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Abstract—In below-rated wind conditions, a wind turbine operates
to maximize the amount of available power harvested from the wind
and is said to be operating in region 2. In above-rated wind conditions,
where regulation is the main objective to prevent over power and speed
faults and to mitigate loads, the turbine is said to be in region 3. There
is no standard method for operation at the boundary of the two regions
and transitions between them can be problematic. In this study, we use
iterative learning control to determine the control actuation necessary to
accurately track idealized candidate trajectories during the transition
between regions 2 and 3. The amount of control actuation required
to track a transition trajectory and the ability to do so with minimal
collateral loading determines which trajectory is most amenable for
a given turbine. Trajectories are also graded by the average power
produced during transition since they take the turbine off of the optimal
power point.

I. INTRODUCTION

All wind turbine control systems must manage a transition
between optimizing power and preventing over speed and power
conditions that occur as wind speeds vary. In below-rated conditions
where the turbine cannot produce rated power (region 2), the ratio
of the blade-tip speed to wind speed (also known as tip-speed ratio
or TSR) is optimized to harvest the maximum power from the wind.
In above-rated conditions (region 3), speed and power are regulated
at safe levels and if possible, blade pitch and torque are adjusted to
reduce structural loading. The boundary between operating regions
2 and 3 is determined by the turbine’s rated power capability and
maximum or rated rotor speed.

Other than very slow adjustments of turbine yaw, the actuators
available on a utility scale turbine almost always consist only of
blade pitch and the ability to adjust the load torque and power
output of the generator. In region 2, pitch actuation is typically not
used; and in region 3, generator torque is essentially determined by
the maximum rated power output and therefore often held constant.
Evaluating typical transitions between the regions where these two
controls become active is the subject of this study.

Iterative learning control (ILC) is used to compute the pitch and
generator torque control signals required to follow candidate trajec-
tories under prescribed wind conditions. Transitions are evaluated
for rapidly varying wind conditions that begin and end at the same
speed. This is a fair basis for evaluating power performance since
the deficit accrued while the rotor is accelerating is balanced against
the extra power generated when the rotor is decelerating.

The computation of control signals is not simply a matter of
inverting a plant model because the turbine system is quite non-
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linear in the transition region. However, the time-varying formula-
tion of ILC is well suited to this problem. This technique provides
a means of iteratively computing the control signals required to
keep the turbine at the desired operating points as wind speed
changes. However, ILC requires highly repeatable conditions as
a prerequisite. Hence, in application to wind turbines, this study
advocates ILC as a powerful analysis and design tool and not a
control method, since it is not possible to arrange for such repeatable
conditions in the typical wind turbine environment.

This rest of this paper is organized into four parts and a conclu-
sion. In section II we describe the computation of the transition
profiles. Then section III formulates the ILC method used to
compute the necessary control actions. The results are presented
in section IV. In the remainder of the paper we use the ILC results
to evaluate the candidate transition profiles. Comparisons of power,
required control authority, and transient load performance, serve as
a basis for grading the candidate transition profiles.

II. TRANSITION REGION TRAJECTORIES

A. Operating Regions

A well controlled turbine is a passive aero-dynamic load on the
air mass flowing within the area swept out by the rotor blades.
The fraction of available wind power captured is characterized by
the turbine’s power coefficient Cp. This coefficient is a function
Cp(λ,β) of the turbine geometry and operating point as determined
by blade pitch β and the ratio λ of the blade-tip speed to wind speed
(i.e., TSR). In this study, we use a numerically computed power co-
efficient for a model of the three-bladed, controls advanced-research
turbine (CART3) at the National Renewable Energy Laboratory’s
(NREL’s) National Wind Technology Center (NWTC).

In below-rated wind conditions, the objective is to adjust rotor
speed so that it tracks with wind speed to maintain the TSR that
maximizes Cp. Contours of constant Cp are computed using the
code WT Perf [1] developed at NWTC and are depicted in Fig. 1(a).
The amount of power harvested is given by the product of Cp(λ,β)
and the available power in the wind, and can be expressed as [2]

Paero =
1

2
ρAR3Cp(λ,β)

λ3
Ω3 (1)

where A, R, Ω, and ρ are the turbine swept area, rotor radius, rotor
speed, and air density, respectively. With these definitions, if wind
speed is denoted by “w”, TSR is given by

λ = ΩR

w
. (2)

Ideally, in region 2 operation, the turbine will operate at the point
(λopt, βopt) where the power coefficient is a maximum. In region 3,
rotor speed is regulated to a constant value by increasing pitch; as a
consequence in region 3, TSR decreases with increasing wind speed
and the operating point shifts down and to the right in Fig. 1. The
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(a) Power Coefficient Contours (b) Torque Contours

Fig. 1. Typical power and torque contours. Also shown are possible routes traced as the operating point transitions from region 2 (λopt, βopt) to region 3.

path traced out as the turbine transitions between regions 2 and 3
is not unique and three possibilities are depicted.

