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Abstract— This paper is mainly focused on providing the
probabilistic performance criteria for generalized likelihood
ratio (GLR) test based fault detection schemes. Analytical
expressions regarding probability distribution of the detection
delay and time between false alarms are presented, which are
validated by simulation. The results can be applied to important
industrial application, such as abnormal signal monitoring
(magnitude or energy), targeting and navigation, as well as
the design of fault tolerant control systems (FTCS).

I. INTRODUCTION

Nowadays, data-based fault diagnosis (FD) and integrated

FD (combining data-based and model-based approaches)

have been more and more highlighted in the recent research

work, as technical systems/processes normally consist of

abundant signal measurements due to the development of

sensor technologies, while the dynamics of many compo-

nents, e.g. motors, engines, servo valves, and pumps, etc., are

well understood and represented by mathematical models.

Concerning the online data-driven FD, the distribution of (or

the mean of, [1],[2]) the detection delay and the time between

false alarms are the most characteristic and visual perfor-

mance indices. The specific fault detection algorithm in-

cludes the exponentially weighted moving average (EWMA)

algorithm, the cumulative sum (CUSUM) control chart, the

generalized-likelihood ratio (GLR), etc. From the perspective

of probability and random process, the detection delay can

generally be explained as the first hit(ting) time (FHT) at

the boundary(-ies) concerning a drifted random walk or

Brownian motion generated by the recorded residual signal

data. Some research has been developed about the proba-

bilistic properties of FHT [3], [4], [5], [6]. Reference [7]

has succeeded in describing these distributions by means of

continuous approximation under CUSUM detection, whereas

the results for the GLR still has much room for improvement.

Regarding the integrated FD, a general type of approaches

is the integration of filters (or innovation nodes as in neural

network) and detection algorithms: relevant research has

been developed concerning CUSUM [8] and GLR [9].

This paper firstly attempts computing the probability dis-

tribution of detection delay with the GLR method, concern-

ing the discrete random walk formed by taking summation

of the original Gaussian i.i.d. noise samples upon time.

As no exact analytical distribution of the detection delay

can be achieved with the discrete GLR test due to the

extremely complex expression, the discrete random walk is
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approximated with the corresponding wiener process in the

continuous time domain, so that more mature performance

analysis tools can be applied. A square root curve bound

based on GLR is then used for detecting any drifted mean

of the wiener process, while the distributions of detection

delay and false alarm rate are deduced.

The research on this topic helps develop probabilistic FD

criteria, which can be used to improve the overall perfor-

mance of the fault detection system. It not only “refines”

the FD criteria from the performance indices providing only

average rates (e.g. average run length (ARL)) to a specific

description of distribution, but also helps with stochastic

modeling of the FD process, which corresponds to the

switching mechanism of the hybrid fault tolerant control

system (FTCS) driven by Markov [10], [11], [12] or semi-

Markov chain [7]. On the other hand, the proposed research

results are useful for assessment of fault detection alarms,

e.g. the alarm management in a large scale system or process,

so as to reduce the number of nuisance alarm signals to avoid

unnecessary shut-downs and the related costs. It will find vast

applications in process control industries, electro-mechanical

systems, and power systems.

The remainder of this paper is organized as follows: in

Section II, the modeling and the problem are formulated

first, followed by the main results, where the probability

distributions for detection delay and the time between false

alarms are analyzed for the GLR based detection system;

the results are validate by simulation in Section III, while

the concluding remarks are given in Section IV.

II. MODELING & MAIN RESULTS

First hitting time (FHT) [13], concerning a continuous

Wiener process (w.p.) W (t) or a discrete random walk W (k)
(W (kTs), where Ts is the sampling period), is defined as

the time instant Th when the w.p. (or random walk) crosses

the pre-determined bound b(t) (or b(k), b(kTs)) for the first

time. As w.p.s (or random walks) are stochastic processes,

the FHT is also random and obeys certain distributions

[18],[14]. The probability distribution of FHT is a visual

and proper measure reflecting its properties, and thus it has

been attracting the attention of researchers. Regarding the

field of fault diagnosis (FD), the most important measures

are the detection probability within a certain time length and

the false alarm probability. Initial research concentration was

the FHT with a constant value, resulting in the deduction of

the probability with simple probabilistic means [15]. Durbin

made representative breakthroughs by investigating the FHT

with any linear border and successfully summarizing the

expressions of relevant probabilities [18].
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In this part we mainly focus on carrying out relevant

performance analysis of GLR test standard and the corre-

sponding continuous likelihood ratio (CLR) algorithm. The

signal prepared for test is either random walk or wiener

process, achieved by taking summation or integration of

the original Gaussian i.i.d. noise signal. At first, the FHT

distribution of discrete random walk signal is analyzed, and

an upper bound of the cumulative density function (CDF)

of the detection delay is computed in an analytical form.

