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Abstract— We consider the problem of state estimation over
lossy networks. Although a large number of approaches have
been proposed to improve the estimator’s performance, most
of them demand either extra channel bandwidth or sensor
energy budget. In this paper, we propose an innovative packet-
splitting transmission approach and derive a corresponding
packet-splitting Kalman Filter (PSKF). In this scheme, one
bit of each packet is diverted from quantizing the current
innovation to indicate the sign of the previous innovation. We
show that if converges, the expected value of the a posteriori
estimate error covariance (E[Pk]) of the PSKF converges to a
smaller value compared with that of modified Kalman filter in
literature. Hence the proposed PSKF is able to tolerate a higher
or at least equal data loss rate than the MKF. Examples are
provided to illustrate the main ideas.

Keywords: Packet-splitting, Kalman filter, Sign of innova-
tions

I. INTRODUCTION

Networked Control Systems (NCSs) are control systems

in which control loops are closed via networks. With the

advantages resulting from using shared networks, such as low

cost, system agility and self-configuration, NCSs have been

applied in a wide range of areas. However, networks between

distributed components also introduce new challenges, one

of which is packet losses. Typically, packet losses are caused

by transmission errors in physical network links, packet

collisions or buffer overflows due to packet congestion [1].

When data dropouts occur, the performance of closed-loop

NCSs may deteriorate and the closed-loop system may even

become unstable. Thus, the effect of packet losses on the

closed loop system can not be neglected.

The problem of estimation over packet-dropping networks

has received significant attention recently. Sinopoli et al. [2]

proposed a modified Kalman filter (MKF) to adopt obser-

vation losses. They modeled packet dropouts as a Bernoulli

process and studied the statistical properties of the MKF.

They proved the existence of a critical value for the packet

loss rate, beyond which E[Pk] is unbounded. They also gave

upper and lower bounds on E[Pk]. Liu and Goldsmith [3]

extended the results in [2] to allow partial observation losses.
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Fig. 1. Estimation over a Lossy network

Huang and Dey [4] described packet losses using a two state

Markov chain. The authors introduced the notion of peak

covariance and gave sufficient conditions for the stability

of a peak covariance process in general vector case. In [5],

Smith et al. modeled the packet loss process as a Markovian

jump linear system (MJLS). Instead of using a time-varying

Kalman filter they proposed a computationally simpler es-

timator to cope with packet losses. Other researchers also

employed MJLSs to model NCSs over lossy networks, such

as [6], [7], etc.

Xu and Hespanha [8] proposed an LTI estimation frame-

work, in which local estimates are sent to the remote

estimator. Their work assumed suffient local computational

capability of the sensors. Similar result can be found in [9].

A. Ribeiro et al. [10] developed a distributed Kalman filter

using the sign of innovations (SOI-KF) based on binary

observations. In terms of performance and computational

complexity it is comparable to the standard Kalman filter

which is based on the original observations. By extending

the SOI-KF, K. You et al. [11] developed a very general

multi-level quantized innovation Kalman filter (MLQ-KF)

for linear discrete-time stochastic systems. By optimizing

the filter with respect to quantization levels, they obtained

a close to optimal estimator MLQ-KF.

In this paper, we consider the problem of state estima-

tion (Fig. 1) for linear discrete-time stochastic systems and

propose an innovative packet-splitting Kalman filter (PSKF).

Following the principle of SOI-KF in [10], we derive the

PSKF. It is proved to be able to improve the estimation per-

formance without requiring extra communication bandwidth

and energy budget. What it needs is a buffer to store the sign

of the previous innovation. The present work shows that if

converges, E[Pk] of the PSKF converges to a smaller value

than that of the MKF. Hence the PSKF is able to tolerate a

higher or equal data loss rate than the MKF proposed in [2].

A smart sensor runs a Kalman filter and sends local estimates

to the remote estimator. Although the estimation performance
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of the smart sensor Kalman filter (SSKF) is better than that

of the PSKF, it requires sufficient computation capacity.