Aero-dynamic torque (= P /Ω) is given by

τaero(λ,β) =
1

2
ρAR3Cp(λ,β)

λ3
Ω2 (3)

and contours of constant torque are depicted in Fig. 1(b). Inspection
of the torque contours shows that when pitch is near βopt, there is
less sensitivity to pitch. This– combined with the fact that changes in
pitch away from βopt only decrease aero-dynamic efficiency– limits
the use of pitch as a control input in region 2. So, in region 2, torque
control is used and while in region 3, speed is regulated using pitch
while holding torque at rated to maintain maximum power.

In region 2 it is common practice to compute the generator torque
that balances against the aero-dynamic torque at the maximum
power point [3]. This is known as the square law (wherein Ngb
is the ratio of the gear box transferring torque from the low-speed
rotor shaft to the high-speed generator shaft):

τgen(Ω) = τaero(λopt, βopt)
Ngb

= 1

2Ngb
ρAR3Cp(λopt, βopt)

λ3
opt

Ω2

≜ KgΩ
2. (4)

This essentially completes the specification of operating points
(nominal control set-points) in region 2. Blade pitch is set at βopt,
generator torque follows the square law, and the speed of the turbine
is not actively controlled. For the CART3, in region 3, generator
torque is held constant and speed is regulated using blade pitch.
Thus, in region 3 the operating points are determined by the blade
pitch required to keep aero-dynamic and generator torque balanced.

B. Transitions Between Operating Regions

As wind speeds increase and the turbine increases rotor speed
to track with available power, there is an eventual transition from
region 2 to region 3. This transition can be problematic [4], since
the torque control may saturate before pitch control becomes active
to regulate speed. This is depicted in Fig. 2(a) where rated torque
and power occur at the upper-right of the top plot.

In region 2, use of the square law (τgen = KgΩ
2) brings

the generator torque to rated before the rotor speed reaches the
rated maximum, as depicted by Profile C in Fig. 2(a). This is
the case for the CART3, but other turbine designs may result
in the square law hitting rated speed before rated torque. In any
case, a common practice is to introduce a transition region (often

referred to as region 2.5) so that generator torque hits rated before
speed reaches rated (and the turbine is producing rated power).
We evaluate the three transitions, U, C, and L in Fig. 2(a). Their
specification is completed by determining the wind speeds that
balance with prescribed rotor speed, generator load, and blade pitch.
We now describe a method of choosing pitch transitions and then
the associated wind speed and TSR.

With pitch near βopt, changes in wind speed generate significant
variation in aerodynamic torque, so it may be desirable to adjust the
pitch set point as the turbine approaches rated speed. In this study,
as soon as the prescribed torque profile τgen(Ω) deviates from
the square law, the prescribed pitch set points β(Ω) are increased
linearly to intercept with a pitch angle that holds speed at rated
in region 3. The result is displayed in the upper plot of Fig. 2(b).
The region 3 intercept is chosen to insure that all profiles have
appreciable pitch-to-aerodynamic torque control-authority when the
rotor speed hits rated and pitch regulation of speed is required.

Having specified torque and pitch as functions of rotor speed
Ω, the torque contour data (Fig. 1(b)), is used to determine corre-
sponding TSR profiles λ(Ω) as a function of rotor speed. That is,
for each pitch-torque-speed operating point, fix the specified pitch
β(Ω), scale the torque contour data in Fig. 1(b) by (Ω/35)2 and
then find the aerodynamic torque balancing against τgen(Ω)Ngb,
then the intercept at the left (in Fig. 1(b)) gives the corresponding
TSR λ(Ω). The result of this procedure is presented in the lower
plot of Fig. 2(a). This also provides a corresponding wind speed

w = ΩR

λ(Ω) ≜W (Ω). (5)

With these relationships determined, any wind speed can be mapped
to a corresponding rotor speed and blade pitch. Where we originally
prescribed generator torque and pitch as functions of rotor speed,
we now can schedule them as functions of wind speed:

Ω(w) = W −1(w), (6)

τgen(w) = KgΩ(w), (7)

β(w) = β(Ω(w)). (8)

We now consider the three rotor-speed profiles (as functions of
wind speed as in Fig. 2(b) or as functions of time as in Fig. 4(a))
as objectives in varying wind conditions and determine the change
in pitch and generator torque required to keep rotor speed on
these goals. This is done for the wind speed variation presented in
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(a) Torque And TSR Profiles (b) Rotor speed and Pitch Profiles

Fig. 2. Possible operating point transitions between regions 2 and 3 plotted versus rotor speed (a) and versus wind speed (b). Once generator torque and
pitch are prescribed, there is then a corresponding TSR (bottom of plot in (a)) that generates a balancing aerodynamic torque.

Fig. 4(a); the corresponding variation in rotor speed as a function
of time is obtained using (6). This wind variation requires that the
turbine accelerate and decelerate symmetrically as shown. We will
find that there will be significant differences (≫ 5%) in the loading
to which the blades are subjected, despite the fact that there are
only subtle differences in the target speed profiles.

These operating point profiles have been formulated using static
considerations. When wind changes as a function of time, simply
changing torque and pitch according to the static profiles will not
account for the accelerations that are required to keep the rotor
speed on the specified trajectory. This issue is resolved using ILC.

III. ITERATIVE LEARNING CONTROL

ILC is a technique that computes system inputs that drive the
response to track a desired reference– in our case a rotor-speed
profile as computed in section II. The problem of computing system
inputs cannot simply be formulated as a plant inversion or a linear
quadratic regulator problem, since the focus is specifically on a
region of non-linear operation.

ILC techniques can compute control inputs that achieve good
tracking of desired references in the presence of unknown distur-
bances. What is required is that the tracking maneuver be attempted
repeatedly and that the disturbance stay the same for each iteration.
For the purposes of this study, the unknown disturbance is the
effect of system non-linearities and wind, along with any other
aspect of the output not predicted by a linear, zero-initial-state
model. In addition, because of the change in polarity of the pitch-to-
torque profiles, and because there are hard limits on the maximum
allowable generator torque, we utilize a constrained ILC algorithm.

A. Models for ILC Computation and Simulation

1) Linear Approximation of the Non-Linear Turbine: Along any
response trajectory, perturbations in the response of the non-linear
dynamics are computed based on small perturbations in turbine
control. More explicitly, if the turbine response is determined as
a function of state x and input u according to non-linear dynamics

d

dt
x = F (x,u,w) (9a)

y = G(x,u,w), (9b)

where y is a vector of system outputs, then the change in state ∆x

and output trajectories ∆y are approximately given as solutions of

d

dt
∆x(t) ≜ F (x +∆x, u +∆u,w) − F (x,u,w)

≈ A(t)∆x(t) + B(t)∆u(t)
∆y(t) ≜ G(x +∆x, u +∆u,w) −G(x,u,w)

≈ C(t)∆x(t) +D(t)∆u(t)

where

A(t) = ∂F

∂x
∣
(x(t),u(t))

, B(t) = ∂F

∂u
∣
(x(t),u(t))

, (10a)

C(t) = ∂G

∂x
∣
(x(t),u(t))

, D(t) = ∂G

∂u
∣
(x(t),u(t))

. (10b)

That is, (A(t),B(t),C(t),D(t)) are the Jacobian matrices of the
vector functions F and G with respect to their first and second argu-
ments and are evaluated along known state and control trajectories
x(t) and u(t). We are interested in finding the necessary change
∆u(t) such that the resulting change in trajectory ∆x(t) puts the
turbine on the desired transition profile. Finally, we note that the
wind excitation varies as a function of time, but that function does
not change during this process. We repeat the experiment/simulation
for each new estimate of ∆u, but during the course of successive
experiments, there is no ∆w(t) to contend with.

Now, assume that the control used at each trial is implemented
in discrete time using a zero-order hold (i.e., it is constant between
sample hits). At the kth sample time tk, define x(k) ≜ ∆x(tk) and
u(k) ≜ ∆u(tk). Then the time-varying linear system in (10) can
be approximated by its discrete-time equivalent

xj+1(k + 1) = Aj(k)xj+1(k) +Bj(k)uj+1(k), (11a)

yj+1(k) = Cj(k)xj+1(k) +Dj(k)uj+1(k), (11b)

where we have introduced the index j to denote iteration. In par-
ticular, the discrete-time matrices (Aj(k),Bj(k),Cj(k),Dj(k))
are the zero-order-hold equivalents to the linearization
(A(tk),B(tk),C(tk),D(tk)) at each sample hit, along the
response of the system during the previous iteration. The control
uj+1(k) is the perturbation sequence to be determined for use
in the next iteration. Details surrounding the computation of the
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discrete-time model from the continuous-time model can be found
in Franklin, Powell and Workman [5].

