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Abstract— We introduce the concept of using compressive
sensing techniques to provide feedback in order to control
dynamical systems. Compressive sensing algorithms use l1-
regularization for reconstructing data from a few measurement
samples. These algorithms provide highly efficient reconstruc-
tion for sparse data. For data that is not sparse enough,
the reconstruction technique produces a bounded error in
the estimate. In a dynamical system, such erroneous state-
estimation can lead to undesirable effects in the output of the
plant.

In this work, we present some techniques to overcome
the aforementioned restriction. Our efforts fall into two main
categories. First, we present some techniques to design feedback
systems that sparsify the state in order to perfectly reconstruct
it using compressive sensing algorithms. We study the effect of
such sparsification schemes on the stability and regulation of
the plant. Second, we study the characteristics of dynamical
systems that produce sparse states so that compressive sensing
techniques can be used for feedback in such scenarios without
any additional modification in the feedback loop.

I. INTRODUCTION

Compressive Sensing (CS) is an emerging field based on

the fact that a small group of non-adaptive linear projections

of a compressible signal contains enough information for

reconstruction and processing. In [11], researchers have

reported the development of a single pixel camera that uses

far fewer pixels than any traditional camera. It works on the

principles of compressive sensing. One of the areas in which

compressive sensing has shown considerable promise is in

the reconstruction of sparse data [7] that is encountered in

many important applications, for example, imaging systems

[21]. Although, a plethora of work exists that deals with

overcoming the limitations of CS techniques in the area

of data acquisition and post-processing [2], the limitations

of using such sensing techniques to provide feedback in

dynamical systems has not yet been addressed. In this

work, we address the problem of using compressive sensing

techniques for providing feedback in dynamical systems.

The interplay between sparsity and signal recovery have

been germinating for many decades in the past. One of

the earliest mathematicians to understand this is Constantin

Carathéodory [9], [8]. In [3], Arne Beurling proposed a

nonlinear extrapolation of the Fourier transform of a signal

using l1 minimization techniques that can be used to con-

struct the entire signal by observing a piece of the Fourier
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transform. In his 1965 PhD. dissertation [17], Ben Logan

of ATT Labs demonstrated that if a bandlimited signal of

bandlimit Ω is corrupted on an interval of length less than

2π/Ω, then, no matter how it was corrupted, we can recover

the original bandlimited signal perfectly, simply by finding

the L1−closest bandlimited signal to the corrupted signal.

Similar observations were made by researchers in geophysics

[25], astronomy and seismology [24] while handling massive

amounts of data provided sufficient physical evidence about

the relation between sparsity and efficient reconstruction.

[10] presents a really nice and detailed anecdote about the

aforementioned events and many more instances in scientific

and mathematical research that led researchers to explore the

deep relationship between sparsity and reconstruction for the

last four decades. In the recent past, there has been exciting

breakthrough in the study of high dimensional sparse signals.

This was initiated with potential applications in the area of

computer vision [26], most significant of which is medical

imaging [18] and also applications of acoustic and speech

signal processing [6] in numerous areas. It has been shown

that under broad conditions, a sufficiently sparse linear

representation can be correctly and efficiently computed by

greedy methods and convex optimization, even though this

problem is extremely difficult- NP-hard in the general case.

Moreover, studies have shown that such high-dimensional

sparse signals can be accurately recovered from drastically

smaller number of linear measurements, hence the phrase

compressive sensing. These results have already caught the

attention of researchers in various fields of mathematics

and statistics, signal processing, information theory and

theoretical computer science. At present, sparsity promoting

and compressive sensing techniques have started to create

tremendous impact on a much broader range of engineering

fields, including but not limited to pattern recognition [26],

machine learning [23], communications [1], sensor networks

[27] and imaging sensors [20].

As with most of the reconstruction techniques, compres-

sive sensing techniques too have some shortcomings that

need to be addressed before they can be used to design

sensors that provide feedback for controlling autonomous

dynamical systems. These computationally efficient recon-

struction techniques rely on the inherent sparsity present

in the input for perfect reconstruction. If the input is not

sufficiently sparse these recovery techniques lead to an error

in the estimation. Therefore, in order for these sensing

systems to have a wide range of applications we need to

design techniques so that they can be used even in the face

of non-sparsity. The main objective of this work is to study
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the limitations posed by the l1-reconstruction algorithm, an

important component of compressive sensing techniques, in

dynamical systems and to some extent, overcome them,

without any modification in the fundamental reconstruction

algorithms. In some sense, we feel our techniques are op-

portunistic since they create sparsity in the states in order

to exploit the benefits provided by the compressive sensing

algorithms.

