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Abstract— The unknown inputs in a dynamical system may
represent unknown external drivers, input uncertainty, state
uncertainty, or instrument faults and thus unknown-input
reconstruction has several important applications. In this paper,
we consider delayed state estimation and input reconstruction.
That is, we develop filters that recursively use current measure-
ments to estimate past states and reconstruct past inputs. By
introducing this delay, recursive input reconstruction is viable
for a potentially broader class of systems.

1. INTRODUCTION

State estimation for system with unknown inputs have
been widely considered (see [4], [9], [10] and references
therin). The unknown inputs in a dynamical system may
represent unknown external drivers, input uncertainty, state
uncertainty, or instrument faults. Thus unknown-input recon-
struction has several important applications in uncertainty
estimation and fault detection. Input reconstruction also
has applications in filtering and coding theory. In some
early work, input reconstruction is achieved through sys-
tem inversion [12], [8]. More recently, methods for input
reconstruction using optimal filters are developed in [13],
[6], [5], [3]. Unbiased minimum-variance filters for discrete-
time stochastic systems with arbitrary unknown inputs are
considered in [7], [4], [9], [10]. However, all of these
approaches use current measurements to estimate the states
or reconstruct the input at the same time step, and apply
to a restricted class of systems. Recent results on input and
state observability suggest that by allowing a delay in the
estimation process, input reconstruction is possible for a
broader class of systems [2], [11]. Therefore, in this note we
consider recursive state estimation and input reconstruction
at time step k using measurements at time step k + 1.

2. FILTER

Consider the state space system:

xk+1 = Axk + Buk + Hek + wk (2.1)

yk = Cxk + Duk + vk (2.2)

xk ∈ Rn, uk ∈ Rm, yk ∈ Rl, ek ∈ Rp, are the state, known
input, measurement, unknown input vectors, respectively,
wk ∈ Rn and vk ∈ Rl are zero-mean white process and
measurement noise, respectively, and A ∈ Rn×n, B ∈
Rn×m, H ∈ Rn×p, C ∈ Rl×n, D ∈ Rl×m. Without loss
of generality, we assume l ≤ n and p ≤ n.

First we consider the simplifications B = 0, and D = 0.
Note that the filter derivation is independent of B and D
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matrices, and thus the assumption of non-zero B and D
matrices is for convenience alone. Next, without loss of
generality, we assume rank(H) = p.

For the state-space system (2.1), (2.2), we consider a filter
of the form

x̂k|k+1 = x̂k|k + Lk(yk+1 − Cx̂k+1|k), (2.3)

where

x̂k|k = Ax̂k−1|k, x̂k+1|k = A2x̂k−1|k. (2.4)

The unique feature of the above filter equations is that
estimates are computed with a delay as newer data is used
to estimate older states. That is, x̂k|k+1 is the state estimate
at time step k given data up to time step k + 1.

Finally, we define the state estimation error as

εk , xk − x̂k|k+1, (2.5)

and the error covariance matrix as

Pk|k+1 , E[εkεT
k ]. (2.6)

3. UNBIASEDNESS

Definition 3.1. The filter (2.3), (2.4) is unbiased if x̂k|k+1

is an unbiased estimate of the state xk.

Definition 3.1 implies that the filter (2.3), (2.4) is unbiased
if and only if E[xk − x̂k|k+1] = 0. Next, we note that

εk =xk − x̂k|k+1

=(A− LkCA2)εk−1 + (H − LkCAH)ek−1

− LkCHek + wk−1 − Lk(CAwk−1

+ Cwk + vk+1) (3.1)

Theorem 3.1. Let Lk be such that the filter (2.3), (2.4)
is unbiased. Then

H − LkCAH = 0, (3.2)

and

LkCH = 0. (3.3)

Proof: By definition, filter (2.3), (2.4) is unbiased if and
only if E[xk − x̂k|k+1] = E[εk] = 0. Then it follows from
(3.1) that