2) Non-Linear System Response: At the conclusion of each iter-
ation, the non-linear response is obtained through simulation of the
turbine model using the turbine modeling code FAST [6] developed
at NWTC. This code also numerically computes linearized models
of the turbine at specified rotor and wind speeds and with specified
blade pitch. In implementation, we use an array of pre-computed
linearized, state-space models obtained from FAST over a 25-by-25
grid of TSR’s and blade pitch angles. The matrices used in (11) are
the ones from the array that are closest to the operating points (TSR
and blade pitch) observed at each sample hit during the previous
simulation.

The degrees of freedom (i.e., mechanical dynamics) modeled dur-
ing linearization represent rotational inertia, a second-order drive-
train torsional compliance, and a second-order blade compliance
that represents fore-aft/out-of-plane flapping of the turbine blades.
During simulation of the non-linear model, additional degrees of
freedom are included that encompass another blade flapping mode,
an edge-wise (in the plane of the rotor) blade flapping mode, two
tower fore-aft modes and two tower side-to-side modes. This is
considered a fairly high-fidelity turbine model, but introduces a fair
amount of discrepancy between the ILC computation model ((11))
and the full non-linear simulation.

B. Norm Optimal ILC as Finite-Horizon Tracking Control

Prior to each simulation, we compute a perturbation to the
nominal control input to reduce the tracking error. Computation
of the control perturbation is done with respect to the linearized
system (dropping the iteration index j from the notation)

x(k + 1) = A(k)x(k) +B(k)u(k), (12a)

y(k) = C(k)x(k) +D(k)u(k), (12b)

e(k) = yd(k) − ynl(k). (12c)

where yd(k) is the desired output (e.g., the rotor-speed profile
computed in section II), and ynl(k) is the output of the non-linear
system. We assume that our linear model is correct in which case
it follows that

ynl(k) = y(k) + d(k), (13)

where d(k) is any part of the response not accounted for by the
linear model. Note that ynl is never computed using (13), but
instead, it is obtained from simulation. The sequence e(k) is the
tracking error that we intend to minimize via the control perturbation
u(k) for this iteration, and is yet to be determined. Here it is to be
understood that the matrices (A(k),B(k),C(k),D(k)) are always
the ones that are closest to the operating points observed during the
previous iteration. In lieu of the iteration index j, we will distinguish
any signal obtained from the previous iteration using a tilde notation.

Note that in (12), the “disturbance” d(k) for this iteration is
strictly unknown during computation of u(k). However, assume
the new control u(k) will not change too much from the ũ(k)
used in the previous iteration. Then we can approximate d(k)
with the disturbance ỹnl(k) − ỹ(k) observed during the previous
iteration/simulation. So, for the current iteration we have

ynl(k) ≈ y(k) + (ỹnl(k) − ỹ(k)). (14)

Substituting this into (12c) for the present iteration gives

e(k) = yd(k) − (ỹnl(k) − ỹ(k))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ỹr(k)

−y(k) = ỹr(k) − y(k).(15)

Here, ỹr (= yd − d̃) is a computed reference for the linear model
based on the previous iteration. In the absence of modeling errors
and the approximation d ≈ d̃, finding the control u(k) that produces
this output from the linear model would then cancel with the
disturbance d(k) and produce the desired, total response yd(k).

However, since the final d(k) is unknown, and the formulation
hinges on u ≈ ũ, norm optimal ILC finds the control that optimizes
a cost function that penalizes large changes in control from one
iteration to the next, and the total size of the control. That is, we
compute the control minimizing the quadratic norm

f0(u,x) =
1

2

N

∑
k=1

[(y(k) − ỹr(k))TQk(y(k) − ỹr(k))

+u(k)TSku(k) + (u(k) − ũ(k))Rk(u(k) − ũ(k))]

+ 1

2
xTf ΠN+1xf + ra(N+1)Txf (16)

where the matrices Qk, Sk and Rk are symmetric weights that
penalize tracking error, control effort and the change in control,
respectively. We also require at least one of Rk or Sk to be positive
definite. The part of the cost involving xf , the final state at sample
k = N+1, is derived from the requirement that the system ends up
in a state that minimizes the tracking error without any control:

1

2
eTf ef =

1

2
(C(N+1)xf − ỹr(N + 1))TQf
× (C(N+1)xf − ỹr(N+1))

=1

2
xTf C(N+1)TQfC(N+1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ΠN+1

xf

+ (−ỹr(N+1)TQfC(N+1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ra(N+1)T
xf , (17)

where constant terms have been dropped in the second line.
The cost function in (16) can be organized by writing it in terms

of a generalized tracking error z(k)

f0(u,x) =
1

2

N

∑
k=1

⎡⎢⎢⎢⎢⎢⎣

y(k) − ỹr(k)
u(k) − ũ(k)

u(k)

⎤⎥⎥⎥⎥⎥⎦

T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
z(k)T

⎡⎢⎢⎢⎢⎢⎣

Qk 0 0
0 Rk 0
0 0 Sk

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Qz(k)

⎡⎢⎢⎢⎢⎢⎣

y(k) − ỹr(k)
u(k) − ũ(k)

u(k)

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

z(k)

+ 1

2
xTf ΠN+1xf + ra(N+1)Txf ,

=1

2

N

∑
k=1

z(k)TQz(k)z(k) +
1

2
xTf ΠN+1xf + ra(N+1)Txf .

(18)

Further, the generalized tracking error can be computed in terms of
a generalized reference r(k) as

z(k) =
⎡⎢⎢⎢⎢⎢⎣

C(k)
0
0

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Cz(k)

x(k) +
⎡⎢⎢⎢⎢⎢⎣

D(k)
Iu
Iu

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Du(k)

u(k) +
⎡⎢⎢⎢⎢⎢⎣

−Iy 0
0 −Iu
0 0

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dr(k)

[ỹr(k)
ũ(k) ]

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
r(k)

,

=Cz(k)x(k) +Du(k)u(k) +Dr(k)r(k), (19a)

x(k + 1) =A(k)x(k) +B(k)u(k) + [0 0]
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
Br(k)

[ỹr(k)
ũ(k) ]

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
r(k)

,

=A(k)x(k) +B(k)u(k) +Br(k)r(k). (19b)
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(a) Turbine Configuration for Generalized Tracking (b) ILC Costs Versus Iteration

Fig. 3. Augmenting the turbine system to emphasize high frequency content of control effort (Fhf as shown in (a)) provides monotonic decreases in
speed-tracking error (as in (b)). Speed tracking error, as shown in (b), is un-weighted, but the other components depicted include the cost function weighting.

C. Lifted Representation Of Finite Horizon Tracking Control

In this section, we provide an overview of the methods used in
this study for quadratic optimization with equality and inequality
constraints. The dimensions of the systems of equations that result
can be even larger than those encountered in the more straight
forward, lifted ILC implementation [7]. This computational burden
is circumvented to a large extent by relying heavily on Riccati
recursions to solve the required systems of equations.

1) Lifted Representation with Equality Constraints: Define the
lifted [7] optimization variable

v = [u(1)T x(2)T . . . u(N)T xTf ]T . (20)

Then, by substituting (19a) for z(k) into the cost (18) and dropping
terms independent of u(k) and x(k), the optimization problem can
be posed as

min
v

f0(v) =
1

2
vTHv + gT v, (21a)

subj: Ceqv = b, (21b)

where

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qu(1) 0 0 ⋯ 0
0 Qx(2) Sxu(2) ⋯ 0

0 Sxu(2)T Qu(2) ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ ΠN+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22a)

g = [gu(1)T gx(2)T ⋯ gu(N)T gx(N+1)T ]T ,
(22b)

gu(1) = Sxu(1)Tx(1) + Sur(1)r(1), (23a)

gu(k) = Sur(k)r(k), (23b)

gx(k) = Sxr(k)r(k), (23c)

gx(N+1) = ra(N+1), (23d)

and

Qx(k) = Cz(k)TQz(k)Cz(k), (24a)

Qu(k) = Du(k)TQz(k)Du(k), (24b)

Sxu(k) = Cz(k)TQz(k)Du(k), (24c)

Sxr(k) = Cz(k)TQz(k)Dr(k), (24d)

Sur(k) = Du(k)TQz(k)Dr(k). (24e)

The equality constraint derives from the state equation (19b), so
that

Ceq =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−B(1) I 0 0 ⋯ 0
0 −A(2) −B(2) I ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (25)

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A(1)x(1) +Br(1)r(1)
Br(2)r(2)

⋮
Br(N)r(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

Since the cost and constraints are convex functions of the opti-
mization variable, an optimizing solution can be found by solving
the associated Karush-Kuhn-Tucker (KKT) system [8]

[ H CTeq
Ceq 0

] [v
γ
] = [−g

b
] , (27)

where γ is a Lagrange multiplier. The dimensions of this problem
can become quite large, but it can be decomposed to obtain a Riccati
recursion [8].

