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Abstract— We consider the hybrid output regulation prob-
lem for minimum phase linear systems with relative degree
greater than one. In the hybrid output regulation problem,
the disturbances, which are assumed to be matched with the
control input, evolve through a hybrid dynamical system that
experiences jumps periodically. In constructing an output reg-
ulator for this problem, we combine recent work on necessary
conditions for hybrid output regulation with classical ideas
related to high-gain output feedback and high-gain observers.
The output regulator we design achieves global exponential
stability of a compact set in which the output of the system is
zero.

I. INTRODUCTION

The problem of output regulation, which consists of con-

trolling the output of a plant to reject disturbances generated

by an exosystem, has a long history including the seminal

work of Davison, Francis and Wonham, [1], [2], and [3].

Recently, an effort has been made to extend output regulation

theory to the case where the disturbances are generated by a

linear exosystem that experiences linear jumps periodically.

In this setting, the control objective has been labeled “hybrid

output regulation”, and several aspects of the theory have

been developed in [7]. One issue that is not completely

resolved in [7] is how to construct the stabilizing part of the

hybrid output regulator. This part is challenging because it

involves the design of both continuous-time and discrete-time

components simultaneously. In [7], the stabilization problem

characterizing the hybrid output regulation problem is solved

completely for relative degree one, minimum phase systems;

here we extend that construction to minimum phase systems

with higher relative degree. To accomplish this task, we use

a high-gain observer.

Like in [7], we rely on the hybrid systems framework

summarized in [6]. The control ideas we use have con-

nections to the results in [9]. Other work in the literature

where switching or hybrid systems is combined with output

regulation include [4], [8], and [5].

In Section II we present the class of systems under

investigation. In Section III we review the general regulator
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construction proposed in [7]. In Section IV there is a closed-

loop analysis of the system with the hybrid regulator. An

example appears in Section V. The appendix contains a proof

of an intermediate proposition.

II. FRAMEWORK

The system we work with conforms to the following

framework:

ż = Az +Bx1

ẋ1 = x2

...

ẋm−1 = xm

ẋm = α1x1 + . . .+ αmxm

+Bzz + b(u−R(τ)ω)
τ̇ = 1
ω̇ = Sω





(1)

(z, x, τ, ω) ∈ R
n × R

m × [0, T ]×W,

and:

z+ = z

x+ = x

τ+ = 0
ω+ = Jω





(2)

(z, x, τ, ω) ∈ R
n × R

m × {T} ×W ,

where W⊂ R
s. The state y = x1 corresponds to the output

of the plant, while input u ∈ R. The dimension of x, m,

is the relative degree of the plant. The state z represents

additional internal states of the system. The exosystem has

the state ω and enters the plant additively with the control

input. The clock variable, τ , guarantees that the system jumps

periodically. For the purposes of this paper it is assumed that

τ is a known state. This may not always be reasonable, and

estimation of the clock variable is an interesting problem that

is addressed in [10].

Assumption 1. The matrix A is Hurwitz, the set W is

compact, |b| ≥ b0 > 0, and T > 0.

III. REGULATOR

Building on [7], we construct a regulator in two parts,

including an internal model of the form:

ξ̇ = (F +GΓ(τ))ξ +Φ∆η

ξ+ = Σimξ
ξ ∈ R

ν , (3)

and a stabilizer of the form:

η̇ = Φstη + Λsty

η+ = η
η ∈ R

m, (4)
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with the feedback:

u = Γ(τ)ξ +Kη. (5)

The following assumption must be made on F and Σim, the

necessity of which becomes clear in Section IV.

Assumption 2. F , G, and Σim are such that the eigenvalues

of Σim exp (FT ) are within the unit disk and the pair (F,G)
is controllable. Also, ν ≥ s.

Note that the feedback term Γ(τ) need not always be

τ -dependent; for such cases the regulator design can be

significantly simplified.

A. τ -Independent Γ

The feedback term Γ can be taken to be τ -independent if

the following assumption holds.

Assumption 3. The parameter R is not dependent on τ , F

is Hurwitz, and the folllowing set of equations:

FΠ−ΠS +GR = 0,

ΣimΠ = ΠJ,

has a solution (Π, Σim).

In this scenario take Γ = RΠ†, where Π† denotes the

Moore-Penrose pseudo-inverse. Occasionally, Assumption 3

fails; the following is an example of such a case.

