
Advanced Traveler Information System with Communication

Constraints

Rohit Kumar and David A. Castañón

Abstract— The Advanced Traveler Information Systems
(ATIS), which provide real-time information about public
transit to the commuters have gained tremendous popularity
in last few years. The accuracy of such a system depends on
the location information of the bus at the base station. Conse-
quently bus uses a fixed transmission policy of communicating
periodically to base station. This periodic communication is
generally expensive, and it is in fact one of the main factors that
prevents aggressive deployment of such systems. In this paper
we first propose new architecture and develop new framework
to study the ATIS in a communication constrained environment
and then propose three different techniques for implementation
of the system that tries to minimize loss in accuracy in this
constrained environment. Simulation examples are provided in
the end to support the proposed theory.

I. INTRODUCTION

Advances in technologies like wireless communication,

Global Positioning System (GPS), and computational power

have directly impacted the transportation industry [1]. These

technologies have led to the development of ATIS [2], [3],

[4]. These systems provide the commuters with time of

arrival and current location of the public transit, and it helps

them to better plan their trip. These systems have received

even more attention as governments are trying to encourage

people to use public transport dependence on oil [5].

For an ATIS, each transit has a GPS receiver and a

transmitter that transmits the location information of the bus

to the base station [6], [7]. The base station then uses this

location information and advanced algorithms to estimate the

time of arrival (ETA) for rest of the stops on the itinerary [8],

[9], [10], [11], [12]. A block diagram of the existing ATIS

is shown in the Fig. 1(a).

In the block diagram, Predictor uses location information

of the bus to predict estimated time of arrival for subsequent

stops on the route. Existing methods employ protocols of

transmissions that are fixed a priori, either transmitting

location information either every kth time instant or after

every m meters [13], [14]. The problem with these protocols

is that they do not account for the traffic condition and time

of journey. For example, if the bus is running when there is

less traffic on the road, the number of communications to the

base station can be reduced. Excessive communication is one

of the main hurdles for implementation of ATIS systems, es-

pecially in developing countries. A transit authority (TriMet

in Portland, Oregon) that did not account for communication
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cost in its planning had to withdraw its implementation due

to the cost [5]. Proposals to use wire line communications

have been dismissed because there is no flexibility to change

routes or change bus stops, and it also causes problems in

maintenance.

Fig. 1. Figure showing the block diagram of the ATIS system. The predictor
and corrector are the predict and update steps of the conventional filter. ETA
are the algorithms that are used to estimate the expected time of arrival for
the future stops on the itinerary.

In our previous work [15], we developed hybrid system

models and estimation algorithms for accurate tracking of the

location of buses at the depot as they traveled along routes

with heterogeneous traffic conditions. This required periodic

communication of bus location measurements to the depot.

In this paper we propose a new architecture for ATIS that

allows buses to determine when transmissions are required,

in order to reduce communications. We develop algorithms

for controlling the occurrence of bus transmissions that

try to maintain the accuracy of the bus location estimates

at the base station under communication constraints, using

alternative optimization approaches.

The rest of this paper is organized as follows: Section II

presents background model and estimation algorithms used

for tracking locations of buses. Section III describes the prob-

lem of determining when buses should communicate their

local estimates to the base station. In section IV we present

three alternative approaches for controlling when to transmit

from buses to the base station. Section V has evaluations

of the proposed algorithms on a simulated example with

three traffic links. The paper ends with concluding remarks

in Section VI.

II. BACKGROUND

In this section we present the model that is used to define

dynamics of the bus on the road and estimation algorithm

that will be used for tracking. These models and estimation

algorithms were described in [15]; we provide a brief review

here.
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We assume that bus route is known a priori, and can be

divided into a sequence of traffic links m = 1, . . . ,M. Each

link has different traffic conditions, and is modeled with

different dynamics that governs the evolution of continuous

state associated with the bus location and speed. Let m(k)
denote the link index that bus is in at time k. Then, the model

at time k on link m(k) is described in state space form as:

x(k+1) = Fm(k)x(k)+Wm(k)(k) (1)

y(k) = hm(k)(x(k))+Vm(k)(k) (2)

m(k) = g(x(k)) (3)

where Fm(k) is a matrix governing the linear state dynamics,

hm(k) is a nonlinear measurement equation, and g is an

integer valued map that identifies the current link at time

k. The processes Wm(k)(k) and Vm(k)(k) are link dependent,

modeled as mutually independent zero-mean white Gaussian

noise with zero mean and variance Qm(k)(k) and Rm(k)(k),
respectively.

