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Abstract— In this paper we present an algorithm for placing
sensors optimally along the edges of a large network of electrical
oscillators to identify a parametric model for the network using
a linear combination of three fundamental electrical signals -
namely, the magnitude, the phase angle and the frequency of
the voltage phasor along each edge, corrupted with Gaussian
noise. We pose the identification problem as estimation of
four essential parameters for each edge, namely the real and
imaginary components of the edge-weight (or, equivalently the
resistance and reactance along the transmission line), and the
inertias of the two machines connected by this edge. We then
formulate the Cramer-Rao bounds for the estimates of these
four unknown parameters, and show that the bounds are
functions of the sensor locations and of the contribution of each
variable in the combined output. We finally state the condition
for finding the optimal sensor location and the optimal signal
combination to achieve the tightest Cramer-Rao bound.

Index Terms— Power networks, Cramer-Rao bound, swing
equation, parameter estimation.

I. INTRODUCTION

Research problems on sensor placement in electric power

networks have emerged with renewed interest over the past

few years owing to the tremendous advancement of sens-

ing technologies such as Wide-area Measurement Systems

(WAMS) [1]. GPS-synchronized, high sampling-rate (2.5−3
KHz internal sampling, 6 − 60 samples/sec exporting rate)

digital devices known as Phasor Measurement Units (PMU)

are currently being deployed at different points in the US

power transmission network to measure and monitor dynamic

electrical signals over distributed geographic spans so that

catastrophes such as blackouts and voltage collapses can

be avoided. One main concern of current interest among

WAMS-researchers is to determine the optimal distribution

of PMUs in a large network to ensure sufficient dynamic

visibility of the system yet minimizing the number of PMUs

and the cost associated with them. The choices for such

locations are largely dictated by their driving purposes such

as state estimation [2], geometric observability [3], voltage

stability [4], etc.

In this paper we address the problem of PMU place-

ment from the standpoint of a completely new application

- namely, model identification of electrical networks, es-

pecially when the PMU measurements are corrupted with

stochastic noise. A small case study of this identification

problem, from a completely deterministic point of view with-

out considering any measurement noise effect, was presented

in our recent paper [5], but the system under consideration

was restricted to a simple two-machine system connected

by a single radial line (or equivalently, a two-node graph

with only one edge). In this paper we consolidate those

results to a much more generalized system of n machines,

connected by any arbitrary graph G, and develop an algo-

rithm to identify the electro-mechanical model parameters

of this n-node power system using noise-corrupted dynamic

measurements available from specific points on the edges of

the network. Since the structure of the electro-mechanical

dynamics evolving across such power networks is known

from Newton’s laws of angular motion, we first show that the

identification problems can be posed as equivalent parameter

estimation problem. For any given transmission line (i.e.

an edge in the network graph) four fundamental parameters

are of interest to us for solving the identification problem:

namely, the resistance and reactance of the line, and the

mechanical inertias of the two generators connected by the

line. Since these parameters have to be identified using noisy

measurements, their deterministic estimates are not available,

and the problem has to be posed in terms of estimation

error bounds. Such bounds, more commonly referred to as

Cramer-Rao bounds (CRB) are widely used in the statistical

signal processing literature [6]. We show that the CRB for

estimating the four model parameters for any edge in the

network is a function of the location of the PMU on that

edge as well as a function of the contribution of the type of

output variable considered for the estimation, whereby the

problem reduces to finding the optimal values of this location

and signal-combinations such that the estimation error bound

is minimized.

The rest of the paper is organized as follows. In Section

II we formulate the placement problem for a multi-nodal

electrical network; in Section III we review some statistical

preliminaries to facilitate the derivations related to the main

results on CRBs, which are presented in Section IV; Section

V applies these results to a 2-node network with simulations;

Section VI discusses centralized estimation methods. Section

VII concludes the paper.

II. PROBLEM FORMULATION

Consider a network of electrical oscillators with n gen-

erators (nodes) connected to each other through m tie-lines

(edges) with m ≤ n(n − 1)/2, forming a connected graph

with cardinality (n, m), such that atmost one edge exists

between any two nodes. This may also be thought of as
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a power system although we use the word ‘power’ with

reservation as in a real power system generators are not

necessarily connected directly but via intermediate buses due

to which the network Laplacian becomes extremely compli-

cated, especially for large networks. To avoid this difficulty

and in the interest of the specific application discussed in

this paper, we restrict our discussion to networks where each

dynamic element i.e., a generator is directly connected to

its neighbors. An example of such a network consisting of

n = 6 generators and m = 9 tie-lines is shown in Figure 1.

