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Abstract— We study the problem of temperature regulation
in a network of building thermal zones. The control objective
is to keep zone temperatures within a comfort range while
consuming the least energy by using predictive knowledge of
weather and occupancy. First, we present a simplified two-mass
nonlinear system for modeling thermal zone dynamics. Model
identification and validation based on historical measured data
are presented. Second, a distributed model-based predictive
control (DMPC) is designed for optimal heating and cooling.
The DMPC is implemented by using sequential quadratic
program and dual decomposition. Simulation results show good
performance and computational tractability of the resulting
scheme.

I. INTRODUCTION

The building sector consumes about 40% of the energy

used in the United States and is responsible for nearly 40% of

greenhouse gas emissions [12]. It is therefore economically,

socially, and environmentally significant to reduce the energy

consumption of buildings.

This work focuses on the modeling and predictive control

of networks of thermal zones. The system considered in this

manuscript consists of an air handling unit (AHU) and a set

of variable air volume (VAV) boxes which serves a network

of thermal zones. The AHU is equipped with a cooling coil,

a damper, and a fan. The damper mixes return air and outside

air. The cooling coil cools down the mixed air, and the fan

drives the air to the VAV boxes. Each VAV box has a damper

controlling the mass flow rate of air supplied to thermal

zones. A heating coil in each VAV box can reheat the supply

air when necessary.

The paper is divided in two parts. The objective of the first

part is to develop low-order models suitable for real-time

predictive optimization. In this work we model the system

as a network of two-masses nonlinear systems. We present

identification and validation results based on historical data

collected from Bancroft Library at the University of Cali-

fornia, Berkeley. The results are promising and show that

the models well capture thermal zone dynamics when the

external load (due to occupancy, weather, and equipment) is

minor. Historical data are then used to compute the envelop

of the external load by comparing nominal models and

measured data when external disturbances are not negligible.

In the second part, a distributed model-based predictive

control (DMPC) is designed for optimal heating and cooling.
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The size of the centralized predictive control problem

rapidly grows when a realistic number of rooms is consid-

ered. Therefore the real time implementation of an MPC

scheme is a challenge for the low-cost embedded platforms

which are used for HVAC control algorithms. The techniques

presented in this paper enable the implementation of an MPC

algorithm by distributing the computational load on a set

of VAV box embedded controllers. Compared to existing

DMPC schemes [3], the proposed method is tailored to the

specific class of problem considered. In particular it makes

use of sequential quadratic programming (SQP) [14], [4] and

dual decomposition [9] to handle the system nonlinearities

and the decentralization, respectively.

The main idea of dual decomposition is to take advantage

of the separability of the dual lagrangian problem for certain

classes of problems. By doing so, the dual problem is

solved iteratively by updating dual and primal variables

in a decentralized fashion. In this paper we show that if

the centralized MPC problem is properly formulated, the

resulting primal and dual update laws can be explicitly

computed. Simulation results show good performance and

computational tractability of the resulting scheme.

We remark that the evaluation of optimal controllers for

building climate regulation has been studied in the past by

several authors (see [15], [5] and references therein). Com-

pared to existing literature, this paper focuses on distributing

the computational load on multiple, low cost, embedded

platforms.

The paper is organized as follow. Section II introduces

the general system and the simplified thermal zone model. In

Section III the distributed MPC control algorithm is outlined.

A numerical example is presented in Section IV. Finally,

conclusions are drawn in Section V.

II. SYSTEM MODEL

Objective of this section is to introduce a simplified HVAC

system architecture and develop a control oriented model

for it. We consider an air handling unit (AHU) and a fan

serving multiple variable air volume (VAV) boxes controlling

air temperature and flows in a network of thermal zones

(next called “rooms” for brevity). Figure 1 depicts the system

architecture: the AHU uses a mixture of outside air and return

air to generate cool air by using a cooling coil (usually driven

by chilled water, see [11] for optimal generation of chilled

water). The cool air then is distributed by a fan to VAV boxes

connected with each room. The damper position in the VAV

box controls the mass flow rate of air entering a room. In

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 2089



addition, a heating coil in the VAV box is used to warm up

the supply air if needed.