The remainder of this paper is organized as follows. In

Section II, we provide the mathematical models. In Section

III, some frequently used notations are defined and a quick

review of the MKF and SOI-KF is given. In Section IV, we

propose an innovative packet-splitting transmission scheme

and derive the corresponding optimal estimator. Performance

analysis on the PSKF is carried out in Section V. In Section

VI, we consider a simple scalar example to demonstrate the

theory. Conclusion and results are summarized in Section

VII.

Notation: S
n
+ is the set of n × n positive semi-definite

matrices. When X ∈ S
n
+, we simply write X ≥ 0; and when

X is positive definite, we write X > 0. R+ is the set of

positive real numbers. R
n×n and R

n are the sets of n × n
real matrices and n × 1 real vectors respectively. We use

f(x|y) to denote the probability density function (pdf) of a

random variable x given a random variable y. N(µ, Σ) stands

for Gaussian distribution with mean µ and covariance matrix

Σ.

II. PROBLEM FORMULATION

Consider the following system in Fig. 1:

xk+1 = Axk + wk, (1)

yk = hT xk + vk, (2)

where xk ∈ R
n is the state vector, yk ∈ R is the observation,

wk ∈ R
n and vk ∈ R are mutually uncorrelated Gaussian

white noises with zero mean and covariances Q ∈ S
n
+,

r ∈ R+ respectively. The initial state x0 is assumed to

be a Gaussian vector with zero mean and variance P0.

Furthermore, x0 is uncorrelated with both wk and vk. We

also assume that (A, hT ) is observable and (A,
√

Q) is

controllable.

Suppose that the network inserted between the sensor and

the estimator has an ideal communication path except packet

dropouts. Let γk be the indicator of packet drop at time k,

i.e., if the packet transmitted at time k is dropped, γk = 0,

and otherwise γk = 1. We assume the packet arrival is an

independent, identically distributed (i.i.d) Bernoulli random

process, and E[γk] = γ, where γ ∈ [0, 1].
Assume the sensor can access the output prediction ŷk =

hT Ax̂k−1 that is broadcasted by the estimator. For instance,

the estimator is powered by external power source and has

enough energy to broadcast the output prediction ŷk to the

sensor node once it is available. We also assume the sensor

is able to compute the innovation εk = yk − ŷk and store its

sign in a buffer such that it can be sent to the estimator at

time k + 1.

Suppose that each packet sent by the sensor contains N
bits, and N is sufficiently large so that the difference of

quantized errors between an N -level and an (N -1)-level

logarithmic quantizer is insignificant and neglectable. In [12],

Minyue Fu et al. illustrated that the improvement achieved by

increasing the number of quantization bits is marginal when

N ≥ 4. Thus, such an assumption is not as strong as one

may imagine. Traditionally, all N bits are used to quantize

the current innovation εk, whereas we will partition every

packet into two portions: in the first portion, one bit is used

to indicate the sign of previous innovation εk−1; the current

observation yk is quantized by the remaining N−1 bits in the

second portion. In this paper, we will treat the “one bit” in

the first portion as a nonlinear coarse quantizer and launch

our study on it with the assistance of SOI-KF introduced

in [10]. We will ignore quantization effect generated by the

(N -1)-level quantizer in the second portion.

The main questions to be solved in this paper are:

1) how can we compute the best estimate x̂k of xk in (1)

using such packet-splitting scheme?

2) does this scheme lead to better estimation performance

compared with existing known results in existing lit-

erature?

The answers will be provided in subsequent sections.

III. PRELIMINARIES

A. Definitions

The following terms are frequently used in subsequent

sections. Assume that A, h, Q, r are the same as they appear

in section II. We define the functions t and gλ: S
n
+ → S

n
+ as

follows:
t (X) , AXAT + Q, (3)

gλ(X) , X − λXh[hXhT + r]−1hT X. (4)

For functions f , f1, f2: S
n
+ → S

n
+, f1 ◦ f2 and fk are

defined as

f1 ◦ f2(X) , f1(f2(X)),

fk(X) , f(f ◦ · · · ◦ f
︸ ︷︷ ︸

k−1

(X)).

