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Abstract— In this paper we consider optimization problems
with a stochastic performance measure, where the goal of the
problem is to find a solution that minimizes the probability that
this performance measure exceeds a given threshold. It is known
that this and related problems are computationally intractable,
so we consider an approach that seeks to minimize an upper
bound on the probability of exceeding the given threshold.
From this approach, we obtain a suboptimal solution, together
with a guaranteed upper bound on the achieved exceedance
probability.

First, we present an algorithm that minimizes a Chernoff
bound by solving a binary integer program. For problems with
totally unimodular constraint sets, this Chernoff bound can
be minimized by solving a linear program. This formulation is
shown to recover several known results for the cases of Gaussian
and stochastically dominant costs. We then briefly consider
these problems in a closed loop setting, where solutions can be
refined as the values of uncertain quantities in the model are
revealed. We propose an open-loop feedback control algorithm
where a binary integer program (or possibly linear program) is
solved in each time step given the current state of the system.

I. INTRODUCTION

In this paper we consider optimization problems with a
stochastic performance measure. Specifically, we consider
problems with a risk-based objective, where the goal of the
problem is to find a solution that minimizes the probability
that the stochastic performance measure exceeds a given
threshold.

An example of an application where this problem arises
is in travel route planning, where the objective is to travel
between two locations within a specified amount of time
[12]. Here, the ideal route is one which minimizes the
probability of exceeding the given threshold on travel time.
This is particularly relevant in emergency response settings,
where the common quality of service measures are specified
in terms of the fraction of calls that must be attended to
within a given response time (i.e., 90% of calls must be
responded to within 5 minutes).

It is known that problems related to the ones considered
in this paper are computationally intractable, primarily due
to the fact that even evaluating the objective can be as
computationally intensive as enumerating the solutions to an
NP-hard optimization problem. So, we consider an approach
that seeks to minimize an upper bound on the probability
of exceeding the given threshold. From this approach, we
obtain a suboptimal solution, together with a guaranteed

upper bound on the exceedance probability achieved by this
solution. The approach we consider seeks to minimize a
Chernoff bound on the exceedance probability. Due to the
fact that the problems we consider have binary variables,
minimization of this Chernoff bound can be performed
exactly by solving a binary integer program. For problems
with totally unimodular constraint sets, minimization of the
Chernoff bound can be performed exactly by solving a lin-
ear program. Such problems include classical combinatorial
optimization problems such as the shortest path problem, the
weighted matching problem, and the minimum spanning tree
problem. Hence, stochastic versions of these problems can
benefit directly from the algorithms presented in this paper.

We also briefly discuss the risk-averse optimization prob-
lem in a closed-loop setting. In the closed loop setting,
solutions can be refined as the values of uncertain quan-
tities in the model are revealed. We consider an open loop
feedback control algorithms, where a binary integer program
(or possibly linear program) is applied in each time period.
This allows us to apply the Chernoff bound technique in the
closed-loop setting, where decisions are made in each time
period given the current state of the system.

II. PROBLEM FORMULATION

In this paper we consider optimization problems where
the objective is to minimize the probability that a stochastic
cost exceeds a given threshold. Specifically, the problem
considered in this paper is the following:

minimize: P
(
CTx ≥ L

)
subject to: Ax ≤ b

x ∈ {0, 1}n
(1)

In this problem the constraint matrix A and vector b are
deterministic, and the vector C is stochastic. Specifically,
we consider a model where the n-dimensional random vector
C has statistically independent components, and the moment
generating function exists for each component. So, there is no
uncertainty in the feasible set of this problem. All uncertainty
in the model is focused on CTx, the performance measure
for a given feasible solution. This is precisely the structure
of the uncertainty found in a shortest path problem with
stochastic edge costs, one of the main problems motivating
this work.
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III. PRIOR WORK

The problems considered in this paper are most closely
related to chance constrained optimization problems, first
introduced by Charnes, Cooper, and Symonds in [9], Miller
and Wagner [14], and Prekopa [24]. Chance constrained
optimization problems are problems with probabilistic con-
straints of the form

P(CTx ≥ L) ≤ α,

possibly in addition to deterministic constraints. This pro-
vides a generalization of robust optimization, since the
special case where α = 0 requires the constraint CTx < L
to hold for all realizations of C. For more details, we refer
to [2].