However, as no exact analytical expression of distribution is

worked out for the discrete detection delay, we then have

turned to a continuous likelihood ratio (CLR) test method,

which is the approximation of GLR in continuous time

domain. Given the recordable Gaussian i.i.d. noise sequence

y(t), the CLR detection consists of the following procedures:

the establishment of signal for fault detection, the detection

with GLR, and the analysis on performance indices.

A. Discrete Boundary Hitting Detection

The following research is developed with a typical discrete

random walk {W (k) : k = 0, 1, . . . } ({W (kTs)} with

W (0) = 0, E[W (k)] = 0, cov(W (k)) = σ2kTs, where

W (k+ 1)−W (k) ∼ N(0, σ2Ts), the samples of which are

formed by taking summation of a recorded, pre-processed

discrete gaussian i.i.d. noise data y(k). A discrete boundary

{b(k)} is also defined upon the desire. Considering the

reality of typical FD issues, we assume a(0) > 0 and treat

the first hitting as the detection of the fault, and the detection

delay is thus the FHT. It is now possible to describe the fault

detection probability within the time length kTs, using the

Markovian property of random walks:

P{W (j):1≤j≤k}(∃j : W (j) ≥ b(j))

= 1− P{W (j):1≤j≤k}(∀j : W (j) < b(j))

= 1− P{W (j):1≤j≤k}(b(k), b(k − 1), · · · , b(1))

= 1−
∫ b(k)

−∞

∫ b(k−1)

−∞
· · ·
∫ b(1)

−∞
f{W (j):1≤j≤k}(wk, wk−1, · · · , w1) dw1dw2 · · · dwk

= 1−
∫ b(k)

−∞

∫ b(k−1)

−∞
· · ·
∫ b(1)

−∞
fW (k)|W (k−1),W (k−2),··· ,W (1)(wk|wk−1, · · · , w1)

·fW (k−1)|W (k−2),··· ,W (1)(wk−1|wk−2, · · · , w1)

· · ·
·fW (2)|W (1)(w2|w1) · fW (1)(w1) dw1dw2 · · · dwk

= 1−
∫ b(k)

−∞

∫ b(k−1)

−∞
· · ·
∫ b(1)

−∞
fW (k)|W (k−1)(wk|wk−1)

·fW (k−1)|W (k−2)(wk−1|wk−2) · · · fW (2)|W (1)(w2|w1)

·fW (1)(w1) dw1dw2 · · · dwk

= 1−
∫ b(k)

−∞

∫ b(k−1)

−∞
· · ·
∫ b(1)

−∞

(2πσ2Ts)
− k

2 exp

(

−
w2

1 +
∑k

j=2(wj − wj−1)
2

2σ2Ts

)

dw1dw2 · · · dwk. (1)

Using the theorem of substitution for multiple variables

[16], we can obtain an inferior bound of the k-order integral

and thus a superior bound of the probability. Firstly we define

the new coordinates

v =











vk
vk−1

...

v1











= ϕ(w) =











wk − wk−1

wk−1 − wk−2

...

w1











, (2)

where w = [wk, wk−1, · · ·w1]
T

.

Calculate the Jacobian matrix of the function ϕ and its

determinant:

(Dϕ)(w) =













dvk

dwk

dvk

dwk−1
· · · dvk

dw1
dvk−1

dwk

dvk−1

dwk−1
· · · dvk−1

dw1

...
...

. . .
...

dv1

dwk

dv1

dwk−1
· · · dv1

dw1













=

















1 −1 0 · · · 0

0 1 −1
. . . 0

...
. . .

. . .
. . .

...

0 · · · 0 1 −1
0 · · · · · · 0 1

















,

obviously det((Dϕ)(w)) = 1.