We also define the function g̃λ: S
n
+ → S

n
+ as

g̃λ(X) = gλ ◦ t(X).

In the following text, if λ = 1, gλ=1 and g̃λ=1 will be written

as g and g̃ for brevity.

Define Yk as all received data by the estimator up to time

step k, and define

x̂−

k , E[xk|Yk−1], e−k , x̂−

k − xk, P−

k , E[e−k e−T
k |Yk−1],

x̂k , E[xk|Yk], ek , x̂k − xk, Pk , E[ekeT
k |Yk],

The following Lemma is from [2].

Lemma 3.1: The following statements are true.

a) If 0 ≤ X ≤ Y , then g̃λ(X) ≤ g̃λ(Y ), t(X) ≤ t(Y ).

b) If 0 ≤ λ1 ≤ λ2, then g̃λ1
(X) ≥ g̃λ2

(X).

c) If X is a random variable, then E[gλ(X)] ≤ gλ(E[X ]).

1107



B. Kalman Filtering with Intermittent Observations

Sinopoli et al. [2] proposed the MKF to compute the pair

(x̂−

k , P−

k ) and (x̂k, Pk) over packet lossy networks. Both

the time and measurement updates are implemented when

a packet is perfectly received. If a packet is dropped, only

the time update is performed at that time step. The MKF is

given by the following set of equations:






x̂−

k = Ax̂k−1,
P−

k = APk−1A
T + Q,

Kk = P−

k h[hT P−

k h + R]
−1

,
x̂k = x̂−

k + γkKk(yk − hT x̂−

k ),
Pk = (I − γkKkhT )P−

k .

For ease of reference, we present Theorem 2 from [2] as

follows:

Lemma 3.2: Consider the system described by (1) and (2).

For the MKF, if A is unstable, then there exists a λ ∈ [0, 1)
such that

lim
k→∞

E[P−

k ] = +∞, ∃ P0 ≥ 0, ∀ 0 ≤ γ ≤ λ,

lim
k→∞

E[P−

k ] < MP0
, ∀ P0 ≥ 0, ∀ λ < γ ≤ 1,

where MP0
depends on the initial condition P0.

When γk ≡ 1 for k = 1, 2, . . ., the MKF reduces to

the standard Kalman filter. Since (A, hT ) is observable and

(A,
√

Q) is controllable, then there exists P ≥ 0 such that

P = t ◦ gλ=1(P ). Define P̃ ≥ 0 as P̃ = gλ=1(P ). Then we

have

P̃ = gλ=1 ◦ (t ◦ gλ=1(P )) = gλ=1 ◦ t(P̃ ) = g̃λ=1(P̃ ),

that is, limk→∞ Pk = P̃ .

C. SOI-KF: Kalman Filtering Using the Sign of Innovations

In [10], A. Ribeiro et al. proposed a recursive algorithm for

distributed state estimation based on the sign of innovations

(SOI). Their goal was to achieve low cost communication by

transmitting a single bit per observation.

The authors defined the message bk as SOI:

bk , sign[yk − ŷk] =

{

+1, if yk ≥ ŷk,

−1, if yk < ŷk.
(5)

The focus of [10] was to study the minimum mean squared

error (MMSE) estimator of xk based on b0:k , [b0, . . . , bk]T .

The author first proposed the exact MMSE estimator of

which the expenditure is unaffordable for resource lim-

ited NCSs. Then a reduced-complexity approximation of

the MMSE estimator was motivated to pursue. Approx-

imating f(xk|b0:k−1) as a Gaussian distribution, that is,

f(xk|b0:k−1) ∼ N(x̂−

k , P−

k ), they obtained an approximate

SOI-KF which is coarse but simple and efficient. The SOI-

KF is described in the following lemma. For detailed proof,

please refer to Proposition 2 in [10].

