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Abstract— This paper addresses distributed estimation and
control problems for directed network, whose connectivity can
be captured by the first left eigenvector associated with the
dominant eigenvalue of the communication matrix. In partic-
ular, distributive estimation scheme is designed such that the
first left eigenvector as well as the expected consensus vector are
estimated online employing the same communication network
among the systems. Based on the estimation results, distributed
cooperative controls with adaptive gains are synthesized to
improve convergence of the overall system by making the
time derivative of the cooperative control Lyapunov function
more negative over time, such that the convergence to the
expected consensus value can be enhanced. Simulation results
demonstrate the effectiveness of the proposed design.

I. INTRODUCTION

Cooperative control theory and its applications has re-

ceived significant amount of interests in the past decades,

leading to breakthroughs in formation control [1], [2], atti-

tude synchronization [3], [4], [5], and flocking [6], [7]. Im-

plementation of cooperative control requires sharing of local

information among a group of networked systems, whose

interactions can be captured either by graph laplacian [8] or

by communication matrix [2], it is thus of both theoretical

and practical interests to find a systematic strategy, preferably

distributively, to improve the network performance, which

will be investigated in this paper.

It is known that the first left eigenvector (i.e., associated

with dominant eigenvalue) of a nonnegative, row-stochastic

matrix D characterizes the connectivity of the network I−D

or its corresponding graph. Specifically, if the network is

undirected or symmetric, the first left eigenvector is trivial

and the convergence rate can be conservatively captured by

the Fiedler value [9], which has been rigorously addressed

in the open literatures. Several approaches are available on

estimating the eigenvectors and eigenvalues of undirected

network. For instance, a decentralized orthogonal iteration

approach is proposed in [10] to estimate the leading k eigen-

vectors, but this proposed method is not scalable and also

requires a centralized initialization. In [11], eigenvalues of

Laplacian matrix are estimated using fast Fourier transform

(FFT) by constructing distributed oscillators whose states

oscillate at frequencies corresponding to the eigenvalues of

graph Laplacian, however the FFT technique is not appropri-

ate for real-time implementation and for handling switching
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topologies. Other numerical solutions to finding Fiedler

eigenvalue are [12], [13] in which it shows clearly that direct

computation of Fiedler value requires global information of

the network. The best available result in estimating Fiedler

value is arguably [14] in which distributed nonlinear dynamic

estimators are designed using a decentralized power iteration

approach to real-time estimate components of the Fiedler

eigenvector and the Fiedler eigenvalue of an undirected and

connected network, though the estimators require estimation

of several other consensus values and they may not be able

to handle fast changing topologies.

In addition, optimizing Fiedler value directly or indi-

rectly is another noteworthy strategy in improving network

convergence. Successful treatments in this venue include

applications of centralized semi-definite programming (SDP)

approaches [15][16] or decentralized supergradient method

[17], or indirectly by introducing additional node(s) whose

location is optimized based on the global information of the

network [18].

However, all of the aforementioned results are restricted

to undirected and connected networks. To the best of our

knowledge, little is available on distributively estimating

connectivity of directed networks or on improving their

performance. In this paper, we focus upon distributed es-

timation and control problems of directed networks. Specif-

ically, distributed estimators are provided to estimate the

first left eigenvector and expected consensus vector, based

on which the gains in standard linear cooperative controls

are distributively and adaptively adjusted so that the time

derivative of cooperative control Lyapunov function becomes

more negative and hence performance of the overall system

is enhanced. The proposed estimation and adaptation scheme

provide a systematic way of synthesizing cooperative control

laws for varying and directed networks, its effectiveness is

verified by theoretical proofs and numerical examples.

II. PROBLEM FORMULATION

Consider n linear systems whose dynamics are described

by

ẏi = ui, (1)

where yi ∈ ℜm is the output of the ith system, and ui ∈ ℜm

is the control to be designed. Information sharing among

the group of the systems is through a local communication

network whose status is described by piecewise-constant

binary communication matrix S(t). Specifically, there is a

time sequence {tk : k ∈ ℵ} such that S(t) = S(tk) for all
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t ∈ [tk, tk+1), where ℵ = {0,1, ...,∞},

S(tk) =

















1 s12(tk) . . . s1n(tk)

s21(tk) 1 . . . s2n(tk)

...
...