The rest of the paper is organized as follows. In Section

II, we formulate our problem and introduce the idea of an

ideal compressive sensing device. In Section III, we present

some techniques for complete state reconstruction using a

compressive sensing device. In Section IV, we study the

issues related to stability and regulation of a dynamical

system in the face of partial state reconstruction using a

compressive sensing device. In Section V, we present the

idea of modeling dynamical systems in order to generate

sparsity in the states. Finally, we conclude with Section VI

after providing future directions in our research.

II. PROBLEM FORMULATION

In this section, we present the problem formulation. First,

we formalize the idea of a compressed sensing device and

then present the model of the dynamical system that is

controlled using feedback from the device. Although, phys-

ical devices realizing compressive sensing techniques are

currently limited to vision based applications, we introduce

the notion of an ideal device that can reconstruct sparse

signals of different physical modalities. Our interest lies in

understanding the effects of the errors introduced in the

measurement process associated with sparse reconstruction

techniques in dynamical systems.

Before we formalize the idea of a compressed sensing

device, we introduce some definitions in order to quantify

sparsity in finite-dimensional vector spaces. Given a vector

x ∈ R
n, the sparsity or support of a vector is a function

S : R
n → R defined as S(x) = #{i|x(i) 6= 0}, where x(i)

denotes the i-th component of x(i). A vector x is S-sparse, if

its support contains S non-zero entries. An important point to

be noted is that the function S is not invariant to coordinate

transformation and hence it depends on the choice of the

basis.

A Compressive Sensing Device (CSD) receives as input,

a vector x ∈ R
n and provides as output a vector x# ∈ R

n

with the following property:

‖x# − x‖l2 ≤ C · ‖x − xS‖l1√
S

(1)

Here xS represents the S most significant coordinates of x.

The constant C is a function of the S and some additional

parameters that are functions of the sensing matrix Φ.

The input to a CSD is any vector x ∈ R
n in which

each entry is a measurement of an observation. This is

an important assumption since the output of a dynamical

system can correspond to different physical quantities and

the aforementioned assumption allows us to measure all

the output variables using the CSD. Another important

assumption is that the reconstruction error at the output of

the device is zero if the input is S-sparse. As far as we

know, the sensing matrices that are used in CS techniques

can guarantee the error bounds shown in Equation (5) with a

very high probability. There are sensing matrices for which

this probability is of the order of 1 − O(n−M ), where M
is the number of samples, which is a parameter of the CS

algorithm. In this analysis, we assume M to be large enough

to assume a probability very near to 1. Both assumptions

render the CSD more powerful than the currently existing

devices that work on CS techniques. In real scenarios, any

device that works on l1 reconstruction techniques will exhibit

an inferior performance compared to the CSD and therefore

the limitations of using a CSD in order to provide feedback

will also be present in all real devices that use CS.

In this work, we consider linear time-invariant discrete-

time dynamical systems given by the following equation:

xk+1 = Axk + Buk

where, x ∈ R
n, A ∈ R

n×n, B = In and uk ∈ R
n. We

assume all the states of the system are accessible to the CSD

and therefore, each element of the input vector to the CSD

is a state of the system. Since the CSD performs a perfect

reconstruction of S-sparse inputs one can sparsify an input

vector in order to get accurate values for some of the states.

We assume that some of the elements of the input vector

can be fixed to be zero in order to achieve adequate sparsity.

Mathematically, we can express this by defining a sparsifying

function g : R
n → R

n that sparsifies an arbitrary vector in

its domain. g(·) can be time-varying, time-invariant or state-

dependent. In this paper, we restrict our attention to time-

invariant linear sparsifing functions. The simplest example

of g(·) is a function that retains certain entries of the input

vector and fixes the rest of the entries to zero. Since we

restrict g(·) to be a linear transformation it can be represented

by a matrix. If I = {i1, . . . , iS} denotes the rows of the input

vector that are to be retained at the output then g(·) is an

n × n matrix with diagonal entry (i, i) as 1, where i ∈ I,

and zero as rest of the entries. We denote such a matrix by

TI . For example, if g : R
4 → R

4 and I = {1, 2, 4} then TI
is given by the following matrix:







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1







Figure 1 shows the closed-loop system with the CSD

providing a feedback to the controller. It should be noted

that sparsifying the input is one way by which a set of S

states can be reconstructed perfectly using a CSD. There

might be many other techniques for signal recovery and error

correction in order to use a CSD for feedback in a dynamical

system, which is a topic of our ongoing research.