Lemma 3.3: Consider system (1), (2) and the message bk

defined in (5). Assume f(xk|b0:k−1) ∼ N(x̂−

k , P−

k ), then the

MMSE estimator can be obtained recursively as follows:

x̂−

k = Ax̂k−1, (6)

P−

k = t(Pk−1), (7)

x̂k = x̂−

k +
√

2/πP−

k h(hT P−

k h + r)
−0.5

bk, (8)

Pk = gλ= 2
π

(P−

k ). (9)

The main result in this paper is presented in the next two

sections.

IV. PACKET-SPLITTING KALMAN FILTER

WITHOUT EXTRA COST

To begin with, we will modify the definition of message

bk in [10] a little bit such that it is more appropriate from a

theoretical angle.

bk , sign[yk − ŷk] =

{

+1, if yk > ŷk,

−1, if yk < ŷk.
(10)

When εk = 0, bk is a random variable with the probability

Pr(bk = 1|εk = 0) = 0.5, and Pr(bk = −1|εk = 0) = 0.5.

Let us denote the N -bit packet transmitted at time k by

Ik. We partition Ik into two parts: one part consists of

one bit which indicates the sign of the previous innovation

εk−1, i.e., bk−1; the other part contains N − 1 bits which

represent the recent measurement yk. In other words, Ik =
[bk−1, yk]. Intuitively, if Ik−1 is dropped, the performance of

the estimator could be improved by estimating xk−1 based

on bk−1 as long as Ik is able to reach the estimator, as bk−1

contains some useful information of yk−1. Thus the proposed

scheme improves the performance of the estimator by reduc-

ing estimation error without requiring extra communication

bandwidth or energy cost. What it needs is a one-bit buffer

to store the sign of the pervious innovation.

We further define x̂+
k , e+

k and P+
k at time step k + 1 as

follows:
x̂+

k , E[xk|Yk, γk+1bk],

e+
k , x̂k − x̂+

k ,

P+
k , E[e+

k e+T
k |Yk, γk+1bk].

Following a traditional simplification in non-linear

filtering, we approximate f(xk|γ1I1, ..., γk−1Ik−1) ∼

N(x̂−

k , P−

k ), and next proposition gives an optimal linear

MMSE estimation of x̂+
k . In section VI, we will verify the

validity of this Gaussian approximation using a simple scalar

example.

Proposition 4.1: Consider the system (1), (2) and as-

sume γk−1 = 0, γk = 1. If f(xk|γ1I1, ..., γk−1Ik−1) ∼

N(x̂−

k , P−

k ), x̂+
k−1 and P+

k−1 are computed based on x̂−

k−1

and P−

k−1 as follows:

x̂+
k−1 = x̂−

k−1 +
√

2/πP−

k−1h(hT P−

k−1h + r)
−0.5

bk−1,

(11)

P+
k−1 = gλ= 2

π

(P−

k−1). (12)

Proof: A direct result from the SOI-KF proposed in

Lemma 3.3.

The following theorem illustrates our proposed packet-

splitting Kalman filter (PSKF). At time step k + 1, the

estimator first re-estimates the state, that is, compute x̂+
k from

x̂k given bk and γk+1. Then the time update is carried out,

i.e., x̂−

k+1 is computed. After that x̂k+1 is computed based
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on x̂−

k+1, yk+1 and γk+1. Such an iterative calculation of

(P−

k , x̂−

k ), (Pk, x̂k) and (P+
k , x̂+

k ) is given by the following

theorem.

Theorem 4.2: In the PSKF, at time k + 1, (P+
k , x̂+

k ),
(P−

k+1, x̂
−

k+1) and (Pk+1, x̂k+1) can be computed recursively

as follows:

x̂+
k = x̂k + (1 − γk)γk+1

√

2/πPkh(hT Pkh + r)
−0.5

bk,

P+
k = gλ= 2

π
(1−γk)γk+1

(Pk),

x̂−

k+1 = Ax̂+
k ,

P−

k+1 = t(P+
k ),

Kk+1 = P−

K+1 h[hT P−

k+1h + r]
−1

,

x̂k+1 = x̂−

k+1 + γk+1Kk+1(yk+1 − hT x̂−

k+1),

Pk+1 = gγk+1
(P−

k+1).