In our model, each link has a different average velocity

that governs the flow of traffic on that. To account for this,

we model velocity of the vehicle by an Ornstein-Uhlenbeck

process, which is specified in continuous time as

dVt =−λ (Vt −V0)+σdWt (4)

with dWt is the differential of Brownian motion. In (4), Vt is

velocity at time t, λ is rate of convergence to average speed,

and V0 is average velocity of the link. Adding position state

to the continuous dynamics and then discretizing it with time

step h yields the following discrete time model for the link

parameters:

x(k+1) = F
(h)
m(k)

x(k)+B
(h)
m(k)

um(k)+W
(h)
m(k)

(k) (5)

where F
(h)
m(k)

= e
F̃m(k)h, B

(h)
m(k)

=
∫ h

0 eF̃sB̃ds, h is the sampling

interval, and W
(h)
m(k)

(k) is white Gaussian noise with zero

mean and variance Q
(h)
m(k)

. The expressions for F
(h)
m(k)

,B
(h)
m(k)

and Q
(h)
m(k)

are given below.

F
(h)
m(k)

= eF̃m(k)h = I2×2 + F̃m(k)
(eλm(k)h −1)

λm(k)

B
(h)
m(k)

=
∫ h

0
eF̃m(t)sB̃ds =





1
λ 2

m(k)

(eλm(k)h −1)− h
λm(k)

1
λm(k)

(eλm(k)h −1)





Q
(h)
m(k)

(1,1) =
h

λ 2
m(k)

+
1

λ 3
m(k)

(

e2λm(k)h −1

2
−2(eλm(k)h −1)

)

Q
(h)
m(k)

(1,2) =
1

λ 2
m(k)

(

e2λm(k)h −1

2
− (eλm(k)h −1)

)

Q
(h)
m(k)

(2,2) =
e2λm(k)h −1

2λm(k)

Q
(h)
m(k)

=





Q
(h)
m(k)

(1,1) Q
(h)
m(k)

(1,2)

Q
(h)
m(k)

(2,1) Q
(h)
m(k)

(2,2)



×σ2

where F̃m(t) =

[

0 1

0 λm(t)

]

, B̃ =

[

0

1

]

, m(k) indicates

the link number (m(k) ∈ {1, . . . ,M}), um(k) = −λm(k)V0m(k)

(V0m(k) is average velocity of the m(k)th
link) and λm(k) is

the rate constant for link m(k). The details are given model

can be found in [15].

Based on this hybrid model, the results in [15] propose

different nonlinear estimation algorithms for tracking the

location of buses. In this paper, we will use a modification

of Extended Kalman filter (EKF) for the system given in (1 -

3) proposed in [15]. The main extension is to incorporate the

unknown switching time between links due to bus position

uncertainty, which requires a two-step predictor that exploits

the property that the proposed process model is linear. The

two-step prediction algorithm is described below.

Assume that at step k − 1, EKF updated estimate is

x(k − 1|k − 1) and its updated covariance P(k − 1|k − 1).
The algorithm is implemented as follows: first step is to

compute expected time remaining to switch links, τs, by

predicting the updated estimate using the process model. This

is straightforward is given as follows:

τs =
C− x1(k−1|k−1)

x2(k−1|k−1)

where C is the location of the switching corner, x(k−1|k−
1) = [ x1(k−1|k−1) x2(k−1|k−1) ]T . Then, if τs ≥ h,

the prediction algorithm uses the current link model and

generates a standard EKF prediction. In case where τs < h,

prediction uses a two-step process, where prediction from

t = kh to kh+τs uses model from the first link, and prediction

from kh+τs to (k+1)h uses the model from subsequent link,

where discrete model matrices are adjusted appropriately

to the size of the prediction intervals. The update of EKF

remains the same. Relevant equations are summarized below.
Prediction Equations

[x(k|k−1),P(k|k−1)] = Predict{x(k−1|k−1),P(k−1|k−1)}

One step prediction equations (Away from corner):

x(k|k−1) = F
(h)
m(k)

x(k−1|k−1)