Fig. 1: System scheme

In order to develop a simplified yet descriptive model, the

following assumptions are introduced.

A1 The system pressure dynamics are not considered.

A2 The dynamics of each component (AHU, VAV boxes

and fan) are neglected. This implies that the supply air

temperature and flow set points are tracked perfectly.

A3 Air temperature is constant through the ducts.

A4 The amount of air exiting the rooms is the same as the

amount of air entering the rooms.

A. Simplified System Model

We use an undirected graph structure to represent the
rooms and their dynamic couplings in the following way.
We associate the i-th room with the i-th node of a graph,
and if an edge (i, j) connecting the i-th and j-th node is
present, the room i and j are subject to direct heat transfer.
The graph G will be defined as

G = (V,A), (1)

where V is the set of nodes (or vertices) V = {1, . . . , Nv}
and A ⊆ V × V the set of edges (i, j) with i ∈ V , j ∈ V .

We denote N i the set of neighboring nodes of i, i.e., j ∈ N i

if and only if (i, j) ∈ A.
Now consider a single room j ∈ V . The air enters the

room j with a mass flow rate
˙

mj
s and temperature T j

s . The
temperature of air supplied to room j (T j

s ) is controlled by

the cooling ∆Tc generated at the AHU, the heating ∆T j
h at

the reheating coils in the VAV box, and the damper position
δ in the AHU sytem:

T j
s = δTr + (1 − δ)Toa − ∆Tc + ∆T j

h , (2)

where Toa is the outside air temperature and Tr is the return

air temperature calculated as weighted average temperature

of return air from each room (
∑

i∈V ṁi
rT

i
r/

∑

i∈V ṁi
r).

In (2) δ is the AHU damper position. The return air is

not recirculated when δ = 0, and no outside fresh air is

used when δ = 1. δ can be used to save energy through

recirculation but it has to be strictly less than one to guarantee

a minimal outdoor fresh air delivered to the rooms.
We model the room as a two-mass system. Cj

1 is the fast-
dynamic mass (e.g. air around VAV diffusers) that has lower

thermal capacitance, and Cj
2 represents the slow-dynamic

mass (e.g. the solid part which includes floor, walls and
furniture) that has thermal capacitance. We remark that the

phenomenon of fast and slow dynamics has been observed
in [6]. The thermal dynamic model of a room is:

Cj
1 Ṫ j

1 =ṁj
scp(T

j
s − T j

1 ) + (T j
2 − T j

1 )/Rj +
∑

i∈N j

(T i
1 − T j

1 )/Rij

+ (Toa − T j
1 )/Rj

oa + P j
d , (3a)

Cj
2 Ṫ j

2 =(T j
1 − T j

2 )/Rj
12, (3b)

T j
s =δ(

∑

i∈V

ṁi
sT

i)/(
∑

i∈V

ṁi
s) + (1 − δ)Toa − ∆Tc + ∆T j

h ,

(3c)

T j =T j
1 , (3d)

where T j
1 and T j

2 are system states representing the tem-

perature of the lumped masses Cj
1 and Cj

2 , respectively. T j

is the perceived temperature of room j, which is assumed

to be equal to the temperature of the fast-dynamic mass

Cj
1 . N j is the set of neighboring rooms of room j, Rj

oa

is the thermal resistance between room j and outside air,

and cp = 1012 (J/kg · K) is the specific heat capacity of

room air. Rj models the heat resistance between Cj
1 and

Cj
2 , Rij = Rji models thermal resistances between room

i and the adjacent room j, and P j
d is an unmeasured load

induced by external factors such as occupancy, equipment,

and solar radiation.

Figure 2 depicts the RC network corresponding to the

graph G0 = (V0,A0), where V = {1, 2, 3, 4, 5}, A =
{(1, 2), (1, 3), (2, 3), (3, 4), (2, 5), (4, 5)}, and the neigh-

boring nodes of the first node are N 1 = {2, 3}.

Fig. 2: Network of two-mass room model

The proposed approach is used to model the temperature

dynamics of thermal zones in the Bancroft library located on

the campus of University of California at Berkeley, USA. By

using historical data we have identified the model parameters

for each thermal zones and validated the resulting model.

