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Abstract— Simultaneous perturbation stochastic 
approximation (SPSA) has proven to be an efficient algorithm 
for recursive optimization. SPSA uses a centered difference 
approximation to the gradient based on only two function 
evaluations regardless of the dimension of the problem. 
Typically, the Bernoulli ±1 distribution is used for perturbation 
vectors and theory has been established to prove the asymptotic 
optimality of this distribution. However, efficiency of the 
Bernoulli distribution may not be guaranteed for small-samples. 
In this paper, we investigate the performance of segmented 
uniform distribution for  perturbation vectors. For small-
samples, we show that the Bernoulli distribution may not be the 
best for a certain choice of parameters. 

1. INTRODUCTON

Simultaneous perturbation stochastic approximation 
(SPSA) has proven to be an efficient stochastic 
approximation approach (see [7, 8 and 10]). It has wide 
applications in engineering such as signal processing, system 
identification and parameter estimation (see 
www.jhuapl.edu/SPSA and [2, 9]). 

Typically, the Bernoulli ±1 distribution is used for 
perturbation vectors in SPSA. It is easy to implement and 
has been proven asymptotically optimal (see [5]). But one 
might be curious if this optimality holds when only small-
sample is allowed. This is common situation in practice 
when it is expensive to evaluate system performances. Thus, 
we wonder if non-Bernoulli distributions will outperform the 
Bernoulli ±1 as a distribution for perturbation vectors when 
the number of function evaluations is small. 
    Discussion and research on non-Bernoulli perturbation 
distribution has been found in the literature, see [1, 3]. The 
application of non-Bernoulli perturbations in small samples 
has been considered in [4] and [9, Chap. 7].

2. METHODOLOGY

2.1 Problem Formulation
Let θΘ RP denote a vector of parameters of interest. 

Let L(θ) be the loss function which is observed at the 
presence of noise: y(θ) = L(θ) + ε, where ε is i.i.d noise, with 
mean zero and variance σ2. The problem is to 
                                 min ( )L


 .                                     (1)

The stochastic optimization algorithm for solving (1) is 
given by the following iterative scheme:

1
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where k̂ is the estimate of θ at iteration k and 
ˆ( ) p

k Rg represents an estimate of the gradient of L at 
iteration k. The step-size sequence {ak} is nonnegative, 
decreasing, and converging to zero. 

2.2 Perturbation Distribution for SPSA
SPSA uses a simultaneous perturbation to estimate the 

gradient. Let Δk = [Δk1,… , Δkp]
T be a vector of p independent 

random variables at iteration k. Let ck be a sequence of 
positive scalars. The standard simultaneous perturbation 
form for the gradient estimator is as follows:
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Valid distributions for Δk include Bernoulli ±1 (B), 
segmented uniform (SU), U-shape distribution and many 
others (see [9], page 185). In the discussion below, we 
compare SU with B. The domain of SU is chosen as 
(−(19+ 3 13 )/20, −(19− 3 13 )/20)  ((19− 3 13 )/20, 
(19+ 3 13 )/20) such that the mean and variance are the 
same as those of B. In our analysis, the sequences {ak} and 
{ck} take standard forms: ak = a/(k+2)0.602, ck = c/(k+1)0.101, 
where a and c are predetermined constants. 

3. THEORETICAL ANALYSIS

In this section, we provide conditions under which SU 
outperforms B. To specifically analyze the development of 
the algorithm, we consider the extreme version of small 
sample where only one iteration takes place in SPSA, that is,
k = 1. For larger k, the analysis is too complicated and is not 
included in this paper. Due to page limit, we present all 
results without providing detailed analysis. For interested 
readers, please contact the author for more information. 