In the next section, we address the problem of full state

reconstruction using compressive sensing devices.
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III. FULL STATE RECONSTRUCTION

In this section, we present some techniques for perfect

state reconstruction using CSD. If perfect state reconstruction

can be achieved then classical techniques in control theory

based on full state feedback [19] can be used to control the

dynamical system.

Lemma 1: For a discrete-time linear system having n
states, a perfect state reconstruction can be achieved by using

⌈n
S
⌉ CSDs.

Proof: This involves using S inputs of each CSD for

state measurements and fixing the remaining (n− S) inputs

at zero using appropriate sparsifying functions for each CSD.

In this manner, we can reconstruct the entire state perfectly

by concatenating the outputs from all the CSDs.

A severe shortcoming of the above technique is that the

number of CSDs required is O(n), where n is the dimension

of the state space. This naturally leads to the question: What

are the scenarios under which we require only one CSD for

perfect reconstruction of the full state?

In the next sections, we present techniques to use a single

CSD for full state reconstruction using appropriate change

of basis.

A. Invertible Sparsifying Function

A technique for full state reconstruction is to use an

invertible sparsifying function. If g(·) is invertible, then we

can recover the original state after reconstruction from the

CSD. Since this work deals with linear sparsifying functions,

we are interested in linear transformations that are invertible.

Figure 2 shows a scenario in which an invertible sparsifying

function g(·) is applied to the state xk+1 to obtain an S-

sparse vector, x̃k+1. Since the CSD can reconstruct S-sparse

inputs perfectly we recover xk+1 by applying g−1(·) to the

output of the CSD.

In this section, we analyze such sparsifying functions

that are linear and time-invariant. Therefore, the invertible

sparsifying function g(·) can be represented by a matrix T .

The time-invariance of the transformation is dictated by the

fact that we do not have any knowledge about xk+1 before

its recovery from the CSD and therefore, it would be quite

difficult to design a g(·) that depends on xk+1.

In the following lemma, ρ(A) denotes the rank of matrix

A.

Lemma 2: ρ(A) ≤ n − S ⇒ ∃ invertible matrix T such

that TAx is S-sparse ∀x.

Proof: ⇒ If ρ(A) ≤ n − S we can find a collection

of orthogonal vectors V = {v1, · · · , vS} ∈ R
n such that

vi ⊥ Range(A) ∀ i ∈ {1, · · · , S}. We can construct S
linearly independent rows of T from elements of V . The

remaining n − S rows of T can be chosen as the basis of

Range(A). Therefore, TAx is S-sparse for any x. Moreover,

since the rows of T are mutually orthogonal, T is a full rank

matrix and therefore invertible.

Before concluding, we would like to make a few com-

ments on the design of a full-state observer for our system.

As stated before, we assume g(·) to be linear. This leads to

the following equivalent representation of the input/output

description of the dynamical system:

xk+1 = Axk + uk (2)

yk+1 = Cxk+1

where the matrix C depends on g(·). If a sparsifying function

g(·) can be designed such that (A, C) is observable ⇒
(A, I, C) is controllable and observable. Therefore, we can

design the following full order observer for the system:

x̂k+1 = Ax̂k + uk + F [yk − Cx̂k]

Moreover, a suitable gain matrix F can be chosen for

arbitrary pole assignment iff the pair (A, C) is observable

[16]. Therefore, we can design a deadbeat observer by

placing all the poles of the observer at zero and thus reducing

the state error to zero in at most n steps.

In the next section, we present techniques to design linear

state feedback using partial observations from the CSD in

order to attain a desired objective.

IV. PARTIAL STATE RECONSTRUCTION

In this section, we address the problem of designing

feedback strategies for controlling a linear discrete-time plant

by partial state reconstruction using a CSD. Since a CSD can

reconstruct perfectly an input having sparsity S ≤ n we use

a sparsifying function of the form TI in order to restrict the

support of the input to the CSD to at most S non-zero entries.

We assume that the index set I is time invariant. Therefore,

the feedback law is of the following form:

uk = −KTIxk

where, K is a n × n gain matrix.