Next we show the identification procedure and results by

focusing on one thermal zone, a conference room (say j = 1).

The dimension of the conference room is 5× 4× 3 m, and it

has one door and no windows. As a result, the effect of solar

radiation is negligible. The major source of load derives from

occupants and electronic equipment. The conference room

has one neighboring office room (N 1 = {2}).

The model parameters (p = [C1
1 , C1

2 , R1, R12, R1
oa]) are

identified by using a nonlinear regression algorithm using

measured data collected on July 4th, 2010 over 24 hours.
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TABLE I: Identification results for conference room model on July
4th, 2010

Parameter Value Parameter Value

C1
1

9.163 × 103 kJ/K R12 2.000 K/kW

C1
2

1.694 × 105 kJ/K R1
oa 57 K/kW

R1 1.700 K/kW

This corresponds to a Sunday when the conference room has

no occupants (P 1
d = 0). Measurements of room temperature

(T 1), supply air temperature (T 1
s ), mass flow rate of the

supply air (ṁ1
s), the neighboring room temperature (T 2), and

outside air temperature Toa are used for the identification.

The identified parameters values are reported in Table I.

The identification results plotted in Figure 3 show that the

proposed model successfully captures the thermal dynamics

of the conference room without occupants. In Figure 3

the solid line depicts the measured room temperature trend

and the dashed line is the room temperature predicted by

model (3) when driven by the measured inputs.

The proposed model (3) with the identified parameters

in Table I is validated against measurements during other

weekends. Figure 4 plots the validation results for July 11th,

2010. One can observe that the predictions match well the

experimental data.

Fig. 3: Identification results of
the thermal zone model (3)

Fig. 4: Simplified room model
validation

The load prediction Pd(t) is important for designing pre-

dictive feedback controllers and assessing potential energy

savings. We are currently investigating robust techniques,

where Pd(t) is modeled as a bounded time-varying uncer-

tainty. Other approaches are available in the literature. For

example, the authors of [10] proposed an agent-based model

to simulate the occupants’ behavior in a building.

The disturbance load envelopes can be learned from

historical data, shared calendars, and weather predictions.

For instance the conference room discussed earlier has two

regularly scheduled group meetings around 10:00 and 14:00

every Wednesday. By using historical data we can observe

this from the data. Figure 5 depicts the envelop-bounded load

during all Wednesdays in July, 2010 (Figure 5). The envelop

is computed as point-wise min and max difference between

the measured data and the nominal model (i.e, model (3)

with the identified parameters in Table I and P 1
d = 0). Two

Fig. 5: Envelope bounds of disturbance load profile (Kw) for Wednes-
days in July 2010

peaks can be observed in the disturbance load envelop in

Figure 5, which corresponds to the two regularly scheduled

group meetings. In the remainder of this paper we assume

that a nominal prediction of disturbance load is available.

Ongoing research is focused on stochastic MPC.

B. Constraints

The system (3) states and control inputs are subject to the

following constraints (for all j ∈ V):

1) T j
1 ∈ [T , T ] = [20.6, 21.7]oC. Comfort range.

2)
˙

mj
s ∈ [ṁ, ṁ] = [0.005, 5]kg/s. The maximum mass

flow rate of air supplied to a room is limited by the

size of VAV boxes. The minimum mass flow rate is

imposed to guarantee a minimal ventilation level.

3) ∆T j
c ∈ [∆Tc, ∆Tc] = [0, 30]oC. The temperature

decrement of the supply air (cooled by the cooling

coil) is constrained by the capacity of the AHU.

4) ∆T j
h ∈ [∆Th, ∆Th] = [0, 8]oC. The temperature

increment of the supply air (heated by the heating coil)

is constrained by the capacity of the VAV boxes.

5) δ ∈ [0, δ] = [0, 0.8]. The AHU damper position is

positive and less than δ to make sure that there is

always fresh outside air supplied to office rooms.