The problems we consider here are binary integer pro-
grams, which are NP-hard in general. However, chance
constraints add another level of complexity to these prob-
lems. For example, the feasible region defined by a chance
constraint may not be convex. Also, depending on the nature
of the random variables, simply testing a chance constraint
for a given solution might be computationally challenging.
However difficult to tackle in general, there are elegant
results that apply when the feasible region defined by the
chance constraint is proved convex. The mathematical tools
to prove convexity of distributions can be found in [26]
and the literature therein. Based on these results, an exact
algorithm called cone generation and its application are
given, which is similar to the well-known column generation
method [1], see [10] and [11] for details. The major compu-
tational difficulties of column generation also apply to cone
generation: the worst-case running time of this approach is
still exponential.

Aside from exact approaches, there are four representative
approximation methods for chance constrained problems:
Normal approximation, K-σ approximation, Scenario ap-
proximation and Bernstein approximation. All of them share
the same spirit of replacing the chance constraints with
deterministic constraints. K-σ approximation requires the
assumption that the distributions or random quantities are
symmetric (see [3], [2] and [15]). It was implied in [20]
that if the random variables are simultaneously perfectly
correlated, the K-σ approximation reduces to a linear ap-
proximation.

The Scenario approximation approach is based on Monte
Carlo sampling. This approach generates numerous realiza-
tions for the random quantities, and solves a deterministic
problem containing these deterministic constraints. Calafiore
and Campi showed in [7], [8] that as the sample size N in-
creases, the probability that the chance constraint is violated
decreases rapidly. Normal approximation is a natural way
to approximate the chance constraints and is already used in
engineering problems (e.g. [21]). However, it should be noted
that normal approximation does not provide a guarantee of
feasibility of the approximation, especially when the number
of random variables is small. We again refer to [26] for
the details of Normal approximation. In Bernstein approx-
imation, Bernstein inequalities are applied to the chance

constraints. Bernstein inequalities were used by Pinter to
approximate chance constraints in the example given in [22]
and later in [4] to robustly solve NETLIB problems. This ap-
proximation framework was later refined and generalized in
[16]. Bernstein approximation is conservative, unlike Normal
approximation, and there is no restriction of the distribution.
Also, it is much less demanding than Scenario approximation
in computational intensity. The approach taken in our paper
is similar to Bernstein approximation, however we are able
to exploit the fact that our variables are binary to minimize
a Chernoff bound exactly.

Also, the related problem of constructing a risk-averse
path in a graph with stochastic weights has been studied
by numerous researchers in a variety of fields. Approaches
range from numerically computing the dynamic program-
ming value function [12], [17], to providing exact algorithms
for special classes of link travel time distributions [18], [19].

The results in the current paper are most closely related
to those in [18], [19], [13]. In that series of papers, the
authors present a broad range of theoretical and practical
results for risk averse integer programs. In particular, the au-
thors characterize the problems and solutions for families of
cost distributions (most notably, Gaussian and stochastically
dominant), and give algorithms with performance guarantees
for a problem approximation based on the Chebyshev bound.
These papers present many strong results, and we view the
current paper as complementing that work in that we present
a practical approximation that is not covered in those papers,
and recovers the problem formulations presented in those
papers for Gaussian and stochastically dominant costs.

THE COMPLEXITY OF EVALUATING P(CTx ≥ L)
Here we discuss the complexity of evaluating the objective

P(CTx ≥ L) for generally distributed Ci. It turns out that
simply evaluating this objective is as hard as counting the
number of feasible solutions to the knapsack problem, an
NP-hard optimization problem. This complexity result is the
main justification for the approximation method we use here,
where P(CTx ≥ L) is replaced by a tractable upper bound.
The complexity of this problem is discussed in [13], but
we present an analysis of the complexity here to keep our
treatment self-contained.