Proof: Considering whether packets are dropped at time

step k and k + 1 or not, four cases are needed to consider:

Case 1: γk = 0, γk+1 = 0. Since no new information

reaches the estimator at time k + 1, x̂+
k is the same as x̂k

and the measurement update is skipped, which is the same

if we substitute γk = 0 and γk+1 = 0 into the equations of

Theorem 4.2, i.e.,
x̂+

k = x̂k,

P+
k = Pk,

x̂k+1 = x̂−

k+1 = Ax̂+
k ,

Pk+1 = P−

k+1 = t(P+
k ).

Case 2: γk = 0, γk+1 = 1. bk is received as packet Ik+1

arrives at the estimator. Thus, the SOI-KF based on bk is

implemented first, followed by the MKF:

x̂+
k = x̂k +

√

2/πPkh(hT Pkh + r)
−0.5

bk,

P+
k = gλ= 2

π

(Pk),

x̂−

k+1 = Ax̂+
k ,

P−

k+1 = t(P+
k ),

Kk+1 = P−

k+1 h[hT P−

k+1h + r]
−1

,

x̂k+1 = x̂−

k+1 + Kk+1(yk+1 − hT x̂−

k+1),

Pk+1 = g(P−

k+1).
This agrees with Theorem 4.2.

Case 3: γk = 1, γk+1 = 1. The optimal estimation

reduces to the MKF.

x̂+
k = x̂k,

P+
k = Pk,

x̂−

k+1 = Ax̂+
k ,

P−

k+1 = t(P+
k ),

Kk+1 = P−

k+1 h[hT P−

k+1h + r]
−1

,

x̂k+1 = x̂−

k+1 + Kk+1(yk+1 − hT x̂−

k+1),

Pk+1 = g(P−

k+1).
Again this agrees with Theorem 4.2.

Case 4: γk = 1, γk+1 = 0. No new information comes

to the estimator at time k + 1. The optimal estimation is the

same as the one in Case 1.

Remark 4.3: To remove confusion, we denote x̂k, ek,

Pk computed in our proposed PSKF as x̂PSKF
k , ePSKF

k ,

PPSKF
k . Similarly, in the MKF and SSKF, they are denoted

as x̂MKF
k , eMKF

k , PMKF
k and x̂SSKF

k , eSSKF
k , PSSKF

k

respectively.

Remark 4.4: In packet-dropping networks, unlike tradi-

tional estimator, due to randomness of γk, Pk is a random

variable, therefore, we investigate the statistical properties of

Pk. In this paper, we will focus on studying E[PPSKF
k ].

V. PERFORMANCE ANALYSIS

A. Convergence Analysis

Recall λ is the critical value in Lemma 3.2.

Lemma 5.1: If A is unstable, for ∀ γ ∈ (λ, 1], we have

lim
k→∞

E[PMKF
k ] ≤ MP0

, ∀ PMKF
0 ≥ 0,

where MP0
= gγ(MP0

).
Proof: From Lemma 3.2, we obtain

lim
k→∞

E[PMKF
k ] = lim

k→∞

E[gγk
(PMKF−

k )]

= lim
k→∞

E[gγ(PMKF−

k )]

≤ lim
k→∞

gλ(E[PMKF−

k ])

≤ gγ(MP0
) , MP0

where we used the property c) from Lemma 3.1.

Lemma 5.2: Given an unstable matrix A, consider the

sequence Vk = (1− λ)t(Vk−1) + λg̃k(V0), with any V0 ≥ 0
and λ ∈ [0, 1). For λ , 1 − 1

ρ(A)2 ∈ [0, 1), the following

statement holds,

lim
k→∞

Vk = +∞, ∀ V0 ≥ 0, ∀ 0 ≤ λ ≤ λ,

lim
k→∞

Vk = V , ∀ V0 ≥ 0, ∀ λ < λ ≤ 1,

where ρ(A) is the spectral radius of A and V ≥ 0 is the

unique solution of the equation

V = (1 − λ)t(V ) + λP̃ . (13)

Proof: We shall first prove this lemma with V0=0.