P(k|k−1) = F
(h)
m(k)

P(k|k−1)F
(h)T
m(k)

+Q
(h)
m(k)

Two step prediction equations (Close to the corner)

x(τs|k−1) = F
(τs)
m(k)

x(k−1|k−1)

P(τs|k−1) = F
(τs)
m(k)

P(k|k−1)(F(τs))T
m(k)+Q

τs

m(k)

x(k|k−1) = F
(h−τs)
m(k)+1

x(τs|k−1)

P(k|k−1) = F
(h−τs)
m(k)+1

P(τs|k−1)(F(h−τs))T
m(k)+1 +Q

(h−τs)
m(k)+1

Update Equations:

[x(k|k),P(k|k)] =U pdate{x(k|k−1),P(k|k−1),y(k)}

m̂(k) = g(x(k|k−1)
H = ∂

∂x
hm̂(k)(x(k|k−1))

innv(k) = y(k)−hm̂(k)(x(k|k−1))

S(k) = HP(k|k−1)HT +R(k)
K(k) = P(k|k−1)HT S−1(k)
x(k|k) = x(k|k−1)+K(k)innv(k)
P(k|k) = (I−K(k)H)P(k|k−1)
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III. BUS COMMUNICATION PROBLEM

As shown in Fig.1, a bus collects GPS information and

transmits it to the base station. The base station uses the

received observation with an estimation algorithm such as

the above EKF to estimate the current state of the bus, which

is used by ETA algorithms to predict times of arrival for the

rest of the stops on the itinerary.

We assume that the bus has on-board computation capabil-

ity to perform its own estimation algorithm, and to determine

whether its information is worth communicating to the base

station. In this architecture, the base station still performs

prediction between communications from the bus. However,

when new communications arrive, they contain the most

recent state estimate of the bus, and thus replace the bus

state estimate at the base station.

Let PG(k) be the conditional distribution of the bus state

available at the base station at time k, and PL(k) be the

conditional distribution available at the bus at time k. We

assume that PG(k) is known both to be bus and the base

station, because the bus can compute the same predictions as

base station. Let j ≤ k denote the time of last communication

from the bus to the base station. Then, in our proposed ar-

chitecture, PG(k) = p(x(k)|Y[0, j]), and PL(k) = p(x(k)|Y[0,k]),
where Y[0,k]) = {y(1), . . . ,y(k)}.

Let u(k) denote the decision at time k made by the bus as

to whether to send its information to the base station:

u(k) =

{

0 No Transmission;

1 Transmission;

For u(k) = 1, the information at base station PG(k) is updated

with PL(k), i.e., PG(k) = PL(k).
The problem we would like to solve is to minimize

the difference between PG(k) and PL(k) over time, while

keeping the number of communications to a minimum. To

measure distance between the conditional densities at the

bus and the base station, we use the Kullback-Leibler (KL)

distance, denoted by DKL(PG(k)||PL(k)). Conceptually, we

can formulate the problem of selecting the communication

times as a stochastic control problem, as follows:

Objective
minimizeu Ey

{

∑
T
k=1 DKL(PG(k)||PL(k))

}

subject to: Ey

{

∑
T
k=1 c1u(k)

}

≤ Mr;

such that

PL(k) = U pdate{Predict{PL(k−1)},y(k)}

and

PG(k) = Predict{PG(k−1)} i f u(k) = 0;

= PL(k) i f u(k) = 1.
.

where u(k) is adapted to the information in Y[0,k]. The

expectation is over the observations y , Mr is the total number

of resources available and c1 is the cost of each communica-

tion. However, this problem is a stochastic control problem

with combinatorial decision space, nonlinear objective and

continuous measurements, which becomes intractable for

most nontrivial instances. In the next section, we describe

approximate solutions which are suitable for computation by

the bus.