Example 1. Consider the exosystem with the following

matrix parameters:

S =

[
0 0
0 0

]
, J =

[
0 1
1 0

]
, R =

[
1 0

]
. (6)

Suppose that (F,G) is a controllable pair with F Hurwitz,

such that the equation FΠ − ΠS + GR = 0 has a unique

solution Π. The resulting solution, Π =
[
−F−1G 0

]
,

does not admit a solution Σim to the equation ΣimΠ = ΠJ .

Attempting to find one gives:

Σim

[
−F−1G 0

]
=

[
−F−1G 0

] [ 0 1
1 0

]
,

[
−ΣimF−1G 0

]
=

[
0 −F−1G

]
.

This relationship implies that F−1G = 0, which leads to

G = 0. Therefore, (F,G) is not controllable. This is a

contradiction because (F,G) was chosen to be controllable

via Assumption 2. It can be concluded that there is no

solution, Σim.

On the other hand, it is trivial to show that the exosystem

described by (6) fits into the framework for the τ -dependent

case, which is outlined in the following section. So, the result

can still be pursued by choosing Γ to be τ -dependent.

B. τ -Dependent Γ

When Assumption 3 fails we continue with a τ -dependent

parameter Γ(τ). In this scenario we choose Γ(τ) =

R(τ)Π(τ)†, where Π(τ) is the solution to the following set

of equations:

dΠ(τ)

dτ
= FΠ(τ)−Π(τ)S +GR(τ),

0 = ΣimΠ(T )−Π(0)J, (7)

R(τ) = Γ(τ)Π(τ).

The first two equations of (7) can be solved by taking L :
[0, T ] → R

ν×s and Π : [0, T ] → R
ν×s to be continuously

differentiable functions satisfying L(0) = 0, where ν ≥ s,

dL(τ)

dτ
= FL(τ) +GR(τ) exp (Sτ)

and

Π(τ) = (exp (Fτ)Π(0) + L(τ)) exp (−Sτ),

where Π(0) satisfies

Σim exp (FT )Π(0)−Π(0)J exp (ST ) + ΣimL(T ) = 0.

As shown in [7], the last equation of (7) can be solved

if there exists a positive r ≤ ν such that the rank of

Π(τ) = r for all τ ∈ [0, T ]. This scenario is pursuable

under the following assumption, which is less stringent than

Assumption 3.

Assumption 4. F and Σim are such that the eigenvalues

of Σim exp (Fτ) and J exp (Sτ) are disjoint. Furthermore,

there exists a positive r ≤ ν such that the rank of Π(τ) = r

for all τ ∈ [0, T ].

C. Parameter Choices for Global Exponential Stability

We now propose some parameter choices for the regulator

and feedback, (3)-(4) and (5), respectively. These choices al-

low the system (1)-(2) with state (z, x, τ, ω, ξ, η) to have the

set {0}×{0}×Υ×{0} globally exponentially stable (GES),

where Υ = {(τ, ω, ξ) ∈ [0, T ]×W×R
ν : ξ = Π(τ)ω}. Ideas

on the use of high-gain observers and feedback are drawn

from [11], which discusses these concepts in a non-linear,

non-hybrid setting. Choose:

K = −sgn(b)κ
[
k1 . . . km−1 1

]
, Φ∆=GK,

Λst =




c1l
...

cmlm


 , Φst=

[
−Λst

Im−1

01×(m−1)

]
, (10)

where the coefficients ci and ki are designed such that sm+
c1s

m−1 + . . . + cm−1s + cm and sm−1 + k1s
m−2 + . . . +

km−2s+ km−1 are Hurwitz polynomials.

Recall that F , G, and Σim are chosen to satisfy As-

sumption 2, and either Assumption 3 or 4. Furthermore,

Γ(τ) = R(τ)Π(τ)†, with its τ dependence determined by

the validity of Assumption 3.

Theorem 1. There exists κ∗ > 0 and for each κ ≥ κ∗ there

exists l∗ > 0 such that for each l ≥ l∗ and with the choices

in (10) and Assumptions 2-4, the closed-loop system with

regulator (3)-(4) and feedback (5) applied to the system (1)-

(2) with the state (z, x, τ, ω, ξ, η) has the set {0} × {0} ×
Υ× {0} GES.
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p :=
[
α1 − k1(αm + km−1) . . . αm−1 − km−1(αm + km−1)

]
+
[
0 k1 k2 . . . km−2

]
(8)

q(x, z, χ, x̃m) := −α1x1 − . . .− αm−1xm−1 + αm(k1x1 + . . .+ km−1xm−1)

−Bzz − bΓ(τ)χ+ (κ− αm − Γ(τ)G)x̃m (9)

In the following section, we prove Theorem 1 through an

analysis of the closed-loop system.