1) ∀0 ≤ λ ≤ λ =⇒ limk→∞ Vk = +∞.
Define a sequence {Wk}∞0 satisfying Wk = (1 −
λ)t(Wk−1) with W0 = 0. Let Ã =

√
1 − λA and Q̃ =

(1 − λ)Q. As (Ã,

√

Q̃) is controllable, the Lyapunov

equation X = ÃXÃT + Q̃ has a unique positive semi-

definite solution iff ρ(Ã) < 1, i.e., λ > 1− 1
ρ(A)2 = λ.

If 0 ≤ λ ≤ λ, it is impossible for Wk to converge

to a finite matrix, otherwise X = ÃXÃT + Q̃ has a

unique positive semi-definite solution. In other words,

limk→∞ Wk = +∞.

Next W1 ≤ V1 and Wk ≤ Vk imply that

Wk+1 = (1−λ)t(Wk) ≤ (1−λ)t(Vk)+λg̃k(V0) = Vk+1

By induction, Wk ≤ Vk ∀k = 0, 1, 2, . . .. Thus, when

0 ≤ λ ≤ λ, limk→∞ Vk = +∞.

2) ∀λ < λ ≤ 1 =⇒ limk→∞ Vk = V .
It suffices to show that {Vk}∞0 is bounded and mono-

tonic increasing.

If λ < λ ≤ 1, Ã is stable, then the Lyapunov equation

X = ÃXÃT + Q̃ + λP̃ has a unique positive semi-

definite solution V ≥ 0.
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It is easy to obtain g̃k(0) ≤ P̃ . Therefore,

Vk = (1 − λ)t(Vk−1) + λg̃k(0)

≤ (1 − λ)t(Vk−1) + λP̃ ≤ V ,

i.e., Vk is bounded.

Clearly, V1 = (1 − λ)t(V0) + λg̃(V0) = gλ(Q) ≥ V0,

and Vk ≥ Vk−1 implies

Vk+1 = (1 − λ)t(Vk) + λg̃(Vk)

≥ (1 − λ)t(Vk−1) + λg̃(Vk−1) = Vk.

By induction, {Vk}∞0 is nondecreasing. Therefore, Vk

converges and

lim
k→∞

Vk = (1 − λ)t( lim
k→∞

Vk) + λ lim
k→∞

g̃k(V0)

= (1 − λ)t( lim
k→∞

Vk) + λP̃ .

Thus, limk→∞ Vk = V .

Finally, it is straightforward to extend the above analysis

to V ≥ 0 as limk→∞ g̃k(V0) = P̃ .

Theorem 5.3: If A is unstable, then there exists a γc ∈
[0, 1) such that

lim
k→∞

E[PPSKF
k ] = +∞, ∃ PPSKF

0 ≥ 0, ∀ 0 ≤ γ ≤ γc,

lim
k→∞

E[PPSKF
k ] < +∞, ∀ PPSKF

0 ≥ 0, ∀ γc < γ ≤ 1,

and γc is bounded by λ and λ, i.e., λ ≤ γc ≤ λ.

Proof: First, consider the sequence Vk = (1 −
γ)t(Vk−1) + γg̃k(V0), V0 = PPSKF

0 ≥ 0. If 0 ≤ γ ≤ λ,

from Lemma 5.2 limk→∞ Vk = +∞.

It is clear that

E[PPSKF
1 ] = (1 − γ)t(PPSKF

0 ) + γg̃(PPSKF
0 )

= V1, ∀ PPSKF
0 = V0 ≥ 0.

Moreover, E[PPSKF
k ] ≥ Vk implies

E[PPSKF
k+1 ] = (1 − γ)E[t(PPSKF

k )] + γE[g̃(PPSKF
k )]

≥ (1 − γ)t(E[PPSKF
k ]) + γg̃(E[PPSKF

k ])

≥ (1 − γ)t(Vk) + γg̃(Vk) = Vk+1.