C. Model Summary

System equations (2)–(3) are discretized by using the Euler
method with a sampling time ∆t to obtain:

xj(k + 1) = f(xj(k), uj(k), uc(k), dj(k)) +
∑

i∈N j

Ej
i xi(k),

(4a)

yj(k) = g(xj(k)) = Cxj(k), (4b)

xj(k) ∈ X , uj(k) ∈ Uj , uc(k) ∈ Uc, (4c)

where xj = [T j
1 , T j

2 ] is the state of the j-th room, uj =

[
˙

mj
s, ∆T j

h ] are the control inputs to the j-th VAV box, uc =
[∆Tc, δ] are the control inputs of the AHU system, and

dj = [P j
d , Toa] is the disturbance assumed to be perfectly

measured. The constraints (4c) are defined in Section II-B.

Note that the room dynamics in the network are coupled

through states (the second term in (4a)) and inputs (uc is

common to all rooms).
In the next section we will also use the following

linearized version of model (4) around the trajectory

(x̂j
k, ûj

k, ûc
k, d̂j

k) ∀j ∈ V :

xj(k + 1) = Aj
kxj(k) + Bj

kuj(k) + Bc
kuc(k) + Dj

kdj(k)+
∑

i∈N j

Ej
i xi(k) + ej

k, (5a)

yj(k) = Cxj(k), (5b)

xj ∈ X , uj ∈ Uj , uc ∈ Uc, (5c)

Aj
k =

∂f

∂xj
k

∣

∣

∣

∣

x̂
j
k

, Bj
k =

∂f

∂uj
k

∣

∣

∣

∣

û
j
k

, Bc
k =

∂f

∂uc
k

∣

∣

∣

∣

ûc
k

, Dj
k =

∂f

∂dj
k

∣

∣

∣

∣

d̂
j
k

,

(5d)

ej
k = −x̂j

k+1
+ Aj

kx̂j
k + Bj

kûj
k + Bc

kûc
k + Dj

kd̂j
k +

∑

i∈N j

Ej
i x̂i

k.

(5e)
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III. DISTRIBUTED MODEL PREDICTIVE

CONTROL

A. Controller Design

In this section we formalize the MPC control problem and
provide details of the decentralized MPC (DMPC) design.
We are interested in solving the following optimization
problem at each time step t:

min
U,ε,ε,X

J(U, ε, ε,X) =
∑

j∈V

{

N−1
∑

k=0

(

‖uc
k|t‖Rc

+ ‖uj

k|t‖Ru

)

+
N

∑

k=1

(

‖xj

k|t − T j
ref‖σ

+ ‖εj

k|t‖ρ + ‖εj

k|t‖ρ

)

}

(6a)

subj. to:

xj

k+1|t = f(xj

k|t, u
j

k|t, u
c
k|t, d

j

k|t) +
∑

i∈N j

Ej
i xi

k|t,

∀j ∈ V, k = 0, 1, . . . , N − 1, (6b)

yj

k|t = Cxj

k|t, ∀j ∈ V, k = 1, . . . , N, (6c)

yj

k|t ≤ T + εj

k|t, ∀j ∈ V, k = 1, . . . , N, (6d)

yj

k|t ≥ T − εj

k|t, ∀j ∈ V, k = 1, . . . , N, (6e)

uj

k|t ∈ Uj , uc
k|t ∈ Uc, ∀j ∈ V, k = 0, . . . , N − 1, (6f)

εj

k|t ≥ 0, εj

k|t ≥ 0, ∀j ∈ V, k = 1, . . . , N, (6g)

where U = {u1
0|t, . . . , u

1
N−1|t, . . . , u

Nv

0|t , . . . , uNv

N−1|t,

uc
0|t, . . . , u

c
N−1|t} is the set of control inputs at time t,

X = {x1
0|t, . . . , x

1
N−1|t, . . . x

Nv

0|t , . . . , xNv

N−1|t} is the set of

system states at time t, and ‖x‖A = xT Ax.

The cost function in (6) minimizes a weighted sum of the

temperature deviation from the desired reference temperature

T j
ref, comfort constraint violations, and control efforts for

each VAV box as well as AHU systems.

The constraint sets Uj and Uc are defined according to

Section II-B. In (6) xk|t denotes the state vector at time

t + k∆t predicted at time t obtained by starting from the

current state x0|t = x(t) and applying the input sequence U

to the system model (6b).