IV. CLOSED-LOOP SYSTEM ANALYSIS

In this section we provide a proof of Theorem 1. In

proceeding with this proof we drop the ω dynamics from

the closed-loop analysis, since it is not affected by and does

not affect the other states after an appropriate coordinate

transformation.

A. Linear Transformation

To begin with, perform the following change of variables:

x̃m := xm + k1x1 + . . .+ km−1xm−1,

χ := ξ − b−1Gx̃m −Π(τ)ω.

Note that (z, [x1 . . . xm−1], x̃m, χ) = 0, τ ∈ [0, T ], and ω ∈
W if and only if (z, x, τ, ω, ξ) ∈ {0} × {0} ×Υ.

Bearing in mind (7), pick Φ∆ = GK, as in (10), to

eliminate the presence of η in the χ dynamics. During flow

this gives:

ż = Az +Bx1

ẋ1 = x2

...

ẋm−2 = xm−1

ẋm−1 = x̃m − k1x1 − . . .− km−1xm−1

˙̃xm = (Γ(τ)G+ km−1 + αm)x̃m

+
[
p 0

]
x+Bzz + bΓ(τ)χ+ bKη

χ̇ = Fχ− b−1G(
[
p 0

]
x+Bzz)

+b−1(FG−G(αm + km−1))x̃m

η̇ = Φstη + Λstx1,

where p is defined as in (8). Since x is not measured we

use the dynamics of η, which corresponds to a high-gain

observer, to estimate x. In particular, define η̃ as follows:

η̃ := Dl(η − x),

where Dl = diag(lm−1, . . . , l0).

With K, Φst and Λst chosen as in (10), this change of

variables results in the following closed-loop system, where

C := R
n ×R

m−1 ×R×R
ν ×R

m × [0, T ] and D := R
n ×

R
m−1 × R× R

ν × R
m × {T}:

ż = Az +Bx1

ẋ1 = x2

...

ẋm−2 = xm−1

ẋm−1 = x̃m − k1x1 − . . .− km−1xm−1

˙̃xm = (αm + km−1 + Γ(τ)G− |b|κ)x̃m

+
[
p 0

]
x+ bKD−1

l η̃

χ̇ = Fχ− b−1G(
[
p 0

]
x+Bzz)

+b−1(FG−G(αm + km−1))x̃m

˙̃η = lHη̃ +

[
0(m−1)×1

1

]
·

·(q(x, z, χ, x̃m)− bKD−1
l η̃)

τ̇ = 1





(11)

(z,
[
x1 . . . xm−1

]
, x̃m, χ, η̃, τ) ∈ C,

and:

z+ = z

x+
1 = x1

...

x+
m−1 = xm−1

x̃+
m = x̃m

χ+ = Σimχ+ (Σim − I)b−1Gx̃m

η̃+ = η̃

τ+ = 0





(12)

(z,
[
x1 . . . xm−1

]
, x̃m, χ, η̃, τ) ∈ D,

where, q(x, z, χ, x̃m) is defined in (9) and H is Hurwitz by

the choice of c1, . . . , cm. Specifically:

H =




−c1
...

−cm

Im−1

01×(m−1)


 .

In the next section a Lyapunov analysis shows that the set

(z,
[
x1 . . . xm−1

]
, x̃m, χ, η̃, τ) ∈ {0} × {0} × {0} ×

{0} × {0} × [0, T ] is GES.

B. Lyapunov Analysis

The following proposition is used in both steps of this

proof.

Proposition 1. Consider the system

v̇1 = A1v1 +B1(ℓ)v2
v̇2 = ℓA2v2 +M(ℓ)v2 +B2(ℓ)v1
τ̇ = 1



 (13)

(v1, v2, τ) ∈ R
ρ × R

σ × [0, T ]
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v+1 = J1v1 + L(ℓ)v2
v+2 = J2v2
τ+ = 0



 (14)

(v1, v2, τ) ∈ R
ρ × R

σ × {T},

where (v1, v2, τ) ∈ R
ρ × R

σ × [0, T ] and T > 0. If

the matrices M(ℓ), B1(ℓ), B2(ℓ) and L(ℓ) are bounded

uniformly in ℓ, the eigenvalues of J1 exp (A1T ) are inside

the unit disk and A2 is Hurwitz, then there exists ℓ∗ > 0
such that, for each ℓ ≥ ℓ∗ the set {0} × [0, T ] ⊂ R

ρ+σ+1 is

GES.