. . .
...

sn1(tk) sn2(tk) . . . 1

















, (2)

si j(t) = 1 if information of y j(t) is received by the ith system,

and si j(t) = 0 if otherwise. Hence, the neighboring set of the

ith system is defined as Ni, such that for any k ∈ Ni, we

have sik(t) = 1.

Although the time sequence of {tk : k ∈ ℵ} and the topo-

logical changes of S(t) are not known apriori or predictable

or prescribed/modeled in any specific way. For the systems

described by (1), linear cooperative controls for the ith

system are of the form

ui(t) =
n

∑
j=1

si j(t)αi j(t)

∑n
l=1 sil(t)αil(t)

[y j(t)− yi(t)]

△
=

n

∑
j=1

di j(t)[y j(t)− yi(t)], (3)

where αi j(t) > 0 are scalar piecewise-constant control gains,

and changes of si j(t) are instantaneously detected according

information reception by the ith system.

Substituting (3) into (1) yields the overall networked

system

ẏ = [−Inm +D(t)⊗ Im]y, (4)

where yT = [yT
1 yT

2 ... yT
n ]∈ ℜnm, Il ∈ ℜl×l is the identity ma-

trix, ⊗ denotes the Kronecker product, and D(t) = [di j(t)] ∈
ℜn×n is a non-negative, piecewise-constant, row-stochastic

and diagonally positive matrix.

It is well established that consensus (yi−y j)→ 0 for all i 6=
j can be achieved if S(tk) is uniformly sequentially complete

or its corresponding graph is cumulatively connected [2],

[19]. Specifically, the convergence rate (defined as rate of

convergence to a consensus) of system (4) is determined

not only by the cumulative information flow S(t) (and

equivalently D(t)), but also the state of the systems within

[18]. Clearly, choices of constant gains for αi j(t) are the

simplest and, in order to improve performance, control gains

αi j(t) should be adjusted online according to both locally

available state and topological information. Let γ(t) ∈ ℜn

denotes the first left eigenvector of matrix D(t), such that

DT (t)γ(t) = γ(t), and γT (t)1n = 1 (5)

where 1n ∈ ℜn is a vector of 1s. The leader set of network

D(t) is defined as L , such that for any j ∈ L , we have

γT (t)e j > 0.

Then, the expected consensus vector can be given by

σ(t) = [γT (t)⊗ Im]y(t) = [σT
1 ... σT

n ]T (6)

where σi is the expected consensus vector at the i system.

Furthermore, to quantitatively analyze the convergence rate,

we can use the following cooperative control Lyapunov

function [19]: for t ∈ [tk, tk+1),

Vc(t) =
1

2

n

∑
i=1

n

∑
j=1

βi j[yi(t)− y j(t)]
2 (7)

where βi j = γT eiγ
T e j if the j ∈L , and βi j = 0 if otherwise,

ei ∈ ℜn is unit vector in which all entries are zeros except

for 1 as the ith entry. The objective of this paper is threefold:

(i) Develop a distributed algorithm to estimate the left

eigenvector γ in (5); (ii) design a distributed algorithm to

estimate the expected consensus vector σi as of (6); and (iii)

Synthesize an online adaptive scheme to adjust the gains

in the linear cooperative control law so that convergence

to the consensus is improved. The proposed estimation-

control algorithm works for any unknown time sequence of

{tk : k ∈ ℵ} and any topological changes of S(tk) provided

that the following simple assumption holds.

Assumption 1: Time sequence {tk : k ∈ ℵ} has the property

that (tk+1 − tk) ≥ τ for some known constant τ > 0.∗

III. DISTRIBUTED ESTIMATION OF NETWORK

CONNECTIVITY

In this section, the left eigenvector as well as the expected

consensus vector of system (4) are estimated online by each

of the systems. Before proceeding further, the following

lemmas are provided, illustrating the relationship among

connectivity of network matrix D, convergence of its corre-

sponding system, and the first left eigenvector γ . Their proof

are omitted here since they combine the results in [19].