Define the integral domain T =
∏k

j=1(−∞, b(j)) as in

the original coordinates, and it can be transformed in the

new coordinates as ϕ(T ) = (−∞, b(1))×
∏k

j=2(−∞, b(j)−
wj−1). Since ϕ(T ) contains independent variables of

the integral as {wk−1, wk−2, . . . , w1}, the original mul-

tiple integral will be transformed as an iterated inte-

gral in the new coordinates. In addition, define f(v) =
(2πσ2Ts)

−k/2 exp(−∑k
j=1 v

2
j /(2σ

2Ts)), which makes it

possible to continue the calculation of the multiple integral

shown in (1):

the integral in (1) =

∫

T

f(ϕ(w)) dw

=

∫

T

f(ϕ(w))| det((Dϕ)(w))| dw

=

∫

ϕ(T )

f(v) dv

=

∫ b(1)

−∞

∫ b(2)−w1

−∞
· · ·
∫ b(k)−wk−1

−∞

exp

(

−
∑k

j=1 v2
j

2σ2Ts

)

(2πσ2Ts)
k
2

dvkdvk−1 · · · dv1

=

∫ b(1)

−∞

∫ b(2)−w1

−∞
· · ·
∫ b(k−1)−wk−2

−∞

(2πσ2Ts)
− k−1

2 exp

(

−
∑k−1

j=1 v
2
j

2σ2Ts

)

Φ

(

b(k)− wk−1√
σ2Ts

)

dvk−1dvk−2 · · · dv1,

where Φ(x) denotes the cumulative distribution function

(cdf) of the standard natural distribution N(0, 1) at x.
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It is obvious that in the domain T (w) or ϕ(T (v)), we

have wj ≤ b(j) for j = 1, 2, . . . , k, which helps generate

the integral in (1) ≥ Φ

(

b(k)− b(k − 1)√
σ2Ts

)

·
∫ b(1)

−∞

∫ b(2)−w1

−∞
· · ·
∫ b(k−1)−wk−2

−∞

(2πσ2Ts)
−(k−1)/2 exp



−
k−1
∑

j=1

v2j /(2σ
2Ts)





dvk−1dvk−2 · · · dv1
≥ Φ

(

b(k)− b(k − 1)√
σ2Ts

)

Φ

(

b(k − 1)− b(k − 2)√
σ2Ts

)

·
∫ b(1)

−∞

∫ b(2)−w1

−∞
· · ·
∫ b(k−2)−wk−3

−∞
(2πσ2Ts)

− k−2
2

· exp



−
k−2
∑

j=1

v2j /(2σ
2Ts)



 dvk−2 · · · dv1

≥ · · ·

≥ Φ

(

b(1)√
σ2Ts

) k
∏

j=2

Φ

(

b(j)− b(j − 1)√
σ2Ts

)

. (3)

Equivalently, the probability of fault detection with in the

time length kTs, i.e. the cumulative distribution function of

the FHT, has a superior bound

P (0 < Th ≤ kTs)

= P{W (j):1≤j≤k}(∃j : W (j) ≥ b(j))

≤ 1− Φ

(

b(1)√
σ2Ts

) k
∏

j=2

Φ

(

b(j)− b(j − 1)√
σ2Ts

)

. (4)

Although a superior bound of the detection delay CDF

is computed, its distance to the actual detection delay

probability P (0 < Th ≤ kTs) has not been quantized

yet, and P (0 < Th ≤ kTs) is not an analytical result

convenient to be calculated. Considering the fact that more

analysis techniques exist in continuous boundary hitting, we

switch the research focus to continuous FHT distribution.

The resulting conclusion is comparable with the simulation

results, as continuous FHT distribution is the limit case when

Ts → 0.

B. Continuous Likelihood Ratio Based Detection

Here we firstly figure the extension of GLR detection to

the continuous time domain (CGLR), referring to the discrete

prototype used in [1]. We may assume the recordable signal

Y (t) is a zero-mean Gaussian white noise with the variance

σ2 before the fault happens, and the fault affects its mean to

a non-zero unknown value ν in a step manner. i.e.,

Y (t) ∼
{

N(0, σ2), when t < ts
N(ν, σ2), when t ≥ ts,

(5)

where ts denotes the time instant when the fault starts to

affect the signal. For simplicity, only ν > 0 is considered in

this paper.