The closed-loop system, described by (11)-(12), has a

desirable structure, which allows for easy application of

Proposition 1. The Lyapunov analysis of the closed-loop

system is performed in two steps. First, ignore the η̃

dynamics, and choose κ to be large enough to stabi-

lize the (x1, . . . , xm−1, z, χ, x̃m, τ) dynamics. Then, re-

account for η̃ and choose l to be large enough such that

the overall closed-loop system, (11)-(12), with the state

(z, x1, . . . , xm−1, x̃m, χ, η̃, τ) has the set {0}× {0}× . . .×
{0} × {0} × {0} × {0} × [0, T ] GES.

1) Ignoring η̃: First, pick v1 = (x1, . . . , xm−1, z, χ) and

v2 = x̃m and ignore η̃. The v1 and v2 dynamics can be

written as:

v̇1 =




AC 0 0
B A 0

−b−1Gp −b−1GBz F


 v1

+




BC

0n×1

b−1(FG−G(αm + km−1))


 v2

v̇2 = (αm + km−1 + Γ(τ)G− |b|κ)v2
+
[
p 0 0

]
v1

τ̇ = 1





(15)

(v1, v2, τ) ∈ R
(m−1)+n+ν × R× [0, T ],

and:

v+1 =




Im−1 0 0
0 In 0
0 0 Σim


 v1

+




0
0

(Σim − Is)b
−1G


 v2

v+2 = v2
τ+ = 0





(16)

(v1, v2, τ) ∈ R
(m−1)+n+ν × R× {T},

where AC =

[
0(m−2)×1 Im−2

−k1 −k2 . . . −km−1

]
is Hur-

witz and BC =

[
0(m−1)×1

1

]
. The system described by

(15)-(16) fits in the framework of Proposition 1, where κ

fills the role of ℓ and −|b| fills the role of A2. Therefore,

κ can be chosen large enough such that the system with

state (v1, v2) has the set {0} × {0} GES. This leads to the

conclusion that the eigenvalues of Jcl exp (AclT ) lie within

the unit disk, where Acl =


AC 0 0 BC

B A 0 0
− 1

b
Gp − 1

b
GBz F 1

b
(FG−G(αm + km−1))

p 0 0 αm + km−1 + Γ(τ)G− |b|κ




and Jcl =


Im−1 0 0 0
0 In 0 0
0 0 Σim (Σ− Is)b

−1G

0 0 0 1


 .

With this established there is one last step to show

global exponential stability for the entire closed-loop system

described by (11)-(12), namely the η̃ dynamics must be re-

accounted for.

2) Re-accounting for η̃: Take v2 = η̃ and v1 =
(x1, . . . , xm−1, z, χ, x̃m). Then:

v̇1 = Aclv1 +

[
0(m−1+n+s)×1

bKD−1
l

]
v2

v̇2 = lHv2

+

[
0m×1

1

]
(q(x, z, χ, x̃m)− bKD−1

l v2)

τ̇ = 1





(v1, v2, τ) ∈ R
m+n+ν × R

m × [0, T ]

v+1 = Jclv1
v+2 = v2
τ+ = 0





(v1, v2, τ) ∈ R
m+n+ν × R

m × {T}.

Once again, this system fits into the framework of

Proposition 1. Therefore, it can be concluded that the

closed-loop system described by (11)-(12) with state

([x1, . . . , xm−1], z, χ, x̃m, η̃, τ) has the set {0}×{0}×{0}×
{0} × {0} × [0, T ] GES.

V. EXAMPLE

As an example of how to apply the regulator designed

here, we provide the following. Consider a plant with the

relative degree two transfer function:

Y (s)

Ũ(s)
=

a2s
2 + ds+ k

s2(a1a2s2 + k(a1 + a2))
.

With a2, d, k > 0, the plant is minimum phase. For our

simulations we take a1 = 10, a2 = 1, k = 1 and d = 1.