Lemma 1: Consider diagonally-positive row-stochastic ma-

trix D ∈ ℜn×n
+ with DT γ = γ .

(i) Suppose that D is irreducible. Then, γ is positive and

unique.

(ii) Suppose that D is reducible and is the following 2-by-2

lower triangular canonical form†

PDPT =

[

E11 0

E21 E22

]

, E∠, (8)

where E11 is irreducible and P is a permutation matrix. Then,

if E22 is irreducible, and E∠ is lower triangularly complete

(i.e., E21 6= 0), γT = [γT
E11

0]P is unique, where γE11
is positive

such that γT
E11

E11 = γT
E11

. If E22 is irreducible but E21 = 0,

then γ is not unique, and its linearly-independent choices are

γT = [γT
E11

0]P and γT = [0 γT
E22

]P, where γE22
is positive such

that γT
E22

E22 = γT
E22

. If E22 is reducible, the properties of γ can

similarly be argued after permutation and lower triangulation

of E22.

Lemma 2: Consider row-stochastic matrix D ∈ ℜn×n
+ with

γT D = γT . Then, for any µ > 0 and t > 0,

γT eµ(−I+D)t = γT .

∗In the event that rapid changes of S(t) are present and that inequality
of (tk+1 − tk) ≥ τ is violated occasionally, these changes would be accom-
modated by the transient of the proposed distributed estimation schedule.
Clearly, if (tk+1 − tk) ≥ τ does not hold most of the time, there is little
chance for any online estimation scheme of network connectivity to work.

†It is straightforward to extend the result to matrix D that has an l-by-l
lower triangular canonical form.
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Furthermore, if D is irreducible or reducible but lower

triangularly complete,

lim
t→∞

eµ(−I+D)t =
1

γT 1n

1nγT , (9)

If D is reducible and lower triangularly incomplete, there is

a permutation matrix P such that the limit of Peµ(−I+D)tPT

is block diagonal and each of those diagonal blocks has the

aforementioned properties.

A. Distributed Estimation of Left Eigenvector

Topological changes in S(t) are not known either apriori

or real-time by all the systems, nor is the corresponding

time sequence {tk : k ∈ ℵ}. What is known instantaneously

to the ith system is whether si j(t) or αi j(t) or their weighted

average di j(t) experiences a discontinuous jump at certain

specific time instance tk. If there is, the ith system knows

that certain communication link(s) to itself has changed the

status at time tk (t̂k is the estimation of tk), but such a change

is generally directed and not known to any other system. In

fact, this direct measurement individually done by the ith

system is the only information available about topological

condition of the communication network as well as the gains

of the overall networked system. This information is then

used to construct the following distributed estimator: if di j(t)
does not experience any change at time t for all j (that is,

di j(t
+) = di j(t

−)) and if di j(t
+) > 0 and γ̂ j(t) is not reset at

time t (that is, γ̂ j(t
+) 6= e j), then

˙̂γi(t) = µ
n

∑
j=1

di j(t)[γ̂ j(t)− γ̂i(t)]; (10)

if otherwise,

γ̂i(t
+) = ei; (11)

where γ̂i(t0) = ei, µ > 1 is the estimation gain to be specified,

di j(t) is the same as that in (3), and γ̂ j(t) is transmitted

through the same communication network as y j(t). In other

words, if the ith row of communication matrix S(t) has any

binary change at time t or if αi j(t) is adjusted to a different

value for some j, the local estimate γ̂i(t) is reset to be ei.

Furthermore, if ski(t) = 1, then any reset of γ̂i(t) to ei is

detected by the kth system so that γ̂k(t) is also reset to ek.

If the network matrix S(t) is irreducible, a reset of local

eigenvector estimate by one system will propagate into resets

of local eigenvector estimates by all the systems. If there is

no topological change or gain change at time t, the local

estimate of the network left eigenvector evolves according

to differential equation (10). Performance of the proposed

left-eigenvector estimation algorithm is summarized into the

following theorem.