Use y(t) to denote the recorded sample of Y (t). As the

likelihood ratio at time t concerning this research topic is

Λ(t) = ln
f
(ν)
Y (t)(y(t))

f
(0)
Y (t)(y(t))

=
ν

σ2

(

y(t)− ν

2

)

, (6)

where the probability density function (PDF) centered with

m is assumed following the normal distribution:

f
(m)
X (x) ,

1√
2πσ2

e−
(x−m)2

2σ2

.

Define the cumulative integral of likelihood ratio from tj
to tk:

Stk
tj =

∫ tk

tj

Λ(τ)dτ =
ν

σ2

∫ tk

tj

(

y(τ)− ν

2

)

dτ. (7)

Note that ν is unknown, and one solution is to find a

reasonable estimate ν̂ which generates maximum likelihood

for each tk. Following the thought of double maximization of

discrete GLR regarding both ν and tj [1], we may likewise

define the decision function g(t) at ∀t > t0:

g(t) = sup
t0<tj<t

sup
ν>0

St
tj

= sup
t0<tj<t

sup
ν>0

∫ t

tj

(

νy(τ)

σ2
− ν2

2σ2

)

dτ. (8)

Select a h > 0 as the threshold of FD. When g(t) ≥ h,

the detection equipment will judge the system as faulted;

otherwise it will not.

Although (8) provides a constant boundary h for g(t) to

cross, the complex form of g(t) limits further analysis of

the performance of the standard. Now we start to simplify

g(t). Note that the detection standard is equivalent to the

proposition: for a fixed t, ∃tj ∈ (t0, t), s.t. supν S
t
tj ≥ h. It

can be further transformed like in [1]:

sup
ν

St
tj ≥ h

⇔ sup
ν

{

∫ t

tj

(

y(τ)

σ
− ν

2σ

)

dτ − hσ

ν

}

≥ 0

⇔ 1

σ

∫ t

tj

y(τ)dτ ≥ inf
ν

{

ν

2σ
(t− tj) +

hσ

ν

}

⇔ 1

σ

∫ t

tj

y(τ)dτ ≥
√

2h(t− tj). (9)

Referring to the properties of Wiener processes [17], we

may define the left part of (9) as

w(t) =
1

σ

∫ t

tj

y(τ)dτ (10)

as a sample of a Wiener process W (t) formed by taking the

integration of y(t). Here W (t) starts at tj and satisfies

W (t) ∼
{

N(0, t− tj), when t < ts
N(ν(t− ts)/σ, (t− tj)), when t ≥ ts

(11)

The right part of (9) is a square root curve. Obviously, the

CGLR in (9) is a moving window detection method, with
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the convex of the square root boundary moving along the

wiener process sample w.
Note that (9) has already removed the superior bound

caused by the drift ν via optimization, and we may remove

the superior bound caused by tj . As our goal is the FD

delay, so the fault start time ts and the time of detection

t are important, whereas tj is not. Then it is important to

notice that for fixed t1, ∃t > t1

1

σ

∫ t

t1

y(τ)dτ =
√

2h(t− t1),

then from the perspective of GLR, t1 is one possible can-

didate of tj when referred to t, but the possibility for t
to have alternative tj ∈ (t1, t) still cannot be excluded.

Hence, we may define a GLR-like, but simpler continuous

likelihood ratio standard (CLR) with fixed square root bound

convex, and it is not as sensitive as the original CGLR

regarding wiener processes with the identical distribution.

In the mathematical form, it is expressed as

PCLR(t0 < Th < t) ≤ PCGLR(t0 < Th < t), (12)

where P denotes probability, and Th denotes the FHT.
Reference [18],[19] has concluded the expression of the

probability of FHT within a range concerning a zero mean

wiener process and a monotonically non-increasing linear

boundary. Especially, [19],[1] have extended the conclusion

to any monotonically non-increasing concave boundary b(t)
differentiable on (t0,∞) satisfying b(t+0 ) ≥ 0, where (13) is

summarized as an upper bound of the probability due to the

concavity:

P (t0 < Th < t) ≤
∫ t

t0

b(τ)− τb′(τ)√
2πτ3

e−
b2(τ)
2τ dτ, if b′(τ) ≤ 0

(13)
Reference [7] concluded the integral term (i.e., the upper

bound of probability density function (PDF)) will keep the

same form in the case of linear increasing boundaries, and

thus (13) is applicable to all the concave boundaries b(t)
satisfying b(t+0 ) ≥ 0. As a result, it can be applied to analyze

the distribution of the FHT of CLR standard.
At first we concentrate on the distribution of the detection

delay Th. Fix ts = 0 for simplicity, treat it as the start time

of CLR detection, and rewrite the boundary b(t) in (9):

b(t) =
√
2ht. (14)

As the research covers statistical characterization rather

than specific calculation, we may add −νt/σ to both w(t)
and the boundary so that the original problem can be trans-

formed into an equivalent problem [18], i.e. the detection of

the zero mean Wiener process w0(t) ∼ N(0, t) hitting the

bound

b0(t) =
√
2ht− ν

σ
t. (15)

Note that both b(t) and b0(t) are concave, implying that (13)

can be used for computing the FHT distribution for w(t) to

cross b(t) and b0(t).
Following the discussion above, we may provide an upper

bound of the probability of detection delay (which is FHT)

Th from t0 > 0 to t as in (16), regarding a zero mean wiener

process sample w0 and the boundary b0. As w0(0) = 0 and

b0(0) = 0 imply the meaningless “initial hitting” rather than

FHT mentioned above, (16) should be used with the cases

of t0 > 0.

PCLR (t0 < Th < t) ≤
∫ t

t0

b0(τ)− τb′0(τ)√
2πτ3

e−
b20(τ)

2τ dτ

=

∫ t

0

√
h

2
√
πτ

e−h+
√

2hν
σ

√
τ− ν2τ

2σ2 dτ. (16)

False alarm covers the case that ν = 0 but w(t) hits the

bound b(t) at some t > ts = 0. As a result, the probability

distribution of the first false alarm time FCLR between (t0, t)
with t0 > 0 satisfies

FCLR(t0 < Th < t) ≤
∫ t

t0

√
h

2
√
πτ

e−hdτ

=

√
h

2
√
π
e−h(ln t− ln t0). (17)

Nevertheless, the PDF in (16) and (17) tend to be infinite

when t0 → 0, which is trivial and makes (16) and (17) lose

its value of analysis. It is also noticeable in the simulation

part that most FHT happens in the first several time instants,

whereas a considerable proportion of FHT can be caused by

temporary spikes in w(t). In order to avoid it, we introduce a

constant bias β > 0 to the original CLR, forming the biased

CLR (BCLR), which will make the detection less sensitive

but also not easily affected by temporary spikes in w(t).
Under BCLR the bound becomes

b(t) =
√
2ht+ β, (18)

b0(t) =
√
2ht− ν

σ
t+ β. (19)

Then the distribution of detection delay PBCLR(t0 <
Th < t) and false alarm FBCLR(t0 < Th < t) become

PBCLR(t0<Th<t)≤
∫ t

t0

√
2β +

√
hτ

2
√
πτ3

e−
(
√

2hτ−
ν
σ

τ+β)2

2τ dτ, (20)

and

FBCLR(t0< Th< t) ≤
∫ t

t0

√
2β +

√
hτ

2
√
πτ3

e−
(
√

2hτ+β)2

2τ dτ. (21)

Obviously the problem of infinity PDF in (16) and (17) is

solved in (20) and (21).

As algorithms able to be examined in simulation and

practice, CLR and BCLR are comparable with the CUSUM

algorithm, which is a mature detection standard so far.

Considering the concavity and the start point of CLR and

BCLR, we may determine that the detection probability (and

also the false alarming probability) with CLR/BCLR is lower

than that of CUSUM before the time at the intersection

of the two bounds, but higher than that of CUSUM after

the time at the intersection. As a result, the PDF of the

detection delay (and also the time between false alarms)

with CLR/BCLR is more concentrated around some t > 0
than that with CUSUM, which is more “separated”. The
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Fig. 1. PDF of FHT in detection (upper) and false alarming (bottom) with
normalized experimental histograms.

explication of this phenomenon is positive: compared with

CUSUM, the CLR/BCLR standard is not easily disturbed by

outlier spikes but will have higher probability to response in

a timely manner if a real fault occurs.