Assume that there is a disturbance additive with the control

signal, such that:

ũ = u− ω,

where u is the control signal and ω is a disturbance generated

by the exosystem:

ω̇ = 0
τ̇ = 1

}
(ω, τ) ∈ R× [0, T ],

ω+ = −ω

τ+ = 0

}
(ω, τ) ∈ R× {T},
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Fig. 2. Plant Output and Internal State

where τ is a clock variable governing the exosystem’s jumps.

Following the steps laid out in this paper, we can design a

regulator to achieve global exponential stability of the origin

of the plant in the presence of this disturbance.

Begin by choosing the pair (F,G) as:

F =

[
−10 −50
1 0

]
, G =

[
1
0

]
.

The considered exosystem satisfies Assumption 3, so we can

take Γ to be τ -invariant, where:

Π =

[
0
1
50

]
, Σim = −1, Γ =

[
0 50

]
.

Then, pick the Hurwitz polynomial coefficients k1 = 1 and

(c1, c2) = (4, 4). Finally, guided by Theorem 1, we pick κ

sufficiently large and, subsequently, l sufficiently large. By

simulation, we find that κ = 50 and l = 70 is sufficient

for stability. The remainder of the regulator is constructed

based on these choices. The results are shown in Figure 1

and Figure 2.

VI. CONCLUSIONS

The problem of extending hybrid output regulation to

relative degree greater than one, minimum phase systems

has been addressed. This has been accomplished by using

a high-gain observer, in conjunction with high-gain control.

The regulator builds on the framework already put in place

in [7] for output regulation of linear systems with hybrid

exosystems, and also on the high-gain results of [11]. Future

goals include handling cases where the jump clock, τ , is not

measured, but the duration of flows is known, based on the

relative degree one results for this case reported in [10].
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APPENDIX I

PROOF OF PROPOSITION 1

This proof breaks the system (13)-(14) into two subsys-

tems. Simply take the v1 dynamics as the first system and

treat v2 as its input, then do the reverse for the second

system. Finally, the two subsystems are interconnected and

it is shown that the interconnection is GES.

For a function β depending on a state φ that satisfies

φ+ = g(φ), we define the shorthand notation β+ :=
β(g(φ)). Similarly, if β is continuously differentiable and

φ satisfies φ̇ = f(φ), we define the shorthand notation

β̇ :=< ∇β(φ), f(φ) >.

To show that the interconnection is GES, we find a

Lyapunov function, Ψ, and positive constants, α1, . . . , α4,

such that:

α1||v||
2 ≤ Ψ(v, τ) ≤ α2||v||

2, (17)

Ψ+ −Ψ ≤ −α3||v||
2,

Ψ̇ ≤ −α4||v||
2,

where || · || denotes the Euclidean norm and v = (v1, v2).
This implies that the system with state v has the origin GES,

since this means that:

Ψ+ ≤ exp(−λ)Ψ,

Ψ̇ ≤ −λΨ,
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for some λ > 0. It then follows that Ψ(v(t, j), τ(t, j)) ≤
exp(−λ(t+ j))Ψ(v(0, 0), τ(0, 0)). In turn, ||v(t, j)|| can be

bounded using the first inequality of (17).

A. System 1

Consider the system:

v̇1 = A1v1 +B1(ℓ)u1

τ̇ = 1

}
(v1, τ) ∈ R

ρ × [0, T ],

and:

v+1 = J1v1 + L(ℓ)u1

τ+ = 0

}
(v1, τ) ∈ R

ρ × {T}.

Choose the Lyapunov function W (v1, τ) =

exp(−ǫτ)vT1 exp (A1(T − τ))
T
X exp (A1(T − τ))v1,

where X = XT > 0 is specified later. First, look at the

behavior of W along jumps:

W+ −W = vT1 J
T
1 exp(A1T )

TX exp(A1T )J1v1

+2vT1 J
T
1 exp(A1T )

TX exp(A1T )L(ℓ)u1

+uT
1 L(ℓ)

T exp(A1T )
TX exp(A1T )L(ℓ)u1

− exp(−ǫT )vT1 Xv1.