The knapsack problem is

maximize:
∑n
i=1 rizi

subject to:
∑n
i=1 aizi ≤W

z ∈ {0, 1}n

where r1, . . . , rn and a1, . . . , an are nonnegative integers.
Here we’ll show that any algorithm capable of evaluating
P (CTx ≥ L) for arbitrarily distributed Ci can also be used
to count all feasible solutions to any instance of the knapsack
problem.

Suppose C1, . . . , Cn are independent and have

Ci =

{
0 with probability 1

2

ai with probability 1
2

2
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Also, without loss of generality, suppose x = 1. Then

P(CTx ≥W + 1) = 1−P(CTx < W + 1)

= 1−P(CTx ≤W )

= 1− K

2n

where K is the number of z ∈ {0, 1}n such that
n∑
i=1

aizi ≤W

Hence, any algorithm capable of evaluating P(CTx > W )
can also be used to compute the number of feasible solutions
to an instance of the knapsack problem.

The problem of counting knapsack solutions is in a
complexity class called #P-complete. If a polynomial-time
algorithm exists for any #P-complete problem, then all
problems in NP can be solved in polynomial time. Hence,
#P-complete problems are generally considered to computa-
tionally intractable.

Although the problem of evaluating P(CTx ≥ L) is
generally hard, of course there are classes of distributions
for which this objective can be evaluated and optimized.
Although several of these cases have been discussed in
previous literature, we will show in later sections how the
known problem formulations for these cases can also be
obtained from our Chernoff bound approach.

IV. CHERNOFF BOUND MINIMIZATION

We will begin this section by presenting a theorem that
characterizes a class of upper bounds on the solutions of (1).
This theorem leads directly to an algorithm for minimizing
an upper bound on the objective value of (1).

Theorem 1: For a given t > 0, let u(t) be the minimum
achievable objective value of the binary integer program

minimize:
∑n
i=1 xi ln

(
E
[
etCi

])
subject to: Ax ≤ b

x ∈ {0, 1}n
(2)

A solution x∗ achieving this minimum satisfies

P
(
CTx∗ ≥ L

)
≤ eu(t)−tL

Proof: By the Chernoff bound, the inequality

P
(
CTx ≥ L

)
≤ E[et(C

T x−L)]

is satisfied for all t > 0. Also, since the components of C
are independent,

E[et(C
T x−L)] = e−tL

n∏
i=1

E[etCixi ] (3)

Since ln(z) is monotonically increasing and E[et(C
T x−L)] is

positive, minimizing the right-hand side of (3) is equivalent

to minimizing

ln

(
e−tL

n∏
i=1

E[etCixi ]

)
= −tL+

n∑
i=1

ln
(
E[etCixi ]

)
However, note that

ln
(
E[etCixi ]

)
=

{
0 if xi = 0

ln
(
E[etCi ]

)
if xi = 1

Since x ∈ {0, 1}n, minimizing the right-hand side of (3) is
equivalent to minimizing

n∑
i=1

xi ln
(
E[etCi ]

)
(4)

subject to the constraints on x. Letting x∗ be the feasible
x that minimizes (4) and u(t) be the associated minimum
value, this gives the result

P
(
CTx∗ ≥ L

)
≤ E[et(C

T x∗−L)]

= eu(t)−tL

�

For any given parameter t > 0, one can minimize an
upper bound on the probability of violating the threshold
L. This leads to the natural question of how the parameter t
should be chosen. For certain special cases, such as Gaussian
or Poisson random variables, one can write a closed-form
expression for the optimal t in terms of a given x. For these
special cases, this leads to algorithms that can minimize the
upper bound produced by the Chernoff bound jointly in t
and x.