Theorem 1: Consider cooperative system (4) and let γ(t)
be the unity left eigenvector of network matrix D(t) and

associated with eigenvalue λ (D(t)) = 1. Then, under as-

sumption 1, γ(t) can be estimated distributively by estimation

algorithm (10) and (11). Specifically, for any time sequence

{tk : k ∈ℵ} satisfying the assumption and for any topological

changes in S(tk), output γ̂i(t) of distributed estimator (10)

and (11) over time interval [tk, tk+1) converges to either

the network’s unique left eigenvector γ(tk) or one of its

linearly independent components (as specified by lemma 1).

In addition, the convergence rate of distributed estimators

can be made arbitrarily fast by choosing a large value of µ
(say, µ ≥ 40/τ).

Proof: It follows that, whenever switching laws (11) are

not active, the combined dynamics of all the distributed

estimators can be expressed in a matrix form as

˙̂γ(t) = µ[−In2 +D(t)⊗ In]γ̂(t) (12)

where γ̂(t) = [γ̂T
1 γ̂T

2 ... γ̂T
n ]T ∈ ℜn2

. The proof is done by an

induction with respect to time sequence {tk : k ∈ ℵ}.

First, consider the interval t ∈ [t0, t1). It follows from

initial conditions of γ̂i(t0) = ei, from (12), and from lemma 2

that, letting γ(t0) denote (one of) left eigenvector(s) defined

by (5),

γT (t0)[D(t0)⊗ In] = γT (t0).

Therefore, from (12)

γ̂(t) = eµ{[−In+D(t0)]⊗In}(t−t0) ˆ̄γ(t0) (13)

Invoking lemma 2, and because of the fact

eA
⊕

B = eIm⊗A+B⊗In = eB ⊗ eA (14)

where
⊕

denotes the Kronecker sum, A and B are square

matrices of any order.

Hence,

lim
µ→∞

eµ{[−In+D(t0)]⊗In}(t−t0) =
[

1nγT (t0)
]

⊗ In (15)

Consequently,

γ̂(t) →
[

1nγT (t0)
]

⊗ In
ˆ̄γ(t0) = 1n ⊗ γ(t0), (16)

It is clear that γ̂i(t) → γ(t0) can be ensured. In addition, it

follows from lemma 1 that, depending upon the topological

property of D(t0), γ(t0) may not be unique and hence

convergence of γ̂i(t) → γ(t0) will render their corresponding

(linearly independent) left eigenvector for each estimator.

The convergence rate is specified by e−µ(1−λD)(t−t0) where

λD is the Fiedler eigenvalue of D(t0), and the convergence

time can be made smaller than τ/4 by simply increasing µ
according to µ ≥ 40/τ .

Now, assume that the estimators work up to the time

instant t = t−k . Although tk is not known apriori, time instant

tk becomes known to the ith system if sil(t) has a binary

change at t = tk and for some l. Then, at t = t+k , the ith

system invokes switching law (11) and γ̂i(tk) is reset, and

so does the jth system for those j with s ji(t
+
k ) = 1. If

D(t+k ) is irreducible, this chain of resetting will instanta-

neously propagate to all the systems. If D(t+k ) is lower

triangularly complete and the ith system corresponds to the

first block of its lower triangular canonical form, the chain

of resetting will also instantaneously propagate to all the

systems. If D(t+k ) is lower triangularly complete but the ith

system does not correspond to the first block in its lower

triangular canonical form, the chain of resetting will only
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instantaneously propagate to those systems corresponding

to the same and lower block rows, but those reset ”initial”

conditions have no effect on the left-eigenvector estimation

(since the corresponding entries in the left eigenvector are

always zero). If D(t+k ) is lower triangularly incomplete and

the ith system corresponds to one of the isolated diagonal

block in the lower triangular canonical form, then the chain

of resetting will instantaneously propagate only to those

systems corresponding to the same block row of D(t+k ).
In all the cases, this chain of resetting ensures that all the

distributed estimators have appropriate ”initial” conditions to

estimate the left eigenvector(s).