Now we address the problem of placing the poles arbitrar-

ily using sparsified input feedback design. The problem of
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placing eigenvalues of the matrix (A − KTI) is equivalent

to the problem of constructing a matrix K for designing a

static output feedback for arbitrary pole placement for the

system description given in (2). In [5], it has been shown

that the problem of finding a static output feedback stabilizer

from a given bounded set (a hypercube) is NP-complete. It is

also known that generic pole placement using static output

feedback is not feasible [12], [22], [15], [4]. In [13], the

author shows that given a linear time-invariant system and

a set of desired poles, the problem of determining if there

exists a static output feedback controller such that the closed-

loop system contains poles at these desired locations is NP-

hard. In the next section, we show that for A ∈ R
2×2, the

poles can be arbitrarily placed with arbitrary choice of TI .

Now we consider the problem of regulation using feedback

from the CSD. For the system shown in Equation (2),

consider a quadratic cost given by the following expression:

J = ‖xL‖R1
+

L−1∑

k=0

(‖xk‖R1
+ ‖uk‖R2

) (3)

where ‖v‖R1
= vT R1v, R1 and R2 are positive-definite

symmetric matrices. We want to design a linear state feed-

back law of the form uk = −KTIxk that minimizes the

above cost function assuming x0 is known.

For a time-invariant feedback K , the closed-loop system

can be represented by the following equation:

xk+1 = (A − KTI)xk (4)

whose solution is

xk+1 = (A − KTI)kx0 (5)

where x0 is the initial state. First, let us consider the case

of a static gain matrix K . Substituting Equation (5) into (3)

gives us the following expression for the cost function:

J = ‖x0‖R1
+

xT
0

L∑

k=0

[
‖(A − KTI)k+1‖R1

+ ‖KTI(A − KTI)k‖R2

]

︸ ︷︷ ︸

G

x0

For kij to minimize J , the first order necessary condition is

given by the following relation:

∂J
∂kij

= 0 ∀i ∈ [1, . . . , n] j ∈ I (6)

Moreover, the second order sufficient condition is given by

the positive definiteness of the Sn × Sn Hessian matrix H:

zTHz > 0, ∀z ∈ R
nI (7)

H(ij, st) =

[
∂J (x)

∂kij∂kst

]

∀i, s ∈ [1, . . . , n], j, t ∈ I

where, H(ij, st) is the element of the Hessian matrix be-

longing to the row corresponding to kij and column corre-

sponding to kst. If the condition in Equation (7) is satisfied

irrespective of the initial state x0 then G ≡ 0. This leads

to n2 equations in Sn unknowns and therefore, might not

have any solutions. On the other hand, if K is assumed to

be a function of x0 this leads to a set of Sn equations in

Sn unknowns kij satisfying i ∈ {1, · · · , n}, j ∈ I and in

general, has a unique solution.

xT
k [‖AT ‖R1

+ ‖KTI‖(R1+R2)]
∂xk

∂kij

−

xT
k [(AT R1KTI + T T

I KT R1A)]
∂xk

∂kij

+

xT
k [‖T T

I KT (R2 − R1)
∂K

∂kij

TI + AT R1
∂K

∂kij

TI ]xk = 0 (8)

where

xk+1 = (A − KTI)(k+1)x0

∂xk

∂kij

=

{
k−1∑

t=0

(A − KTI)t ∂K

∂kij

TI(A − KTI)k−1−t

}

Next, let us consider a time varying feedback gain matrix

Kk. In this case the closed-loop is given by the equation:

xk+1 = (A − KkTI)xk

The state at time instant k is given by the following expres-

sion:

xk+1 = [

k∏

j=0

(A − Kk−jTI)]x0

In this case, the cost J is given by the following expression:

J = xT
0





L∑

k=0

‖
k+1∏

j=0

(A − Kk+1−jTI)‖R1



x0 +

xT
0





L∑

k=0

‖KkTI
k∏

j=0

(A − Kk−jTI)‖R2



x0 + ‖x0‖R1

Let the entry in the ith row and jth column of Kl be

denoted as kl
ij . The first order necessary conditions lead to

the following set of SLn equations for all kl
ij satisfying

j ∈ I, i ∈ {1, · · · , n}, l ∈ {1, · · · , L}:

L∑

k=l






xk+1(R1 + T T

I KT
k R2KkTI)





k+1∏

j=l+1

(A − KjTI)





∂Kl

∂kl
ij

TIxl−1

}

+ xT
l T T

I KT
l R2

∂Kl

∂kl
ij

TIxl = 0 (9)

where

xk+1 = [

k∏

j=0

(A − Kk−jTI)]x0

From Equations (8) and (9), we can deduce that the

optimal feedback is a function of the initial state x0. As

pointed out in [14], this undesirable dependence on the initial

state is an implication of using static output feedback for

optimal regulation of the plant. The paper [14] presents some

techniques to overcome this dependence on the initial state
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in case of static as well dynamical output feedback. For

example, in the case of static feedback one might assume a

probability distribution over all possible initial states in order

to formulate a cost function that minimizes the expected cost

over all initial states. One of our future directions in research

is to address the aforementioned problem.