Note that if the optimization variables were not binary, it
would not be possible to convert the Chernoff bound directly
into an equivalent linear objective. The fact that an upper
bound on P

(
CTx∗ ≥ L

)
can be minimized by solving a

binary integer program is particularly good news for certain
combinatorial problems, such as stochastic shortest path
problems. Of particular interest are combinatorial optimiza-
tion problems where, in their deterministic versions, are
efficiently solvable. These problems have the special property
that linear program relaxations of their integer programming
formulations yield integer optimal solutions. One sufficient
condition ensuring that this is true is that a problem has an
integer constraint vector b and a totally unimodular constraint
matrix A [6], [27]. The matrix A is said to be totally
unimodular if every square submatrix has determinant 1, 0,
or −1. The following theorem shows that locally optimal
solutions to our Chernoff bound approximation have integer
solutions when relaxations of the underlying deterministic
optimization problems have integer optimal solutions.

Lemma 1: Consider the optimization problem in the vari-
ables t and x:

minimize:
∑n
i=1 xi ln

(
E
[
etCi

])
− tL

subject to: Ax ≤ b
x ∈ [0, 1]n

t ≥ 0

(5)

3
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If A is totally unimodular and b has integer components,
the objective value achieved by any local optimum can be
achieved by a solution with x ∈ {0, 1}n.

Proof: Suppose (t, x) is a local optimum for (5). By holding
t fixed and optimizing over x we cannot obtain any further
improvement in the objective value, but obtain solution that
is no worse than (t, x). With fixed t, this problem is a linear
program with a unimodular constraint set and integer b. So,
there is an optimal solution x∗ ∈ {0, 1}n to this linear
program. The solution (t, x∗) obtains the same objective
value as (t, x) and has x∗ ∈ {0, 1}n . �

We are motivated by the pursuit of algorithms that can be
applied to uncertainties with the most general distributions
possible. In fact, for routing problems on road networks
we model the random travel times on each link as a sum
of independent exponential random variables with possibly
different parameters. This provides a family of random
variables that generalizes the gamma random variable, which
is commonly used to model travel times in transportation
models [23].

To accommodate the widest class of distributions possible,
we use a heuristic that alternates between minimizing t and
minimizing x. For given x, the parameter t can be optimized
using binary search due to the convexity of

e−tL
K∏
i=k

E[etC
T
i xi ]

Then for fixed t, x can be optimized by solving (5). We point
out that, although the following algorithm globally optimizes
t for given x and globally optimizes x for given t, it does
not necessarily produce a solution that is jointly optimal in
x and t.

The procedure just described can be summarized by the
following algorithm:

Algorithm 1:

• To initialize, compute the feasible x that minimizes∑n
i=1 xiE[Ci].

• For this x, compute the t that minimizes (3).
• In each subsequent iteration, alternate between solving

(5) with the previously computed t, and finding the t
that minimizes (3) for the previously computed x.

• Stop when the same x has been computed in two
subsequent iterations.

ALGORITHMS FOR SPECIAL DISTRIBUTIONS

Here we show how the Chernoff bound approach can be
refined when we restrict our attention to special cases of
distributions on C. We will consider the cases of Gaussian
costs and stochastically dominant costs. Both cases have been
studied previously in [19], and here we recover the known
problem formulations using the Chernoff bound approach.

Gaussian costs

When Ci is Gaussian with mean µi and variance σ2
i , its

cumulant generating function is given by

ln
(
E[etCi ]

)
= µit+

1

2
σ2
i t

2

So,
n∑
i=1

xi ln
(
E[etCi ]

)
− tL

= t

(
n∑
i=1

µixi − L

)
+

1

2
t2

(
n∑
i=1

σ2
i xi

)
We restrict our analysis to values of L such that there exists
at least one solution x with

n∑
i=1

µixi ≤ L (6)

Generally, the Chernoff bound is only less than 1 for such
solutions. For a given x satisfying (6), the t that minimizes
the expression above is

t =
L−

∑n
i=1 µixi∑n

i=1 σ
2
i xi

(7)