Then:

W+ −W ≤ exp(−ǫT )vT1 (M
TXM −X)v1

+(1 + γ2
2)u

T
1 L(ℓ)

T exp(A1T )
T ·

·X exp(A1T )L(ℓ)u1,

where, M =

√
1+ 1

γ
2
2

exp(−ǫT ) exp(A1T )J1. Now, specify that X

satisfies the discrete Lyapunov equation MTXM − X =
−Q, where Q = QT > 0. Here, it is important that the

eigenvalues of exp(A1T )J1 are inside the unit circle. This

allows the eigenvalues of M to remain inside the unit circle,

when γ2, ǫ > 0 are chosen such that

√
1+ 1

γ
2
2

exp(−ǫT ) > 1 is

arbitrarily close to one. Thus:

W+ −W ≤ − exp(−ǫT )vT1 Qv1 +

(1 + γ2
2)u

T
1 L(ℓ)

T exp(A1T )
T ·

·X exp(A1T )L(ℓ)u1,

or, simply:

W+ −W ≤ −d1||v1||
2 + d2||u1||

2, (18)

where, d1 and d2 are positive scalar constants. Next, observe

W (v1, τ) along flows:

Ẇ = −ǫW + 2 exp(−ǫτ)vT1 exp(A1(T − τ))TX ·

· exp(A1(T − τ))B1(ℓ)u1.

Furthermore:

Ẇ ≤

(
−ǫ+

1

γ2
1

)
W + γ2

1u
T
1 B1(ℓ)

T exp(A1(T − τ))T ·

·X exp(A1(T − τ))B1(ℓ)u1.

Pick γ1 such that −ǫ+ 1
γ2

1

< 0. Note that there exist constants

c1, c2 > 0, such that:

Ẇ ≤ −c1||v1||
2 + c2||u1||

2. (19)

B. System 2

Consider the system:

v̇2 = ℓA2v2
+M(ℓ)v2 +B2(ℓ)u2

τ̇ = 1



 (v2, τ) ∈ R

σ × [0, T ],

and:

v+2 = J2v2
τ+ = 0

}
(v2, τ) ∈ R

σ × T.

Choose the Lyapunov function V (v2, τ) = exp(µτ)vT2 Pv2,

where P = PT > 0 and µ are specified later. As done

for the first Lyapunov function, W (v1, τ), begin by studying

V (v2, τ) along jumps:

V + − V = vT2 J
T
2 PJ2v2 − exp(µT )vT2 Pv2,

where µ > 0 is chosen large enough such that:

V + − V ≤ −d3||v2||
2. (20)

Now, look at the behavior of V along flows:

V̇ = exp(µτ)vT2 (µP + ℓ(AT
2 P + PA2) + 2PM(ℓ))v2

+2 exp(µτ)vT2 ℓPB2(ℓ)ℓ
−1u2.

Then:

V̇ ≤ exp(µτ)vT2 (µP + ℓ(AT
2 P + PA2) + 2PM(ℓ))v2

+exp(µτ)(ℓvT2 v2 +
4

ℓ
uT
2 B2(ℓ)

TPTPB2(ℓ)u2),

V̇ ≤ exp(µτ)vT2 (µP + ℓ(AT
2 P + PA2 − I) +

2PM(ℓ))v2 + exp(µτ)
4

ℓ
uT
2 B2(ℓ)

TPTPB2(ℓ)u2.

Here, specify that P satisfies AT
2 P + PA2 = −2I . Then:

V̇ ≤ (c4 − ℓc3)||v2||
2 +

c5

ℓ
||u2||

2, (21)

for some c3, c4, c5 > 0.

C. Interconnection

Substitute u1 = v2 and u2 = v1, to obtain the overall

system, (13)-(14), presented in Proposition 1. To construct a

Lyapunov function, Ψ(v1, v2, τ), for (13)-(14) use a weighted

sum of W (v1, τ) and V (v2, τ):

Ψ(v1, v2, τ) := W (v1, τ) + kV (v2, τ).

Explore the behavior of Ψ(v1, v2, τ) along jumps:

Ψ+ −Ψ = W+ −W + k(V + − V ),

or:

Ψ+ −Ψ ≤ −d1||v1||
2 + (d2 − kd3)||v2||

2.

Therefore, the second inequality in (17) is satisfied for k >
d2

d3

. Along flows:

Ψ̇ = Ẇ + kV̇ ,

so:

Ψ̇ ≤
(c5
ℓ
− c1

)
||v1||

2 + (c2 + c4 − ℓc3)||v2||
2.

Therefore, the last inequality in (17) is satisfied for ℓ >

max
(

c5
c1
, c2+c4

c3

)
. QED.
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