Let the optimal solution of problem (6) at time

t be U
⋆ = {u⋆1

0|t, . . . , u
⋆1

N−1|t, . . . , u
⋆Nv

0|t , . . . , u⋆Nv

N−1|t,

u⋆c
0|t, . . . , u

⋆c
N−1|t}. Then, the first step of U

⋆ is implemented

to system (4) uj(t) = u⋆j

0|t, uc(t) = u⋆c
0|t.

The optimization (6) is repeated at time t + ∆t, with the

updated new state x0|t+∆t = x(t + ∆t), yielding a moving

or receding horizon control strategy.

The optimization problem (6) has quadratic cost subject to

nonlinear constraints. The size of the nonlinear optimization

problem rapidly grows when a realistic number of rooms

is considered. In order to reduce the time to solve the

optimization problem (6), we apply sequential quadratic

programming (SQP) and dual decomposition. Next we show

the main idea for both techniques and implementation details

for the specific class of problems considered in this paper.

SQP procedure is an efficient method to solve nonlin-

ear programming problems [4], [14]. The basic idea is

to linearize the nonlinear optimization problem around a

candidate optimal trajectory in order to obtain a quadratic

program (QP). The QP optimal solution is used to update the

candidate optimal trajectory. Linearization and QP solution

are iteratively executed until convergence is achieved [4].

The concept of dual decomposition traces back to 70’s [9],

and it has been extensively studied since then [2], [16]. For

specific classes of optimization problems, the lagrangian dual

functions are separable, and therefore the optimal solutions

can be computed in a decentralized fashion. The dual decom-

position procedure guarantees zero duality gap and global

convergence when the optimization problem is convex [9].

The optimization problem (6) is solved as follow.

1) Problem (6) is linearized by replacing the nonlinear

system dynamic (6b) with the linearized ones (5).
2) The dual problem of the linearized version of Prob-

lem (6) is formulated where the dual variables λ, µ
and µ are assigned to the constraints (6b), (6d), (6e),
respectively. The dual problem can be formulated as
follow.

max
λ,µ,µ

min
U,ε,ε,X

J + Ll + Lu + Lf
(7a)

subj. to

uj

k|t ∈ Uj , uc
k|t ∈ Uc, (7b)

∀j ∈ V, k = 0, 1, . . . , N − 1,

εj
k|t ≥ 0, εj

k|t ≥ 0, µj
k ≥ 0, µj

k
≥ 0,

(7c)

∀j ∈ V, k = 1, 2, . . . , N,

where J is the cost defined in (6a), Lu =
∑

j∈V

∑N

k=1
µj

k(Cxj

k|t − T − εj

k|t) is the

dual term corresponding to constraint (6d),

Ll =
∑

j∈V

∑N

k=1
(µj

k
(−Cxj

k|t +T −εj

k|t) is the term for

constraint (6e), and Lf =
∑

j∈V

∑N

k=1
λj

k

T
(Aj

kxj

k|t +

Bj
kuj

k|t+Bc
kuc

k|t+Dj
kdj

k|t+
∑

i∈N j Ej
i xi

k|t+ej

k|t−xj

k+1|t)

is the term for constraint (6b).

3) We note that cost function and constraints in prob-

lem (7) are separable in the primal variables. This

special structure allows us to solve problem (7) in a

distributed way as described next.
4) For a fixed set of dual variables (λjp, µjp, µjp), the

minimization problem involving the primal variables
in (7) is solved explicitly as:

xj

k|t

p+1
= (2σT j

ref − (µj
k

p
− µj

k

p
)CT − Aj

k

T
λj

k

p
+ λj

k−1

p

−
∑

i∈N j

Ei
j

T
λi

k

p
)/2σ, (8a)

εj

k|t

p+1
= P

[

µj

k

p
/2ρ

]

R+

, εj

k|t

p+1
= P

[

µj
k

p
/2ρ

]

R+

,

(8b)

∀j ∈ V, ∀k = 1, 2, . . . , N,

uj

k|t

p+1
= P

[

−λj
k

pT
Bj

k/2Ru

]

Uj
, (8c)

uc
k|t

p+1 = P

[

−
∑

j∈V

λj
k

pT
Bj

k/2Rc

]

Uc

, (8d)

