix are 
chosen in such a way that the weight matrix entries for a 
sheet zone temperature will be inversely proportional to 
the distance between the sheet point and the heater.  

(5)Tuning parameters of the controller: 
The parameters of the controller, such as output 

prediction horizon, control horizon and constraint horizon 
length are tuned in this step such that the controller 
provides its desired performance. With the increase of the 
horizon length, the performance improves at the cost of an 
increase in the number of constraints that will increase the 
number of polyhedral regions. So the complexity of the 
final piecewise affine functions for the MPC controller 
increases dramatically, characterizing a tradeoff between 
performance and computational complexity. The length of 
the output prediction horizon, control horizon and 
constraint horizon length are chosen such that it is the 
smallest number giving a convenient number of 
polyhedral regions as well as providing the desired 
performance.  After computing the controller using multi-
parametric programming, the optimum control input 
command heater temperature to the system will be 
obtained as an affine function of system state, previous 
control input, reference output and measured disturbance.  

V. SIMULATION RESULTS 
The effectiveness of the proposed MPC controller for 

the thermoforming heating process is investigated 
extensively in simulation. First, a simulation model is 
developed using Matlab/Simulink. Then, the performance 
levels of the proposed and conventional methods are 
compared using the developed model. The oven consists 
of top and bottom heater. Each heater consists of 6 (3x2) 
heater banks.  There are 9 equidistant sensors (3x3) 
considered on each side of the sheet. The conventional PI 
controller and cycle-to-cycle iterative learning controller 
(ILC) are used to compare the performance with the 
proposed MPC controller.  After the design and 
development of the MPC controller, each pair of control 
inputs will be formulated in an explicit expression of 30 
system state variables (18 outputs, 2 air temperatures and 
10 other inputs), 2 previous control inputs and 18 
reference outputs. The output sheet temperature at the 
sensor points for the first 10 cycles with a cycle duration 
of 700s are shown in fig.4 for PI, ILC and MPC 
controllers, respectively. A ramp with maximum 

amplitude 130°C is used as command sheet temperature 
for PI and MPC controller whereas a constant 130°C is 
used for ILC to heat the sheet to a uniform sheet 
temperature at 130°C at the end of the cycle. At the 
beginning of each cycle, the sheet is entered into the oven. 
So the temperature of the sheet is same as the environment 
temperature of the industry at the start of the cycle and the 
temperature of the sheet increases over the cycle. The 
controllers control the heater temperature of the oven to 
have a uniform 130°C temperature over the whole sheet. It 
is observed that the PI controller gives the largest 
deviation of 10°C. 
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Fig.4: The sheet temperature at sensor location for (a) PI (b) ILC (c) 
MPC 
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Fig.5: Error between control input and the actual temperature of a heater 
for (a) PI (b) ILC (c) MPC  

 
The ILC controller gives very bad performance in the first 
few cycles, but it is getting better along the following 
cycles. In contrast, the proposed MPC controller gives a 
better performance as the sheet temperature obtained at 
the end of the cycle remains pretty close to the desired 
temperature. In Fig. 5, it is observed that the heater 
temperature of the PI controller cannot follow the 
command heater temperature from the controller output as 
the controller did not consider the constraint of the heater 
in calculating the control input. So the error between the 
command heater temperature and actual heater 
temperature is as high as 1000°C. In case of ILC, the error 
is large at the beginning but it gets better with time, even 
though the controller did not consider the constraint of the 
heater in calculating the control input. But it takes five 
cycles to attain the command heater temperature. In the 

case of MPC, the heater can follow the command heater 
temperature from the controller and the error is as low as 
5°C.    

VI. CONCLUSION 
In this paper, a step-by-step approach is proposed for 

the development of a multi-parametric MPC for the 
thermoforming process. The main challenges in the 
deployment of the MPC controller for the process are 
discussed. The explicit implementation of the MPC 
controller, in the form of a piecewise affine control law 
computed offline, obviates the need for online 
optimization.    
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