Restricting to solutions satisfying (6) and substituting (7)
in the objective, we obtain the quasiconcave minimization
problem

minimize: − 1
2

(L−
∑n

i=1 µixi)
2∑n

i=1 σ
2
i xi

subject to: Ax ≤ b∑n
i=1 µixi ≤ L

x ∈ [0, 1]n

From Lemma 1, we also see that all locally optimal solutions
to this problem can be chosen to have x ∈ {0, 1}n when A
is totally unimodular and b is integer. Also, we note that
locally optimal solutions to this problem can be computed
numerically by simply using the algorithm in Section V.

The optimal solution to this problem is known to minimize
P(CTx ≥ L) exactly, and is shown in [19]. In that paper,
an entirely different approach is used to arrive at this
optimization problem and to show that optimal solutions can
be chosen to binary. That paper further gives an upper bound
on the number of local optimal contained in this problem.

Stochastic dominance

For random variables Ci and Cj , Cj is said to stochasti-
cally dominate Ci if

P(Cj ≥ L) ≥ P(Ci ≥ L)

for all L. Here we will consider the case where C is
distributed such that for any i 6= j, either Ci stochasti-
cally dominates Cj or Cj stochastically dominates Ci. One
example is the case where the components of C are all
exponentially distributed.
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Without loss of generality, assume that Cj stochastically
dominates Ci. As a consequence, it can be shown that [25]

ln
(
E[etCi ]

)
≤ ln

(
E[etCj ]

)
for all t. Suppose that a solution x∗ minimizes

n∑
i=1

xi ln
(
E[etCi ]

)
(8)

for a given value of t. Under the stochastic dominance
assumption, this solution minimizes (8) for all t > 0.

We can use additional structure of the cumulant generating
to show that (8) can be minimized by selecting the solution
with the smallest expected cost.

Lemma 2: Suppose C is distributed such that for any i 6=
j, either Ci stochastically dominates Cj or Cj stochastically
dominates Ci. The objective (8) is minimized by minimizing
E[CTx].

Proof: We can express the cumulant generating func-
tion of each Ci as

ln
(
E[etCi ]

)
= tE[Ci] +

(
ln
(
E[etCi ]

)
− tE[Ci]

)
= tE[Ci] + ri(t)

For any fixed t > 0, the solution that minimizes (8) also
minimizes

1

t

n∑
i=1

xi ln
(
E[etCi ]

)
=

n∑
i=1

xi

(
E[Ci] +

ri(t)

t

)
Note that

ri(t) = ln
(
E[etCi ]

)
− tE[Ci]

is continuous on the domain of the cumulant generating
function. Also, by L’Hospital’s rule,

lim
t→0

ri(t)

t
= lim

t→0

 ∞∑
j=1

κij
tj−1

(j − 1)!
−E[Ci]


= 0

where κij is used to denote the j-th cumulant of Ci, and
κi1 = E[Ci].

Since there are finitely many x ∈ {0, 1}n, for any ε > 0
there exists t′ sufficiently small such that

1

t

n∑
i=1

xiri(t) ≤ ε

for all x ∈ {0, 1}n and t ≤ t1. So, t can be chosen
sufficiently small such that the minimizer of

n∑
i=1

xiE[Ci] (9)

is the minimizer of

1

t

n∑
i=1

xi ln
(
E[etCi ]

)

Hence, the solution that minimizes (8) for any t > 0 is the
solution that minimizes (9).

By computing the solution that minimizes E[CTx], then
finding the t that provides the tightest Chernoff bound, we
are able to find the t and x that globally minimize (5).