E[εk] =E[(A− LkCA2)εk−1 + (H − LkCAH)ek−1

− LkCHek + wk−1 − Lk(CAwk−1

+ Cwk + vk+1)] = 0. (3.4)

Since (3.4) must hold for arbitrary ek and ek−1, it follows
that (3.2) and (3.3) must hold.
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Corollary 3.1. Let Lk be such that the filter (2.3), (2.4)
is unbiased. Then, the following conditions hold

i) p ≤ l,
ii) rank(CAH) = p,

iii) rank(CH) ≤ l − p,
iv) rank(Lk) ≥ p, for all k.

Proof. Since the filter (2.3), (2.4) is unbiased, it follows
from Theorem 3.1 that (3.2) holds and hence

LkCAH = H. (3.5)

Since rank(H) = p, it then follows from (3.5) that iv) holds
and

rank(CAH) ≥ p. (3.6)

Since CAH ∈ Rl×p, it follows from (3.6) that statement
i) holds. Furthermore, it follows from (3.6) and i) that
statement ii) holds.

Finally to prove iii), since (3.3) holds, it follows from [1,
Proposition 2.5.9, p. 106] that

rank(Lk) + rank(CH) ≤ rank(LkCH) + l

= l. (3.7)

Furthermore, using iv), (3.7) becomes

p + rank(CH) ≤ l,

that is, rank(CH) ≤ l − p.

Corollary 3.2. Let Lk be such that the filter (2.3), (2.4)
is unbiased, and let l = p. Then, CH = 0 and rank(Lk) = p
for all k.

4. MINIMUM-VARIANCE GAIN

Next, we determine the filter gain Lk that yields unbiased
minimum-variance estimates x̂k|k+1 of the states xk.

Fact 4.1. Let Lk be such that the filter (2.3), (2.4) is
unbiased. Then

Pk|k+1 = (A− LkCA2)Pk−1|k(A− LkCA2)T

+ (I − LkCA)Qk−1(I − LkCA)T

+ LkCQkCTLT
k + LkRk+1L

T
k (4.1)

Next, define the cost function J as the trace of the error
covariance matrix

J(Lk) = trE[εkεT
k ] = trPk|k+1. (4.2)

To derive the unbiased minimum-variance filter gain,
we minimize the objective function (4.2) subject to the
constraints (3.2) and (3.3). Since from Corollary 3.1,
rank(CH) ≤ l − p, we first consider the simpler case in
which CH = 0. In this case, (3.3) is trivially satisfied, thus
the only constraint on the filter gain is (3.2).

Theorem 4.1. Suppose CH = 0 then the unbiased
minimum-variance gain Lk is

Lk =
[
TkATCT + Φk(CAH)T

]
S−1

k , (4.3)

where

Tk
4
= Qk−1 + APk−1|kAT, (4.4)

Sk
4
= CATkATCT + CQkCT + Rk+1, (4.5)

Φk
4
=

[
H − TkATCTS−1

k CAH
] (

(CAH)TS−1
k CAH

)−1

(4.6)

5. INPUT RECONSTRUCTION

The filter derived in the previous section provides unbiased
minimum-variance estimates of states. Next, we consider
using these estimates to reconstruct the unknown inputs.

Proposition 5.1. Let CH = 0, and let x̂k|k+1 be an
unbiased estimate of xk. Then

êk−1
4
= (CAH)†CALk(yk+1 − Cx̂k+1|k) (5.1)

is an unbiased estimate of ek−1.

Proof. Refer to [10].

6. CONCLUSIONS

In this paper, we developed an unbiased minimum-
variance filter that recursively use current measurements to
estimate past states and reconstruct past inputs. Future work
will focus on both a more general form of this filter when
CH 6= 0, and for arbitrary delays, that is using measurements
at time step k + l to estimate states and unknown-inputs at
time step k.
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