After the resetting is done and for t ∈ (t+k , tk+1), the

combined dynamics of all the distributed estimators are given

again by (12). Using the same argument as those of (12) up

to (16), we have

γ̂(t) → 1n ⊗ γ(t+k ),

and the limit can be achieved within t ∈ (t+k , tk + τ/4).
The proof is completed by noting the above inductive

argument. ¤.

With first left eigenvector, the topological properties of

the network is known explicitly at each system. Specifically,

straightforward decision can be drawn on connectivity of

the overall network and the social standing of any particular

system. This enables each of the systems to take any correc-

tive measure in a high-level control of the communication

network.

B. Estimation of the Consensus Value

In this section, the expected consensus value σ(t) for

system (4) over any time interval [tk, tk+1) is estimated by

a parallelled distributed scheme. Moreover, the consensus

estimator σ̂i(t) also needs reset properly in order to ac-

commodate the possible topological changes in the network

matrix, likewise to the resetting of γ̂i(t). In particular, all the

estimators reset their states in the same manner as in (11).

That is, if there is no change detected in di j(t),∀ j, and if

di j(t
+) > 0 and σ̂ j is not reset at time t, then

˙̂σi(tk) = µ
n

∑
j=1

di j(tk)[σ̂ j(tk)− σ̂i(tk)]; (17)

Otherwise,

σ̂i(t) = yi(t); (18)

where σ̂i(t0) = yi(t0).
Hence, once there is any binary change in S(t) or αi j

experiences any adjustment or its connected neighbor resets

its estimator, the ith system will synchronize σ̂i with the

current output yi. The following theorem concludes the

performance of the proposed consensus estimator:

Theorem 2: Consider networked system (4) whose consensus

vector is given by (6). Then, under assumption 1 and µ >
40/τ , σ(t) can be estimated distributively by (17) and (18).

In particular, for any time sequence {tk : k ∈ ℵ} and for

any topological changes in S(tk), distributed estimator σ̂i

converges to the system’s unique consensus value if D(t)

is irreducible or reducible but lower triangularly complete.

If D(t) is lower triangularly incomplete, σ̂i is not unique

since γ(t) is not unique, and σ̂i converges to the expected

consensus vector associated with each block, as indicated in

lemma 1.

Proof: If there is no resetting of σ̂i, the closed-loop system

for consensus estimator is

˙̂σ(t) = µ[−Inm +D(t)⊗ Im]σ̂(t) (19)

where σ̂(tk) = [σ̂1(tk)
T σ̂2(tk)

T ... σ̂n(tk)
T ]T ∈ ℜnm is the

overall consensus estimator.

The proof can be done by introducing the time sequence

{tk : k ∈ ℵ}. In particular, for the interval t ∈ [t0, t1),

σ̂(t) = eµ[−Imn+D(t0)⊗Im](t−t0)σ̂(t0)

Therefore, after complying with lemma 2, we have

lim
µ→∞

σ̂(t) →{[1nγT (t0)]⊗ Im}σ̂(t0) = σ(t)

where σ(t) is defined in (6).

Therefore, σ̂i(t)→σi(t) and it is valid for any time interval

[tk, tk+1) if σ̂(tk) = y(tk). In addition, the convergence rate

of (19) is again specified by e−µ(1−λD)(t−t0), and if µ ≥
40/τ , the convergence time can be made smaller than τ/4.

Consequently, the proof can be done by applying the same

induction procedure for any time interval [tk, tk+1). ¤

The performance of the proposed estimators are examined

in the following simple example:

Example 1: Consider time subsequence {tk : k = 1,2,3} and

suppose that D(t) = Dk for t ∈ [5(k−1), 5k), where

D1 =





1 0 0

0 1 0

0 0.5 0.5



D2 =





1 0 0

0.5 0.5 0

0 0.5 0.5





D3 =





0.5 0.5 0

0.5 0.5 0

0.5 0 0.5





The distributed observers proposed in this section are im-

plemented with τ = 1, m = 1, µ = 40 and y0 = [15 0 −30]T .

Specifically, the expected left eigenvector and consensus

value for system 3 at each switch is

γ3(D1) = [0 1 0]T ,γ3(D2) = [1 0 0]T ,γ3(D3) = [0.5 0.5 0]T ,

σ3(D1) = 0, σ3(D2) = 15, σ3(D3) = 15

Performance of the observers are illustrated in figure 1,

where γ∗i j is the jth component of γ̂i. It can be easily verified

that the expected γi and σi can be achieved at each system,

which are consistent with the results in theorems 1 and 2.