As a criterion to compare the performance of SU and B, 
mean squared error (MSE) between 1θ̂ and *θ is used. If we 
assume that the loss function L has continuous third 
derivatives, the difference in MSE  2*

1
ˆE θ θ under two 

distributions is computed as follows:
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where Li denotes the first derivative of L with respect to the 

ith component of θ. All derivatives are evaluated at 0θ̂ , same 

in the analysis below. Subscripts S, B denote SU and the 
Bernoulli distribution, respectively, same as in the context to 

follow; 0θ̂ i and *θi denote the ith component of 0θ̂ and *θ , 
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respectively. The 2
0( )O c term is due to the higher order 

Taylor expansion. 
Furthermore, if we assume ( )ijkL M  for all i, j, k, 

where M is a constant and Lijk denotes third derivatives, an 
upper bound U for the 2

0( )O c term in (4) is:
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    We now represent a theorem and its corollary. The proofs 
are immediate based on the expressions above. 

Theorem 1 
Consider loss function with continuous third derivatives. 

For one iteration of SPSA, the SU distribution produces a 
smaller MSE between 1θ̂ and *θ than B if the starting point 
and the relevant coefficients (a0, c0, σ

2) are chosen in such a 
way that the right hand side of (4) is negative. 

If in addition, magnitude of third derivatives of L has 
upper bound M, a sufficient condition for the superiority of 
SU is that the upper bound of the expression in (4), which 
could be derived by (5), is negative. 

If L is quadratic, the higher order term in (4) vanishes.
Moreover, if p = 2, expression in (4) can be simplified. 

Corollary 1
For a quadratic loss function with p = 2, SU produces a 

smaller MSE between 1θ̂ and *θ than B if the following 
expression is negative: 
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4. NUMERICAL EXAMPLE

Consider the quadratic loss function 2 2
1 1 2 2( )L t t t t  θ , 

where θ = [t1, t2]
T, σ2 = 1, 0θ̂ [0.3,0.3] ,T a0S = 0.0011, a0B

= 0.01252, c0S = c0B = 0.1. The parameters are chosen 
according to standard tuning process (see [9, Section 7.5]). 
The right hand side of (6) is calculated as −0.0114, which 
satisfies the condition of Corollary 1, indicating SU is 
superior to B for k = 1. This is consistent with our numerical 
simulation summarized in Table 1. 

Table 1: Empirical MSE values

B SU P- value

k=1 0.1913 0.1798 <10−10

k=5 0.2094 0.1796 <10−10

k=10 0.1890 0.1786 <10−10

k=1000 0.0421 0.1403 >1−10−10

In Table 1, each MSE is approximated by averaging over 
106 independent runs. P-values are derived from t-tests for 
comparing the MSEs of B and SU. For k = 1, the difference 

between MSEs under SU and B is −0.0115 (as compared to 
theoretical value of −0.0114), with corresponding P-value 
being almost 0, showing a strong indication that SU is 
preferred to B for k = 1.

We also notice that the advantage of SU holds for k = 5 
and k = 10 in this example. In fact, the better performance of 
SU for k > 1 has been observed in other examples as well 
(e.g., [4] and [9, Exercise 7.7]). Even though this paper only 
provides theoretical foundation for k = 1 case, it might be 
possible to generalize the theory to k > 1 provided that k is 
not too large a number.

5. CONCLUSIONS

We provide conditions under which segmented uniform 
distribution outperforms the Bernoulli distribution for one 
iteration of SPSA. Furthermore, numerical examples 
indicate that we may generalize the above conclusion to 
other small sample sizes as well, but we have not yet 
pursued that avenue of research. 

Furthermore, advantage of segmented uniform 
distribution has also been observed in numerical study where 
constrained optimization problem is considered. A further 
line of research might be to investigate the superiority of SU 
in dealing with constrained problems. Non-Bernoulli 
perturbations provide greater flexibility in the search 
direction and consequently provide an improved ability to 
avoid potential entrapments due to constraints. In future 
work we intend to apply non-Bernoulli SPSA to the 
constrained optimization problem in Spall and Hill [6].
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