Alternatively, one can take a dyanmic programming approach
starting from (18): peel off the last term of the summation, substitute
in for z(N) and xf = x(N+1) in terms of x(N) and u(N) using
(19a) and (19b), respectively, and solve for the last control u(N) in
terms of x(N) and the reference r(N). The result will be a control
of the form

u(N) = −K(N)x(N) + uref(N). (28)

This result can be substituted back into the cost (18) and with
some simplification it becomes apparent that the process can be
back-stepped to the first sample hit at k = 1. This latter approach, in
our opinion, is more straight forward and we provide the results here
without derivation. We also note that (29f) below, is a discrete-time
Riccati recursion. The optimal control is obtained by first recursing
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(a) Rotor-speed Prrofiles (b) ILC Weights Relative to Speed and Torque Profiles

Fig. 4. The target profiles are evaluated using the wind variation plotted in (a). The ILC weights are constructed as shown in (b), to emphasize difficult
tracking sections and bias the torque command towards rated. Also shown in both plots is the rotor-speed response to the nominal torque and pitch controls.

backwards

Ru(k) =Qu(k) +B(k)TΠk+1B(k), (29a)

M(k) =Sxu(k) +A(k)TΠk+1B(k), (29b)

K(k) =Ru(k)−1M(k)T , (29c)

ra(k) = (A(k) −B(k)K(k))T (ra(k + 1) +Πk+1b(k))
+ gx(k) −K(k)T gu(k), (29d)

uref(k) = −Ru(k)−1 [gu(k) +B(k)T (ra(k + 1) +Πk+1b(k))] ,
(29e)

Πk =Qx(k) +A(k)TΠk+1A(k) −M(k)Ru(k)−1M(k)T ,
(29f)

where

ra(N + 1) = gx(N + 1), (30)

and then recursing forwards

u(1) =uref(1), (31a)

u(k) = −K(k)x(k) + uref(k), (31b)

x(k + 1) =A(k)x(k) +B(k)u(k) + b(k). (31c)

This form of the recursions is convenient for application to the
case where inequalities are used and a gradient search is required.
Without inequality constraints, (30) is redundant. Also, without
inequality constraints, these recursions show it is possible to solve
for an optimal control without computing the Lagrange multiplier γ.
However, the multiplier is required for the gradient search, and by
comparing the recursion obtained from decomposition of the KKT
system (27) with the recursion given above, it can be shown that
(partitioning the γ vector conformably with the number of states)

γ(k) = −Πk+1x(k + 1) − ra(k + 1). (32)

2) Lifted Representation with Inequality Constraints: In our
application, we wish to apply constraints on the pitch and torque
controls. In general, it is straight forward to include in the problem
statement constraints on any output that can be computed from the
control and system state (e.g., yp(k) = Cp(k)x(k)+Dup(k)u(k) ≤
Ymax(k)). Writing such constraints in terms of the optimization

variable (20), the optimization problem becomes

min
v

f0(v) =
1

2
vTHv + gT v, (33a)

subj: Ceqv = b, (33b)

Pv ≤ h, (33c)

where

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dupd(1) 0 0 ⋯ 0
−Dund(1) 0 0 ⋯ 0

0 Cp(2) Dup(2) ⋯ 0
0 −Cn(2) −Dun(2) ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ Cf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(34a)

h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ydmax(1) −Drpd(1)r(1) −Cpd(1)x(1)
−Ydmin(1) +Drnd(1)r(1) +Cnd(1)x(1)

Ymax(2) −Drpr(2)
−Ymin(2) +Drnr(2)

⋮
f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34b)

The final inequality Cfx(N +1) ≤ f normally requires the final
state to be in some acceptable polygon.

The cost and the constraints are again convex, so any solution
of the associated KKT system gives optimal control and state
sequences [8]. However, in this case, the KKT system will contain
products between the optimization vector and Lagrange variables,
so that the solutions must be obtained using a numerical method.