IV. PROPOSED ALGORITHMS

As an initial step in developing approximate algorithms,

we will assume that conditional densities PG and PL are

well-approximated by Gaussian densities, and thus can be

represented by their respective conditional means and co-

variances. The KL distance for two N−dimensional Gaussian

distributions N (µ0,Σ0), and N (µ1,Σ1) is given as [16]:

DKL(N0||N1) =
1

2
(loge

|Σ1|

|Σ0|
+ tr

(

Σ−1
1 Σ0

)

+

(µ1 −µ0)
T Σ−1

1 (µ1 −µ0)−N)

This distance is readily computed in terms of the statistics

generated by EKF algorithm used in tracking and predicting

the current bus state.

A. Parametric Policy

The first policy we propose is a parametric policy for com-

munication, based on the idea that bus should communicate

when the distance between its conditional state distribution

and the distribution at the base station exceeds a threshold η .

Thus, as long as the bus is following the expected schedule,

there is little need for additional transmissions. The resulting

optimization is

minimizeη Ey

{

∑
T
k=1 DKL(PG(k)||PL(k))

}

such that Ey

{

∑
T
k=1 c1u(k)

}

≤ Mr,

where

u(k) = 0 i f DKL(PG(k)||PL(k))≤ η ;

= 1 otherwise.
.

where c1 is the cost of communication. Due to the mono-

tonicity of the cost with respect to communications, the

optimal threshold is one which uses the maximum communi-

cation while meeting the constraint with equality. Optimizing

for the threshold η can be done off-line using Monte-Carlo

simulations and learning, with a combination of stochastic

approximation techniques. The threshold η selected off-

line is fixed a priori and remains fixed for the remaining

schedule.

B. Fixed Horizon Optimization

In this approach, we try to solve of problem to determine

the time of communication using an on-line optimization

framework to minimize the difference between global (PG)

and local information (PG) subject to communication con-

straint. We require the selection of one communication time

every p time steps, and we solve the problem of which time

step is the best one to communicate. We divide the total

travel time into windows of size p each such that only one

transmission is permitted per window, i.e., T =Mr× p. Since

p ≪ T , the resulting optimization problem is significantly

reduced and can be handled on-line. This approach is similar

to the current practice of periodic communications, but gives

the bus some flexibility in choosing the time of communi-

cation within a window based on its information. Note that

the search space for each window is simply of size p.
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The optimization problem for each window is given by

minimizeγ∈Γ Ey

{

∑
p
k=1 DKL(PG(k)||PL(k))

}

(6)

where each window has different initial conditions. The

problem in (6) still requires expectation over future mea-

surements obtained by the bus, making it unsuitable for

real-time computation. Instead, we propose an open-loop

model where the conditional means of the Gaussian con-

ditional distributions PG(k) and PL(k) evolve according to

the unobserved dynamics (i.e. with no measurement updates)

while the conditional covariance of PL(k) evolves as the

Riccati equation of the EKF. This certainty equivalence

approximation allows computation of the expectation in (6)

in terms of known means and covariances that depend only

on the time of communications. The resulting deterministic

optimization problem becomes

minimizeγ∈Γ ∑
p
k=1 DKL(PG(k)||PL(k)) (7)

Let γopt be the solution to (6). The communication

schedule is formulated at the beginning of each window

as shown in Fig. 2(a). Consequently even though the base

station receives new information from the bus, it cannot use

the new information immediately for re-planning. The next

communication schedule is only developed at the beginning

of the next window using the currently available information

at that instant (which includes the new information due to

transmission in the last window). Note that PG and PL at

the end of planning phase and at the end of implementation

phase are different distributions. This is because PL has been

updated with new observation and PG has been updated

with PL at the time of scheduled transmission during the

fixed window. Hence, a new plan is developed in light of

the new available information. Note that the communication

constraint is explicitly satisfied in this case as the total

available resources are divided equally among each window.

C. Receding Horizon Optimization

The fixed horizon policy reduces the computational com-

plexity by dividing the optimization problem into individual

windows. However, this policy is unable to adapt to unex-

pected errors during the planned period that may require

more frequent communications, as one has to wait until the

end of the current window before additional communications

can be scheduled.

To overcome this drawback we propose a receding horizon

approach that uses current information to plan commu-

nications for next p time steps. It then implements the

recommended action for the next time step, updates the local

and global probability density estimates PG(k),PL(k), and

then plans for the next p steps (see Fig. 2(b)). In this case we

limit the plans to select only one communication per window.