In the next section, we consider another perspective of

controlling a dynamical systems using a CSD.

V. SPARSITY IN DYNAMICS

Compressive sampling algorithms can perform perfect

reconstruction of sufficiently sparse data. In the previous

sections, we have demonstrated scenarios in which com-

pressive sensing can be used to provide feedback in a

dynamical system. The main idea was to sparsify the states

of a system by applying appropriate transformations. In this

section, we introduce a different perspective of generating

sparsity in the output of a dynamical system which involves

investigating the properties of the system matrix, A, that

retains or generates sparsity in the states. Our motivation

to do so arises from the following observation in sampled

data control systems.

Consider the following continuous-time system:

ẋ = Acxt (10)

where, x ∈ R
n and Ac ∈ R

n×n. Ac can represent the system

matrix of an autonomous system or a matrix that represents

closed-loop system in the presence of full-state feedback.

If we compute only the responses at t = kT , then (10)

becomes:

xk+1 = Axk (11)

where, A = eAcT . Therefore, the properties of A depend on

the sampling time T as well as the original system matrix,

Ac. By proper choices of T and K , in the case of a full-

state feedback, A can have desired properties that preserve

or generate appropriate sparsity in xk so that a single CSD

can perform perfect state reconstruction.

Now we present a simple example to illustrate the concept.

Consider the autonomous system xk+1 = Axk where, xk ∈
R

2 and A =

[
a11 a12

a21 a22

]

. If xk is sparse we assume that

at least one of its components is zero i.e.,

xk ∈ {span

[
1
0

]

, span

[
0
1

]

}

In this case, it can be trivially seen that A preserves or

generates sparsity iff it is in one of the following forms:
[

a11 0
0 a22

]

︸ ︷︷ ︸

A1

,

[
0 0

a21 a22

]

︸ ︷︷ ︸

A2

,

[
a11 a12

0 0

]

︸ ︷︷ ︸

A3

,

[
0 a12

a21 0

]

︸ ︷︷ ︸

A4

We can see that each of the above matrices has a unique way

of preserving sparsity of the input signal at the output. If the

input is not sparse, A1 and A4 might not generate sparse

output but A2 and A3 produce sparse output irrespective of

the nature of the inputs. If the input is sparse the output of

A1 has a zero in the same row as that of the input. A2 and A3

generate outputs that have zeros in the first and the second

rows, respectively, irrespective of the nature of the input. A4

generates an output that has zero in the row that has a non-

zero entry in the input. From the above example we see that

A can have a special structure to dictate sparsity in the output

irrespective of the nature of the input. Now, we consider a

special class of linear transformations that preserve zero in

fixed entries of their input.

Definition: A linear transformation A : R
n → R

n is a Strict

Sparsity Preserving Matrix (SSPM(I)) if there is a fixed

index set I = {i1, . . . , iS} such that the following holds:

(x[j] = 0) ∧ (Ax[j] = 0) =⇒ Anx[j] = 0, ∀j ∈ Ī, ∀n ≥ 1

Now we present a sufficient condition for a matrix to be

SSPM. In order to do so, we need to introduce some more

notation. Let I and J be an ordered set of indices. Let

Ī denote the ordered set {1 · · ·n}/I. Let AI×J denotes

the |I| × |J | submatrix of A such that AI×J [r.k] =
A[ir, is] where ir ∈ I, is ∈ J . Similarly, AĪ×I [r, k] =
A[ir, is] where ir ∈ Ī, is ∈ I. Finally, for a vector x, xI

denotes a column vector consisting of entries in x located in

the index set I.

Lemma 3: A linear transformation A : R
n → R

n is a

SSPM(I) only if the following condition holds:

Range(AI×I) ⊂ N (AT
Ī×I)

where, N (A) denotes the nullspace of A.

Proof: Let y = Ax and y[j] = 0, ∀j ∈ Ī
x[j] = 0 ∀j ∈ Ī

⇒ (Ax)I = AI×[1,··· ,n]x

= AI×IxI ∈ N (AT
Ī×I) (12)

Let j ∈ Ī.