∀j ∈ V, ∀k = 0, 1, . . . , N − 1,

where P [⋆]S is the operation of projecting ⋆ onto the

convex set defined by S [7], and R+ is the set of

nonnegative real numbers.
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5) By using the primal variables in (8), the dual vari-
ables are updated by using the projection subgradient
method [7], [13], [1]:

λj
k

p+1
= λj

k

p
+ αλg

λ
j
k

, (9a)

∀j ∈ V, ∀k = 0, 1, . . . , N − 1,

µj

k

p+1
= P

[

µj

k

p
+ αµg

µ
j

k

]

R+

, (9b)

µj
k

p+1
= P

[

µj
k

p
+ αµg

µ
j

k

]

R+

, (9c)

∀j ∈ V, ∀k = 1, 2, . . . , N,

where gλ, gµ and gµ are the subgradients of the dual

variables in Problem (7) at (λjp, µjp, µjp) [9]:

g
λ

j
k

= Aj
kxj

k|t

p+1
+ Bj

kuj

k|t

p+1
+ Bc

kuc
k|t

p+1+

Dj
kdj

k|t +
∑

i∈N j

Ej
i xi

k|t
p+1

+ ej

k|t − xj

k+1|t

p+1
,

(10a)

∀j ∈ V, ∀k = 0, 1, . . . , N − 1,

g
µ

j

k

= −Cxj

k|t

p+1
+ T − εj

k|t

p+1
, (10b)

g
µ

j
k

= Cxj

k|t

p+1
− T − εj

k|t

p+1
, (10c)

∀j ∈ V, ∀k = 1, 2, . . . , N.

In (9) α⋆ is the step length for the variable ⋆.

6) The QP (7) for Problem (6) at sth SQP iteration is

solved by iterating between primal variables computa-

tion (8) and dual variables computation (9)–(10). The

solution of QP (7) then becomes the new candidate

solution (Xs+1, U
s+1) for the original Problem (6).

Since the QP (7) is feasible we have zero duality gap,

and if the step lengths α⋆ are constant and sufficiently

small, the ǫ-bounded global optimal solution to the

linearized version of Problem (6) can be obtained [7].

7) The model (4) is relinearized around the new candidate

optimal trajectory (Xs+1, U
s+1), a new QP is for-

mulated and the procedure is repeated until ‖Us+1 −
U

s‖2 ≤ κ, ‖Xs+1 − X
s‖2 ≤ κ.

In summary, the proposed optimization is solved by using

two types of iterations: the outer iteration solves the original

nonlinear optimization problem (6) by solving a sequence

of QP’s (7), and the inner iteration solves the QP’s (7) in a

distributed fashion by using dual decomposition.

It is well know that the selection of step length α⋆ is crit-

ical to guarantee convergence of the algorithm. The authors

in [4] point out that SQP with fixed stepsize only guarantees

local convergence, and may fail if the starting point is far

away from the optimal solution. Methods ensuring (global)

convergence to local optima of SQP procedures are discussed

in [4], [14].

IV. SIMULATION RESULTS

This section presents the simulation results for a numerical

example to show the effectiveness of the proposed controller

design methodology. For a simpler interpretation of the

results, the control variable δ is set to zero so that no return

air from the room is recirculated.

We compare the proposed methodology with a baseline

control logic (BC), which is a simplified version of a

production control logic. The BC works as follows. The

mass flow rate of the supply air (ṁs) is set to its minimum

(0.005 kg/s) when all the room temperatures are within

the comfort range. The temperature of the AHUn cooling

air is increased linearly at a rate of 3.5 (oC/hour) until it

reaches the constraints defined in Section II-B. When a room

temperature hits the lower bound, the supply air temperature

will be adjusted by the heating coil in the corresponding

VAV box so that the room temperature stays at the lower

bound value. When a room temperature violates the upper

constraints, the AHU supply air temperature is set to its

minimum, and the mass flow rate of the supply air is

controlled so that the room temperature is within the comfort

range.

The numerical example considers a network of 15 rooms.