By applying induction, we obtain E[PPSKF
k ] ≥ Vk ∀ k =

1, 2, . . .. It implies that E[PPSKF
k ] is unbound for any 0 ≤

γ ≤ λ. Therefore γc ≥ λ.

Now consider γ > λ. PPSKF
k and PMKF

k can be shown

to satisfy a recursive algorithm as:

PPSKF
k+1 = gγk+1

◦ t ◦ gθk
(PPSKF

k ) (14)

and

PMKF
k+1 = gγk+1

◦ t(PMKF
k ) (15)

where 0 ≤ θk = 2(1−γk)γk+1

π
≤ 1.

From (14) and (15), we have

PMKF
k = (1 − γk)t ◦ g̃γk−1

◦ · · · ◦ g̃γ1
(PMKF

0 )

+ γkg̃γk
◦ · · · ◦ g̃γ1

(PMKF
0 )

and

PPSKF
k = (1 − γk)t ◦ g̃γk−1+θk−1

◦ · · · ◦ g̃γ1+θ1
(PPSKF

0 )

+ γkg̃γk
◦ g̃γk−1+θk−1

◦ · · · ◦ g̃γ1+θ1
(PPSKF

0 ),

where γk ≤ γk + θk ≤ 1. By properties a) and b) in Lemma

3.1, it is easy to see PMKF
k ≥ PPSKF

k . Moreover, it is

shown in Theorem 5.1 that E[PMKF
k ] ≤ MP0

, ∀P0 ≥ 0.

Thus, E[PPSKF
k ] ≤ E[PMKF

k ] ≤ MP0
. This implies that

γc ≤ λ. The proof is complete.

B. Performance Comparison with the MKF and SSKF

Now consider the SSKF in which the sensor has sufficient

computation capability to compute its state estimate x̂s
k

locally and sends x̂s
k to the remote estimator. At the estimator

side, (x̂k, PSSKF
k ) is computed as follows:

(x̂k, PSSKF
k ) =

{

(Ax̂k−1, t(PSSKF
k−1 )), if γk = 0

(x̂s
k, P s

k ), if γk = 1
(16)

In particular, PSSKF
k can be written as

PSSKF
k = (1 − γk)t(PSSKF

k−1 ) + γkg̃k(PSSKF
0 ). (17)

Remark 5.4: Taking expectation at both side of (17), we

obtain E[PSSKF
k ] = (1 − γ)t(E[PSSKF

k−1 ]) + γg̃k(PSSKF
0 ).

Hence,{E[PSSKF
k ]}∞0 ={Vk}∞0 , if PSSKF

0 = V0. Applying

Lemma 5.2,

lim
k→∞

E[PSSKF
k ] = +∞, ∀ E[PSSKF

0 ] ≥ 0, ∀ 0 ≤ λ ≤ λ,

lim
k→∞

E[PSSKF
k ] = V , ∀ E[PSSKF

k ] ≥ 0, ∀ λ < λ ≤ 1.

The following theorem shows that if the MKF, PSKF

and SSKF all converge, then the a posteriori estimate error

covariance of them descend orderly.

Theorem 5.5: Assume ∃ γ > 0, such that E[PMKF
k ],

E[PPSKF
k ] and E[PSSKF

k ] are all convergent, then

lim
k→∞

E[PMKF
k ] ≥ lim

k→∞

E[PPSKF
k ] ≥ lim

k→∞

E[PSSKF
k ]

for any PMKF
0 = PPSKF

0 = PSSKF
0 ≥ 0. In particular, if

∀ k = 1, 2, . . ., γk ≡ 0 (or γk ≡ 1),

lim
k→∞

E[PMKF
k ] = lim

k→∞

E[PPSKF
k ] = lim

k→∞

E[PSSKF
k ].

Proof: In Theorem 5.3, the following is proved,

lim
k→∞

E[PMKF
k ] ≥ lim

k→∞

E[PPSKF
k ].

From (17), we obtain

PSSKF
k = (1 − γk)t(PSSKF

k−1 ) + γkg̃k(PSSKF
0 ).