And, the convergence is prompt.

△

IV. ADAPTIVE GAINS TO IMPROVE CONVERGENCE RATE

In this section, a distributive strategy is provided to explore

the full potential of improving the network convergence

by adjusting the cooperative control gain αi j(t) adaptively

based on the successful estimation of left eigenvector and

consensus value. Without loss of generality, in what follows,
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Fig. 1: Performance of real-time estimation

we assume the output of each system is a scalar, that is m = 1,

the case of m > 1 can be derived analogously.

Before proceeding further, the following lemma is pro-

vided to illustrate the implication of non-zero entries di j(t)
on the network convergence. That is, how to adjust di j(t)
(by adjusting associated αi j(t)) at time t∗, such that V̇c(t

+
∗ ) <

V̇c(t
−
∗ ).

Lemma 3: Consider networked system (4) with m = 1 and

S(t) is constant over t ∈ [tk, tk+1) for k ∈ ℵ. Suppose for

the ith system, gains di j(t) remain as constant until, at

t = t∗, dii(t) and another non-zero entry diℓ∗i
(t) are adjusted

to dii(t
+
∗ )− εi and diℓ∗i

(t+∗ ) + εi, respectively at some t∗ ∈
[tk, tk+1). Then, the convergence of the overall system is

improved provided ℓ∗i and εi are chosen as follows: If system

i belongs to the leader group, that is i ∈ L ,

ℓ∗i ∈ Ni =⇒ |yi(t∗)− yℓ∗i
(t∗)| = max

j∈Ni

|yi(t∗)− y j(t∗)| (20)

εi =







0 if δi = 0

Kadii(t
−
∗ ) if δi > 0

−Kadiℓ∗i
(t−∗ ) if δi < 0

(21)

with δi = [yi(t∗)−yℓ∗i
(t∗)][yi(t∗)−σi(t∗)]. If system i belongs

to the follower group, that is i /∈ L ,

ℓ∗i ∈ Ni =⇒ |yℓ∗i
(t∗)−σi(t∗)| = min

j∈Ni

|yi(t∗)−σi(t∗)| (22)

εi =

{

0 if δ
′

i ≥ 0

Kadii(t
−
∗ ) if δ

′

i < 0
(23)

where δ
′

i = |yℓ∗i
(t∗)−σi(t∗)|− |yi(t∗)−σi(t∗)|.

Proof: After the adjustments of dii(t∗) and diℓ∗i
(t∗) are ac-

complished at every system, network matrix D(t+∗ ) becomes

D(t+∗ ) = D(t−∗ )−
n

∑
i=1

εieie
T
i +

n

∑
i=1

εieie
T
ℓ∗i

(24)

Consider cooperative control Lyapunov function (7) over

intervals [tk, t∗) and [t∗, tk+1]. After direct algebraic calcula-

tions of its time derivative along system (4), the implications

of gain adjustment can be expressed as

δV̇c(t∗)
△
=

n

∑
i=1

δV̇ci
(t∗) = V̇c(t

+
∗ )−V̇c(t

−
∗ ),

where, if the network is irreducible (i.e., γ > 0),

δV̇ci
(t∗) = −2εiγ

T (t∗)ei[yi(t∗)− yℓ∗i
(t∗)][yi −σi(t∗)]. (25)

Hence, we have δV̇ci
< 0 if and only if εi[yi(t∗)−yℓ∗i

(t∗)][yi−
σi(t∗)] > 0. It is straightforward to verify that the best choice

of ℓ∗i and εi are those according to (21) and (20). In addition,

in the case D is reducible but lower triangularly complete,

γ is unique but contains zero entries, for i ∈ L , the same

logics in (21) and (20) are still applied. If i /∈ L , its state is

expected to track the expected consensus value in order for

a faster convergence, and

d[yi(t)−σ(tk)]

dt
=

n

∑
j∈Ni

di j(t)[y j(t)−σ(tk)]