Therefore the planning problem for a window is given as:

minimizeγ∈Γ Ey

{

∑
p
k=1 DKL(PG(k)||PL(k))

}

(8)

As in fixed horizon optimization, the bus does not have

access to future observation values at the planning time.

In order to avoid excessive computations, we again use a

certainty equivalence approach and assume that the mean

of the conditional distributions evolves open-loop using

the predictor EKF equations. Since observation is the only

random quantity in the problem formulation, this transforms

a stochastic optimization problem to a deterministic one.

In order to account for limited communications, we intro-

duce a time-varying penalty term on the objective function

as

minimizeu

p

∑
k=1

DKL(PG(k)||PL(k))+
p

∑
k=1

λ̆ (k)c1u(k) (9)

where penalty λ̆ (k) is time varying, and chosen to encourage

satisfaction of the cost constraints in (6).

For our receding horizon algorithm, we choose λ̆ (k) =
L
δ

where L is a tuning parameter chosen via Monte-Carlo

simulations and δ is the time difference between current time

and the time that last transmission took place. Thus, the cost

of communications λ̆ decreases inversely proportional to the

time between successive transmissions. This discourages use

of new transmissions close to previous transmissions unless

new information has created a large distance between the

conditional densities PG(k),PL(k). However, as the time from

the previous transmissions increases, it is less costly to use

communications.

(a)

(b)

Fig. 2. Optimization set for a window length of 4. The arrow indicates the
point when re-planning takes place. (a) Fixed Horizon (b) Receding Horizon

V. SIMULATION EXAMPLE

In this section we illustrate the performance of the above

algorithms as compared with alternative approaches using

simulated examples. In this example we take a linear system

of three links as shown in Fig. 3. The dynamics of each

link is modeled with process model from section II, with

following parameters: L1: V0 = 1500,λ =−1,σ2 = 300; L2:

V0 = 2000,λ =−1,σ2 = 450; L3: V0 = 1750,λ =−1.5,σ2 =
350. The distances are measured in feet and time in minutes.

We use parameters that are closer to those expected in

urban traffic. In Fig. 3, each street has a different elevation

([θL1
,θL2

,θL3
] = [π

4
,0, π

3
]rads) with respect to the reference

coordinate system and the measurements are made via a GPS

receiver. The GPS is assumed to have variance of 5002 along

x and y directions. In addition, we assume that the average

velocity in each link is unknown, and must be estimated

as part of the state variable x(k) based on the observations
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Fig. 3. Examples Set up. L1,L2 and L3 are the links. A, B and C are
the corners with coordinates (xc

1,y
c
1), (x

c
2,y

c
2), and (xc

3,y
c
3), respectively. The

arrow indicates the direction of travel.

of actual position based on progress against traffic. The

observation equation is given as:

y(k) = H(k)x(k)+M(k)+v(k)

where H(k) =

[

cosθm(k) 0 0

sinθm(k) 0 0

]

, and M(k) =
[

xc
m(k)−dm(k)cosθm(k)

yc
m(k)−dm(k)sinθm(k)

]

, dm(k) is the sum of link

lengths prior to the current link. These equations can

be easily derived using geometry. For our problem

(T = 60,Mr = 8, p = 8,c1 = 1). For the parametric policy,

we ran 100 simulations for each η (η is increased in

steps of 0.02). We find that ηo = 0.65 satisfies the average

communication constraints and yields the best average KL

distance. Hence ηo is used as the threshold for real-time

examples.

We will compare our results against periodic policy where

base station is updated with conditional distribution of the

bus every sth time instant, i.e,

PG(k) = PL(k) i f k
s

is an integer;

= Predict{PG(k−1)} otherwise.
.

For the fixed horizon problem, we have 7 windows. So

only one transmission is allowed in each window and one

transmission is used for hand-shake. For the receding horizon

implementation, we perform Monte-carlo simulations off

line to determine the value of L such that communication

constraints are satisfied. We find that L = 10 works well for

our problem.

We once again like to explicitly highlight some features

of our system. This is a push protocol system where the bus

does the planning and decides the time of communication.