Suppose that in addition to stochastic dominance, the
Ci have the further property of being additive. That is,
if Ci and Cj are distributed according to some family of
distributions, this family is additive if Ci+Cj is distributed
according to this family as well. One example of an additive,
stochastically dominant distribution is the Poisson distribu-
tion. When the Ci come from an additive, stochastically
dominant distribution, there exists a solution x ∈ {0, 1}n
such that

P(CTx ≥ L) ≤ P(CT z ≥ L)

for all solutions z ∈ {0, 1}n and all L. Such a solution
necessarily has

n∑
i=1

xi ln
(
E[etCi ]

)
≤

n∑
i=1

zi ln
(
E[etCi ]

)
for all solutions z ∈ {0, 1}n and all t > 0. Hence, as
also discussed in [19], the solution that minimizes E[CTx]
also minimizes P(CTx ≥ L) when the Ci are additive and
stochastically dominant.

V. OPEN-LOOP FEEDBACK CONTROL FOR THE SHORTEST
PATH PROBLEM

One of the primary applications of this work is in de-
termining reliable routes in transportation networks. These
problems have a dynamic component that we have not
discussed in the models presented so far. The static solutions
discussed in the previous section can be used as part of an
open-loop feedback control (OLFC) [5] scheme that adapts
routes as the values of uncertain quantities are revealed.

Suppose an instance of a risk-averse shortest path prob-
lem is specified by a directed graph G(V, E), a stochastic
edge cost vector C, a cost threshold L, a source vertex s,
and a destination vertex d. The algorithms in the previous
section can be used to compute a path that minimizes an
upper bound on P(CTx ≥ L). Although one could simply
follow this computed path, note that information might be
revealed as edges in the graph are traversed. In the case of a
transportation problem with travel time as the cost, the travel
times across traversed edges are revealed as these edges
are crossed. Unlike a deterministic shortest path problem,
the feedback revealed when crossing an edge might cause a
change the most preferable route to the destination.

To cast this problem in the framework of open-loop
feedback control, we will introduce some notation. Let v(k)
denote the vertex occupied at time k (where v(0) = s) and
let e(k) denote the edge crossed between times k and k+1.
Also, let L(k) denote the remaining ‘cost budget’ at time k.
That is, L(0) = L and

L(k + 1) = L(k)− ce(k)

5
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Finally, let b(k) denote the constraint vector corresponding
to a shortest path problem for computing a path between
v(k) and d.

At each time period k ≥ 0, the open-loop feedback
control algorithm computes a locally optimal solution to the
optimization problem

minimize:
∑n
i=1 xi ln

(
E
[
etCi

])
− tL(k)

subject to: Ax ≤ b(k)
x ∈ [0, 1]n

t ≥ 0

(10)

We refer to the OLFC algorithm as Algorithm 2, the steps
of which are described below:

Algorithm 2:
• Initialize v(0) = s, L(0) = L, and b(0) = b.
• While v(k) 6= s,

– Solve the problem (10) using Algorithm 1.
– Let v(k + 1) be the vertex connected to v(k) by

edge e(k)
– Let L(k + 1) = L(k)− ce(k)
– Let b(k+1) be the constraint vector for computing

a path from v(k + 1) to d

Here we note that the route traversed by the OLFC policy
is exactly the open-loop route when the components of C
satisfy stochastic dominance.

VI. CONCLUSIONS

In this paper we considered optimization problems with
a stochastic performance measure, where the goal of the
problem is to find a solution that minimizes the probability
that this performance measure exceeds a given threshold.
We provided algorithms that minimize an upper bound
on the exceedance probability. These algorithms obtain a
suboptimal solution, together with a guaranteed upper bound
on the exceedance probability achieved by this solution. The
algorithms can be applied to a fairly general class of risk-
averse combinatorial optimization problems. The primary
requirements on the models are independence of the random
variables appearing in the performance measure associated
with a feasible solution, and existence of moment generating
functions for each random variable.

Although the results are not presented here, the algorithms
discussed in this paper have been tested on examples involv-
ing dynamic computation of paths in graphs. In particular, the
algorithms have been applied to the problem of computing
risk-averse routes in the road network of a city. This network
used in our tests contains approximately 3000 edges and
2000 vertices. For this network, paths can be computed very
quickly by implementing our algorithms in existing routing
software.
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