A2x[j] = Ay[j] =

n∑

l=1

ajlyl =
∑

l∈I

ajlyl

︸ ︷︷ ︸

0

+
∑

l∈Ī

ajlyl

︸ ︷︷ ︸

0

The first expression is zero due to (12) and the right expres-

sion is zero since y[j] = 0, ∀j ∈ Ī . Moreover, (Ay)I ∈
Range(AI×I). Hence, the rest follows by induction.

The above lemma not only provides a sufficient condition

for the existence of such matrices but also provides an

algorithm to construct them.

Now let us address the problem of choosing a sampling

time T for the continuous time system in (10) so that

the equivalent sampled-time system matrix A satisfies the

sufficient condition presented in Lemma 3. For simplicity,

let us consider the case when Ac is diagonalizable i.e,

Ac = QΛQ−1 where, Q is the orthogonal matrix comprised

of the eigenvectors corresponding to the eigenvalues of Ac,

and Λ is a diagonal matrix comprised of all the eigenvalues

of Ac namely {λ1, . . . , λn}. The expression for A is given

below:

A = eAcT = QeΛT Q−1 (13)
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where eΛT = diag{eλ1T , . . . , eλnT } where diag{· · · } rep-

resents a diagonal matrix with arguments as the diagonal

elements.

Theorem 1: If T is the sampling time such that A is

SSPM(I), then T satisfies the following set of equations:

∑

i1∈I,i4∈I

[
∑

k

qi1keλkT qi2k][
∑

l

qi3le
λlT qi4l] = 0

∀i2 ∈ I
∀i3 ∈ Ī

Proof: Let {c1, . . . , c|I|} denote the columns of the

matrix AI×I . Let {r1, . . . , r|Ī|} denote the rows of AĪ×I .

ci ∈ Range(AI×I) ∀i ∈ {1, . . . , |I|}. Therefore, if A
satisfies the condition of Lemma 3 then ci ⊥ rj =⇒ ci·rj =
0 ∀i, j. From (13), we get the following expression for aij :

aij =

n∑

k=1

qikeλkT qjk

Now consider the case when A = Af − BfK in (10)

which corresponds to a closed-loop system with full-state

feedback of the form u = −Kx(t). If the pair (Af , Bf )
is controllable, then the eigenvalues of A can be placed

arbitrarily by choosing appropriate feedback gain matrix K .

Therefore, by appropriate choices of λ1, . . . , λn and T we

can satisfy the sufficient condition in Theorem 1.

VI. CONCLUSION

In this work, we have presented some techniques to

overcome the limitations caused by compressive sensing

techniques in order to provide feedback in dynamical sys-

tems. First, we presented some techniques to design feed-

back systems that sparsify the state in order to perfectly

reconstruct it using compressive sensing algorithms. Then

we studied the effect of such sparsification schemes on the

stability of the plant and designed optimal control laws

to minimize a finite-horizon quadratic criterion. Next, we

studied the characteristics of dynamical systems that produce

sparse states so that compressive sensing techniques can be

used for feedback in such scenarios without any additional

modification in the feedback loop. In this technique, we

presented a special kind of matrices called SSPM(I) and

found sufficient conditions for their existence. Finally, we

presented a technique to choose the sampling time and

feedback gain matrix in sampled-time control systems in

order to generate sparsity in the resulting states.

In the future, we plan to continue our research in dy-

namical systems in order to understand the relation between

sparsity and system theoretic properties like stability, con-

trollability and observability. Another interesting direction

of research is to study the effect of different classes of

sparsifying functions and also possible switchings among

them. This would give rise to interesting questions about

the stability of the resulting hybrid system. We also plan to

provide techniques for efficient computation of the control

laws for high-dimensional systems that use compressive

sensing techniques for feedback.
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konstanten von positiven harmonischen funktionen. Rendiconto del

Circolo Maternatico di Palermo, 32:193–217, 1911.
[10] D. Donoho. Scanning the technology. Proceedings of IEEE,

98(6):910–912, June 2010.
[11] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F.

Kelly, and R. G. Baraniuk. Single-pixel imaging via compressive
sampling. IEEE Signal Processing Magazine, 25(2):83–91, March
2008.

[12] A. Eremenko and A. Gabrielov. Pole placement by static output
feedback for genetic linear systems. SIAM Journal on Control and

Optimization, 41(1):303–312, 2002.
[13] M. Fu. Pole placement via static output feedback is NP-hard.

Transactions on Automatic Control, 49(5):855–857, May 2004.
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