III. SIMULATION

The simulation has been carried out using MATLAB in

two parts, respectively covering CLR and BCLR bounds. In

each part, both the normal fault detection (fault coefficient ν
occurs at t = 0) and the false alarm case are discussed, where

the PDF of FHT and the normalized experimental histogram

(50 divisions) are compared.

Random walk samples are used to approximate Wiener

processes, where the sampling interval Ts = 0.2s. The

Gaussian white noise signal source without fault is se-

lected as ∼ N(0, 1), generating the undrifted random walk

W0(k) ∼ N(0, kTs). The fault drifts W0(k) to W (k) ∼
N(νkTs, kTs). FHT is tested with 10000 randomly generated

Gaussian random walk samples with the same distribution,

so that the histogram can tend to the real distribution.

The time length of observation is set to 160s; in the

histogram all the FHT beyond that time are classified as

those “larger than 160” and annexed to the rightmost bar.

A. CLR

Select the parameters as h = 2 and ν = 0.5 and simulate

both the detection and false alarm test respectively with given

10000 random walk samples, resulting in Fig. 1:

Fig. 1 has shown two monotonic decreasing PDF, and the

distributions of experimental FHT match the corresponding

PDF well, implying the correctness of (16) and (17). The

first hitting tends to occur more frequently in the first several

seconds since ts, reflecting the infinity problem in (16) and

(17), as well as the necessity to push the bound away at

least in the first several seconds. Note that the cases that

the first hitting does not happen in the first 156.8s (the

rightmost bar) occupy 7423 times over 10000 random walk
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Fig. 2. PDF of FHT in detection (upper) and false alarming (bottom) with
normalized experimental histograms.

samples, regarding the false alarm problem. The false alarm

rate is reasonable concerning the bound itself but still high

in practice; it must be improved, for instance, with a positive

bias β, before used in the industrial signal monitoring.

B. BCLR

Select the parameters as h = 2, ν = 0.5, and the

bias β = 5. Simulate both the detection and false alarm

test respectively with given 10000 random walk samples,

resulting in Fig. 2:

Fig. 2 has shown two single peak PDF, and the distri-

butions of experimental FHT match the corresponding PDF

well, implying the correctness of (20) and (21). The visually

obvious deviation of histogram from the PDF in the bottom

figure is caused by the fact that the number of FHT valued

from 0 to 156.8 is much smaller than that larger than 156.8,

resulting in the different scaling. The peaks are around 21s

(detection) and 25s (false alarming test), and it can be

concluded that the BCLR is not as sensitive as CLR by

comparing the normalized histogram or the PDF with the

counterpart in Fig. 1. Note that the cases that the first hitting

does not happen in the first 156.8s occupy for 9647 times

over 10000 random walk samples, reflecting a reasonable

and acceptable false alarm rate in practice.

IV. CONCLUSION

This paper has characterized a new continuous likelihood

ratio test standard, which detects the abrupt change of the

mean of the monitored data sequence, based on the GLR

algorithm. The CLR and the improved BCLR standards have

provided the probability distributions of detection delay and

false alarm interval in analytical forms. The boundary curve

shape provides the CLR/BCLR standard with advantages

over CUSUM. The simulation has validated the analytical-

formed theoretical results and shown that BCLR has much

less false alarm rate despite the longer detection delay on

average, which is still acceptable.

3782



REFERENCES

[1] M. Basseville and I. Nikiforov, Detection of Abrupt Changes: Theory

and Application, Prentice Hall, Inc., 1993.
[2] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis

and Fault-tolerant Control, 2nd Ed. Springer Verlag, 2006.
[3] L. Breiman, “First Exit Times from a Square Root Boundary,” Proc.

Fifth Berkeley Symp. on Math. Statist. and Prob., 1967, pp. 9-16.
[4] P. Salminen, “On the First Hitting Time and the Last Exit Time for

a Brownian Motion to/from a Moving Boundary,” Adv. Appl. Prob.,
20(2), 1988, pp. 411-426.

[5] D.S. Donchev, “Brownian Motion Hitting Probabilities for Gen-
eral Two-Sided Square Root Boundaries,” Methodol. Comput. Appl.

Probab., 12(2), 2009, pp. 237-245.
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