Clearly, E[PSSKF
1 ] = E[PPSKF

1 ] and

E[PSSKF
2 ] = (1 − γ)t(E[PSSKF

1 ]) + γg̃2(PSSKF
0 )

≤ (1 − γ)t(E[PPSKF
1 ])

+ γE[g̃γ2
◦ g̃γ1+θ1

(PPSKF
0 )]

= E[PPSKF
2 ].

For k ≥ 2, E[PSSKF
k ] ≤ E[PPSKF

k ] implies

E[PSSKF
k+1 ] = (1 − γ)t(E[PSSKF

k ]) + γg̃k+1(PSSKF
0 )

≤(1 − γ)t(E[PPSKF
k ]) + γE[g̃γk+1

◦ g̃γk+θk
◦ · · · ◦

g̃γ1+θ1
(PPSKF

0 )] = E[PPSKF
k+1 ].

By induction, it is easy to show that

lim
k→∞

E[PPSKF
k ] ≥ lim

k→∞

E[PSSKF
k ].
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Fig. 2. the red cross shows the pdf of (xk − x̂
−

k
)(P−

k
)−0.5 and the blue

solid line shows the pdf of standard Gaussian distribution.
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Fig. 3. E[Pk] of the MKF, PSKF and SSKF

In particular, if ∀ k = 0, 1, 2 . . . γk ≡ 0 (or γk ≡ 1), the

MKF, PSKF and SSKF reduce to open-loop predictors ( or

standard KF), i.e.,

lim
k→∞

E[PMKF
k ] = lim

k→∞

E[PPSKF
k ] = lim

k→∞

E[PSSKF
k ].

Remark 5.6: As shown in Theorem 5.5, the PSKF pro-

vides a tradeoff between the MKF and SSKF in terms of

communication, computation cost and estimation quality.

VI. EXAMPLES

Consider a simple scalar system

xk+1 = 1.25xk + wk, (18)

yk = xk + vk. (19)

where wk and vk have zero mean and variances Q = 1 and

r = 50 respectively.

First we will verify f(xk|γ1I1, ..., γk−1Ik−1) ∼

N(x̂−

k , P−

k ) approximately holds, which is the prerequisite

of Proposition 4.1. Fig. 2 shows the pdf of the

normalized empirical prediction error (xk − x̂−

k )(P−

k )−0.5

obtained by a Monte Carlo simulation, along with

the pdf of standard Gaussian distribution. We can

observe these two curves fit each other very well,

i.e., f(xk|γ1I1, ..., γk−1Ik−1) ∼ N(x̂−

k , P−

k ) holds

approximately.

As Fig. 3 shown, E[PPSKF
k ] is bounded by E[PMKF

k ]
and E[PSSKG

k ] under the same γ. Note that in this example,

E[PSSKF
k ], E[PPSKF

k ] and E[PMKF
k ] tend to infinity as λ

approach γc ≈ 0.36 simultaneously. This is because hT is

invertible, λ = 1 − 1
ρ(A)2 as shown in [2]. For this system,

γc = λ = λ = 1 − 1
ρ(A)2 = 0.36. Fig. 3 clearly shows the

transition at λ = 0.36.

VII. CONCLUSION

In this paper, we consider the problem of state estimation

over lossy networks and propose an innovative packet-

splitting approach for Kalman filtering. The PSKF provides

a tradeoff between the MKF and SSKF in terms of resource

usage and estimation quality. Without extra bandwidth or

energy cost, the PSKF has a better performance and tolerates

a higher or at least equal data loss rate than the MKF. Unlike

the SSKF which requires sufficient computation capability

of the sensor, the PSKF only needs a one-bit buffer. Thus

the PSKF can be applied in a wider range, especially in a

communication channel with a low packet arrival rate.

There are still some interesting works in the future. For

example, although we have assumed i.i.d Bernoulli random

process for the packet arrival rate, in the sensor network there

generally exist correlations among the continuous packet

dropouts. We also ignored the quantization error, and it

will be of interest to see whether the quantization error has

influence on the PSKF.
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