All the rooms have the same model parameters as in Table I

identified for the conference room in the Bancroft library

in Section II. The undirected graph describing the topology

of the room network is G1 = (V1,A1), where V1 =
{1, 2, . . . , 15}, and A1 = {(1, 2), (2, 3), . . . , (14, 15)}.

The ambient weather information is downloaded from July

2nd 12pm to July 3rd 12pm, 2009 at UC Berkeley, and

the temperature profile is plotted in Figure 6(a). Because of

the warm weather, only cooling is critical in the considered

scenario.
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Fig. 6: Simulation setups

Figure 6(b) depicts the nominal internal load profile (Pdn)

in our simulations. We assume that during 18:00 and 5:00 the

next day, the rooms are empty without occupancy, leaving

minimum internal load 0.01 kW due to lighting or other

electrical devices. We use an internal load profile different

for each room. In particular, we compute the internal load

for room j as

Pd
j = (0.5 + 0.1j)Pdn, j = 1, 2, . . . , 15,

where Pdn is plotted in Figure 6(b).

In our simulations, the parameters for controllers in Sec-

tion III are listed in Table II, and the constraints are defined

in Section II-B. The sampling time ∆t is chosen to be one

hour, the predict horizon is one day N = 24, and the desired

reference temperature (T j
ref) is 21.6oC. The step length (α⋆) is

selected heuristically in order to obtain convergence. Figure 7

shows the simulation results for the room network controlled

by the baseline controller. The temperature of all rooms

plotted in Figure 7(a) are within the comfort range defined by

the dot lines. Before 22:10 all the room temperatures are on

the upper bounds, and the baseline controller sets the supply
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TABLE II: Parameters for the numerical example
param value param value

Rc 0.9 Ru diag(0.001, 7.5)

σ 0.001 ρ 1.6 × 10
4

N 24 αλ 3.8 × 10
−4

αµ 3.8 × 10−4 αµ 3.8 × 10−4

κ 5 × 10−3
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Fig. 7: Baseline control

12 15 18 21 00 03 06 09 12

20.5

21

21.5

[o
C

]

(a) Room temperature (T j )

12 15 18 21 00 03 06 09 12
0

0.1

0.2

[k
g
/s

]

(b) Mass flow rate of the supply

air from VAV box (
˙

m
j
s)

12 15 18 21 00 03 06 09 12

12

14

16

18

[o
C

]

(c) Temperature of supply air
from AHU (Ts)
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dictive control

air temperature from AHU to its minimum (12oC), and the

supply air temperature increases linearly after 22:10 when

all the rooms are comfortable.

The DMPC Algorithm in Section III is coded in Matlab R©

and runs on a PC with Intel Core Duo CPU 3.00GHz. The

average runtime of the DMPC algorithm is 7 sec, and the

maximum is 13 sec. The simulation results for the DMPC

controller are presented in Figure 8.

The proposed DMPC controller cools down the room

temperature to the lower bounds of the comfort range during

the early morning (Figure 8(a)) while the baseline controller

remains inactivated until the room temperature hits the upper

bounds around 8:00 (Figure 7(a)). This precooling saves

energy, since during the early morning the lower ambient

temperature enables cooling coils to supply the required cool-

ing air temperature at less cost (smaller ∆Tc in model (3c)).

Moreover, the peak load shift at noon reduces the fan energy

consumption (note that we use a quadratic penalty of supply

air mass flow rate in (6a)).

DMPC controller applies a different supply air temperature

resetting strategy (Figure 8(c)) compared to the baseline

controller (Figure 7(c)). DMPC starts to increase the supply

air temperature after 17:00 when the room temperatures are

still on the upper bounds. After 17:00 the internal load is

low and the fan works at low speed. In this regime it is

more efficient to increase the fan power and use less chilled

water in the cooling coils to maintain thermal comfort. With

these unique features of DMPC, the total cost defined in (6a)

is reduced by 10.2% compared to the baseline controllers.

V. CONCLUSIONS

In this study a simplified two-mass room model is pre-

sented. Validation results show that the model captures the

thermal dynamics of a thermal zone with negligible external

load. Based on this model and predictive information of

loads due to occupancy and weather, a distributed model

predictive control is designed to regulate thermal comfort.

Recent research is focused on the study of the convergence

of the SQP algorithm to local optima [8].
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