Only bus has access to the true observation y. The base

station is updated with latest estimation of the filter at the bus

whenever a transmission takes place. The bus has the access

to system equations of the base station. Since the filter is

implemented with an EKF, the conditional distributions are

means and covariances of the Gaussian distributions.

For the parametric policy, once the threshold is decided

the implementation is relatively simple. The bus has its

own current information and information available at the

base station. Whenever the difference is greater than the

precomputed threshold, a transmission takes place and the

base station is updated. For fixed horizon and receding

horizon optimization, the means of the PG and PL are

predicted forward to determine the link change (change in the

dynamical system) during the planning and implementation

phase and then distribution is propagated accordingly.

The communication policy for a random simulation is

shown in Fig. 4 and tracking accuracy are given in Fig. 5,

6, 7, 8 . We present average KL distance between the bus

and base station for the trip. We believe KL distance is

better statistic to measure the loss in accuracy due to com-

munication constrained environment. Lower the average KL

distance implies that base station has better understanding

of bus. The estimated time of arrival for rest of the stops

on the itinerary will be directly proportional to the accuracy

of current information available at the base station. However

we have listed Root Mean Square (RMS) and sum of the

trace of the variances in Table I for readers interested in

these statistics. Table I lists results of 200 Monte-Carlo

simulations.

Type Mean x mean v tr(Variance) Avg. KL Dist.

KF 200 21.79 0.6998×105 -

Periodic 226 19.57 1.8654×105 1.1432

Parametric 223 20.80 1.5592×105 0.25359

Fix. Horizon 254 20.13 1.4378×105 1.1735

Rec. Horizon 222 20.41 1.7581×105 0.30957

TABLE I

RMS ERROR FOR DIFFERENT ALGORITHMS. x IS MEASURED IN FEET

AND v IS MEASURED IN FEET/MINS.

As expected, we note that receding horizon which accounts

for the new information at each step outperforms fixed

horizon and is comparable to parametric approach. However

one would have expected for fixed horizon to perform better

than the parametric policy but that was not the case in

majority of the experiments which basically shows that one

can achieve good performance in constrained environment

by choosing the transmission threshold appropriately. The

threshold was well trained to the simulations and hence it is

can perform better than receding horizon as well. However

we do not expect parametric approach to perform better than

receding horizon in general as the later adapts to the real-time

information while for parametric, threshold is chosen a priori.

If one takes a closer look at the fixed horizon optimization

schedule it almost looks like a periodic policy if it was not

for the change in dynamical system on different links or for

some unlikely observations.

0 10 20 30 40 50 60
0

0.5

1
Periodic

0 10 20 30 40 50 60
0

0.5

1
Thresholding

0 10 20 30 40 50 60
0

0.5

1
Fixed Horizon

0 10 20 30 40 50 60
0

0.5

1
Receding Horizon

Time in Mins

Fig. 4. Transmission Schedule for different protocols. An impulse function
at any time indicates that base station is updated by the bus.
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VI. CONCLUSION

In this paper we present a new push architecture for

Advanced Traveler Information Systems based on buses

determining when to communicate their position information

to the base station. We also developed new algorithms that

enable buses to determine when to communicate with the

base station, and evaluated them using multi-link simulations.

Our experiments show that the proposed algorithms reduce

the number of transmission by more than 75% without much

loss in estimation accuracy at the base station.

While our current work in based on simulations, we are

pursuing approaches to test these algorithms using experi-

mental data collected from real systems. Other directions for

future research include enhancing the bus motion model to

incorporate planned stops. The current motion models are

0 10 20 30 40 50 60
−60

−50

−40

−30

−20

−10

0

10

20

30

40

Time in Mins

V
e

lo
c
it
y
 i
n

 F
e

e
t/

M
in

Error in Velocity

 

 

Parametric

Periodic

Fixed Horizon

Receding Horizon

Fig. 8. Error in Velocity

accurate for transit between stops, but do not model the

approach, stay and departure stages of bus stops. In addition,

one can envision alternative architectures where the base

station can request information from the bus based on its

knowledge provided by other buses.

Our results provide evidence that ATIS can perform in a

communication constrained environment without significant

loss in accuracy, which will enable fielding of lower cost

ATIS systems.
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