We take the primal-dual approach in [8] and perform a gradient
search to find solutions of the modified KKT system

rv ≜ Hv + g +CTeqγ + PTλ = 0, (35a)

rγ ≜ Ceqv − b = 0, (35b)

rλ ≜ Λd + t = 0, (35c)

where d ≜ Pv − h, the vectors γ and λ are Lagrange multipliers,
Λ ≜ diag(λ), and t is a parameter updated each step of the search.

The initial guess at v must satisfy d < 0; then, as described in
[8], the algorithm includes safeguards to insure

Pv − h < 0, (36a)

λ > 0, (36b)

4317



(a) Resulting Torque and Pitch Commands (b) Resulting Bend and Twist Loads

Fig. 5. Results after the final iteration: (a) the resulting torque and pitch commands for each profile; (b) the resulting loads on the blades and rotor shaft.

(which are key to the unmodified KKT system).
Finding a solution to (35) entails using Newton’s method to

compute search directions. Given an initial guess at values for
(v, γ, λ), it is possible to show that a search direction (∆v,∆γ ,∆λ)
can be obtained by solving

[H − P
TD−1ΛP CTeq
Ceq 0

] [∆v

∆γ
] = [P

TD−1rλ − rv
−rγ

] (37)

where D = diag(d), and then performing the computation

∆λ = −D−1rλ −D−1ΛP∆z. (38)

The algorithm then finds new values for the optimization variables
(v, γ, λ) searching along the direction (∆v,∆γ ,∆λ). When the
new values solve (35) to the desired precision, the search is
terminated; otherwise a new search direction is computed and the
process is repeated.

Because of the form of P , the block structure of the system in
(37) is identical with the block structure in (27). Therefore, this
system can also be solved using the Riccati recursion as follows.
Decompose Ĥ ≜H −PTD−1ΛP as in (22a), and then compute the
recursions (29) and (31) with the substitutions

Qx(k) =Q̂x(k), (39a)

Qu(k) =Q̂u(k), (39b)

Sxu(k) =Ŝxu(k), (39c)

g =rv − PTD−1rλ, (39d)

b = − rγ . (39e)

This gradient search is required for each new computation of
constrained controls (i.e., each ILC iteration). The computation of
the search direction (the Riccati recursion) may need to be repeated
many times to obtain a new control for the next simulation. This
is in contrast with the case without inequality constraints, where
the Riccati recursion is done only once per iteration. The details
surrounding the use of the search direction in the course of the
primal-dual algorithm can be found in [8].

D. ILC Configuration for Application to the Wind Turbine

In order to effectively apply the approach laid out so far, the
wind turbine plant is generalized slightly as depicted by the grey
block in Fig. 3(a). We apply hard constraints to the size of the
control pertubation such that the total control remains within desired

bounds. This makes penalizing the total size of the control redundant
and therefore, Sk in eq’s (16) and (18) is omitted and u(k) is not
included in z(k).

However, we find that the high frequency content of the controls
needs to be penalized in order to achieve monotonic decreases in
the iteration-to-iteration tracking error. So, the plant is augmented
with high-pass filters Fhf (as shown in Fig. 3(a)) having par-
ticular emphasis at the drive-train resonant frequency. In effect,
the generalized output becomes y = [Ω, τgen, τhf , phf ]T , where
τhf and phf are high-passed versions of the torque and pitch
commands, respectively. The torque command τgen is also fed
through to an output so that a penalty can be applied that biases
this control towards rated. Hence, the desired reference becomes
yd = [Ω(w), τrated,0,0]T .

The weight matrix Rk penalizing change in the
iteration-to-iteration control effort is diagonal, but
constant. The tracking weight matrix Qk is also diagonal
Qk = diag([WΩ(k),WtqB(k),WtqF ,WpF ]); but the weights
WΩ(k) and WtqB(k) on speed error and torque vary with sample
hit k as shown in Fig. 4(b). In particular, the torque command
is only biased towards rated when the turbine nominal torque is
at rated, and during deceleration; the rotor-speed tracking error is
weighted most heavily where there are abrupt changes in the slope
of the desired speed profile.

IV. ILC RESULTS

ILC computes the controls necessary to track each of the three
candidate rotor-speed profiles as the wind speed drives the turbine
into and out of region 3. A typical progression of the component
costs are presented in Fig. 3(b). The control estimates become
nearly constant within 40 iterations, at which point the computed
commands achieve peak tracking errors of less than 1% for all
profiles. Evident in the spikes of total cost at iterations 5, 9, 13,
17, and 21 in Fig. 3(b), is the fact that the cost function is modified
by increasing WΩ by a factor of four every four iterations, for a
total of five increases. In addition, at every 25th iteration, the penalty
on the generator-torque high frequency content is reduced by half.