−[1−dii(t)][yi(t)−σ(tk)]. (26)

Therefore, dii(t) can be adjusted adaptively to make the term

[1− dii(t)][yi(t)−σ(tk)] more prominent, such that yi(t) →
σi(t) can be converged faster, adaptation logic (23) and (22)

is thus selected. This concludes the proof of lemma 3. ¤

Based on lemma 3, the adaptation of αi j(t) can be

designed and implemented adaptively and distributively, its

performance is summarized into the following theorem:

Theorem 3: Consider networked system (1) with input (3)

and assuming m = 1. Under assumption 1 and γi(t) and σi(t)
can be estimated locally. Then, convergence of the network

can be improved provided αi j(t) are adjusted as follows:

αi j(t) = αi j(t
−) whenever t 6= t̂ i

k +0.5lτ . Otherwise

αi j(t
+) =



















1
κi

αii(t
−)

[

1− εi

dii(t−)

]

j = i

1
κi

αiℓ∗i
(t−)

[

1+ εi

diℓ∗
i
(t−)

]

j = ℓ∗i
1
κi

αi j(t
−) otherwise

(27)

where κi = min

{

1,αii(t
−)− αii(t

−)εi

dii(t−)
,αiℓ∗i

(t−)+ αii(t
−)εi

diℓ∗
i
(t−)

}

,

αi j(t0) = 1 for all j, tk is the most recent time instant when

the topology changes, t̂ i
k is the estimation of tk at system i,

l ∈ ℵ, εi and ℓ∗i are specified in lemma 3.

Proof: The motivation of adjusting αi j(t) is to achieve an

expected ratio between each row of αi j(t) for all j ∈ Ni,

such that the desired di j(t) can be rendered at each system.

Specifically, consider the interval t ∈ (t̂ i
k +0.5lτ, t̂ i

k +0.5lτ +
0.5τ], it follows from (27) that there are at most two αi j(t)
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Fig. 2: Performance with gain adaptations

are adjusted, the sum [dii(t) + diℓ∗i
(t)] is continuous, and

according to (3)
αii(t)

αiℓ∗i
(t)

=
dii(t)

diℓ∗i
(t)

Hence, in order to adjust dii(t) and diℓ∗i
(t) to dii(t)− εi and

diℓ∗i
(t)+εi, respectively, the corresponding changes of αii(t)

and αiℓ∗i
(t) can be captured by the adaptation logic (27).

Moreover, since the estimation of γi and σi has already

converged (or very close to) to its desired value at t, the

convergence rate of the network can be ensured as indicated

in lemma 3. This concludes the proof of theorem 3. ¤

The following example is used to illustrated the proposed

adaptation algorithm.

Example 1 (Continued): Consider the communication matrix

Sk associated with D(t) = Dk over t ∈ [5(k−1), 5k) for k =
1,2,3 with τ = 1, Ka = 0.9.

Figure 2a shows the comparison between performance

under constant gains and that under gain adaptation scheme,

where the trajectories under gain adaptation are decorated

with diamond markers (versus those without). Specifically,

at t = 15, the maximal discrepancy between all the states

is 0.5 without gain adaptation, and 0 with gain adaptation.

Time histories of varying gains αii is provided in figure

2b, which indicates clearly that estimation convergence and

subsequent gain adaptations occur consecutively after each of

the topology changes. And, convergence is improved under

the proposed gain adaptation scheme.

V. CONCLUSION

This paper studies distributed estimation and control prob-

lems of directed network. A gain adaptation cooperative

control scheme is proposed based on distributed estimation

of the first left eigenvector and expected consensus vector.

Moreover, the proposed estimation scheme parallels to the

physical cooperative control system, providing straightfor-

ward and real time solution to self-awareness of network

structure. Simulation results demonstrate the effectiveness of

the proposed scheme.

The proposed distributed gain adaptation scheme is devel-

oped using the Lyapunov direct method. Specifically, control

gains are adjusted in a distributive and asynchronous manner

such that the time derivative of cooperative control Lyapunov

function becomes more negative for the purpose of enhancing

convergence.
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