The resulting pitch and torque controls are presented in Fig. 5(a).
All three target profiles are the same until they deviate from the
square law (see Fig. 2(a)) and so the resulting commands are
identical until about 18 sec. All profiles require the turbine to
“motor” (apply power to the rotor) in order to operate at the optimal
TSR during the fast increase in wind speed used in this study.
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Fig. 6. Performance metrics for the three candidate transition profiles.

However, it is found that the torque can be biased near rated during
deceleration and thereby recoup much of the power loss that is
incurred during acceleration.

As can be observed in Fig. 5(a), profile L requires the least
high frequency actuation and this is consistent with the smoother
variation in this profile’s prescribed speed. However, the difference
in actuation appears more significant than the differences in the
speed profiles presented in Fig. 4(a). Further, profile L results in
lower loads on both the blades and the rotor shaft (see Fig. 5(b)).

V. EVALUATION OF TRANSITION PROFILES

At this point, it would appear that Profile L is more natural
for the turbine in that it requires marginally less actuation to
achieve the target rotor speeds. However, in operation, power and
load performance are viewed as more important. Two of the most
important loads to consider are drive train and blade fatigue.

In terms of the twisting moment experienced by the rotor shaft
(in the lower plot, Fig. 5(b)) profile L appears to create slightly
lower loads. More significant is the reduction in blade-root bending
moment as can be observed (in the top plot, Fig. 5(b)). This is
a result of the fact that profile L ends up with larger/better pitch
angles during acceleration. Further, in the absence of catastrophic
loads, it is the number and size of the peak-to-peak excursions that
produces fatigue wear and in this case as well, profile L is superior.

Damage equivalent load (DEL) is an accepted metric for mea-
suring fatigue wear [9]. In Fig. 6 we compare the resulting DEL’s
and average power produced by each profile during the region 2-
3-2 cycle. The lower loads exhibited by profile L are achieved
with a lower power output. However, profile L’s power output is
lower by only about 2%, while its blade-flap DEL is lower by as
much as 40%– a very significant decrease. If the 40% decrease in
load is borne out in more turbulent conditions, it would imply that
the diameter of the rotor can be increased (increasing the amount
of power the turbine can harvest) and this could easily make up
for the loss in power. There would be some optimal increase in
diameter that balances increasing loads (due to a larger bending-
radius/moment) with increasing power.

Therefore, we would select profile L as superior. It remains to
be seen how a feedback control system will fair with the candidate
profiles since, normally, it does not benefit either from ILC or a
scheduling of nominal controls based on wind speed. However, there
is great interest in the use of advanced measurement technologies

such as light detection and ranging (LIDAR) that promise to make
set-point scheduling based on wind speed feasible. In particular, our
work in LIDAR-based model predictive control [10] will be able to
make use of the results of this study directly, since that architecture
will explicitly schedule set points based on wind speed.

VI. CONCLUSIONS

Several candidate transition profiles are compared by determining
the control actuation and loading required to track set points in
changing wind conditions. The perturbations to the nominal, sched-
uled control set points indicate which profiles may be unrealistic
in changing wind conditions. Overall, the approach taken here
promises to be an effective method to evaluate transition profiles
without the additional variables that would be introduced with the
inclusion of a feedback controller and its optimization. However, the
approach can also easily be combined with any existing feedback
controller.

ILC is an effective technique in computing the control actions
required to track candidate profiles. The modeling process had errors
in that the non-linear system was modeled as linear, in that the
order/degrees of freedom in the linear model were different than
the actual system, and in that further errors were introduced due
to the fact that the available linearizations were only approximate
to the actual operating points. Never the less, ILC still successfully
computed the required controls.

Finally, we note that one should consider that it is possible to
affect the results (and conclusions) through the choice of the ILC
weights. In this study, we were able to bias torque towards rated
during deceleration in order to recoup power lost during motoring.
In actual operation, this strategy is only straight forward if the
system is able to schedule based on wind speed. Similarly, we could
also have biased pitch towards larger values during acceleration and
thereby reduced the loads exhibited by profiles U and C at the
expense of increased torque actuation. The effect and validity of
such biases needs to be carefully considered in the evaluation of
the results.
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