The arrows along each edge denote the direction of effective
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Fig. 1. Network of 6 generator nodes and 9 tie-line edges

power flow. Let the internal voltage phasor of the ith machine

be denoted as Ẽi = Ei∠δi, i = 1, 2, . . . , n where,

following synchronous machine theory [7], Ei is constant,

δi is the angular position of the generator rotor, and Ei∠δi
denotes the polar representation Eiε

jδi (j =
√
−1). The

transmission line connecting the pth and the qth machines is

assumed to have an impedance z̃pq = rpq + jxpq where ‘r’

denotes the resistive part and ‘x’ denotes the reactive part.

Here p ∈ {1, 2, ..., n} and q ∈ Np where Np is the set of

nodes to which the pth node is connected. It follows that the

total number of tuples formed by pairing p and q is m. For

the rest of the paper we will denote the edge connecting the

pth and the qth node by epq . z̄pq can also be regarded as a

complex weight of an edge in the network, and implies that

z̃pq = z̃qp. If two nodes do not share a connection then the

impedance corresponding to that non-existing edge is infinite

(i.e., open circuit), or equivalently,

ỹpq =
1

z̃pq
=

1

rpq + jxpq
= 0 ∀q 6∈ Np (1)

where ỹpq is the admittance of epq . The mechanical inertia

of the ith machine is denoted as Hi.

The dynamic electro-mechanical model of the ith genera-

tor, neglecting damping, can be written as [7]

δ̇i = ωi − ωs (2)

2Hiω̇i = Pmi

−
∑

k∈Ni

(
E2

i rik − EiEkpik cos(δik + αik)

p2ik

)

(3)

where δik = δi − δk, ωs = 120π is the synchronous

speed for a 60 Hz system, ωi is the rotor angular velocity,

Pmi is the mechanical power input, pik =
√

r2ik + x2ik
and αik = tan−1(xik/rik). All quantities are in per unit

except for the phase angles which are in radians. We assume

that the network structure is known, i.e., the set Ni for all

i = 1, 2, . . . , n in (2)-(3) is known, but all other parameters

are unknown, namely Hi, Ei, rik and xik.

Without any loss of generality, for each edge we fix

a hypothetical reference point at the internal node of the

generator which is receiving power, i.e., the node where the

arrowed end of the edge is incident on. We assume that a

PMU is placed at each edge at an impedance z̄pq away from

this reference, where z̄pq = r̄pq + jx̄pq. Also, assuming that

both resistance and reactance along each tie-line is uniformly

distributed, we define the normalized impedance of epq as

apq = z̄pq/z̃pq . Due to the uniformity of distribution we can

also write apq = r̄pq/rpq = x̄pq/xpq , implying apq ∈ [0, 1].
If the reference for epq is at the qth node, then apq = 0
corresponds to this node, apq = 1 corresponds to the pth

node, while 0 < apq < 1 corresponds to any point in

between. The variable apq may equivalently be regarded as a

dimensionless spatial variable measuring the distance of any

point from the reference node of epq . Following a small-

signal disturbance entering at any node in the system, time-

series data of voltage, corrupted with Gaussian noise, are

available from the PMU installed at this point. Our objective

is to generate the best possible estimates of all the unknown

parameters of the dynamic model (2)-(3) using these noisy

voltage measurements. For any epq these parameters are

Spq = {Ep, Eq, Hp, Hq, rpq, xpq} (4)

for p = 1, 2, . . . , n and q ∈ Np. However, noting that a

p q
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Fig. 2. Voltages and currents on edge epq

PMU can measure both voltage and current phasors across a

line, the two constants Ep and Eq can be readily computed

using Ohm’s law once rpq and xpq are known:

Ep = Re [Ṽ − z̄Ĩ], Eq = Re [Ṽ + (z̃ − z̄)Ĩ] (5)

where Ṽ and Ĩpq are the AC voltages and currents measured

by the PMU located at a known impedance of z̄pq away from

the qth node of epq. The circuit diagram for (5) is shown in

Figure 2. Therefore, it suffices to estimate

Spq = {Hp, Hq, rpq, xpq}. (6)

Clearly, Spq has two node-parameters and two edge-

parameters, that can be estimated by a least squares or

auto-regressive moving average with exogenous input (AR-

MAX) type algorithm [6] using voltage, phase and frquency
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measurements. However, since the measurements are noisy,

unique estimates for Spq are no longer available, and the

problem has to be posed in terms of Cramer-Rao bounds

(CRB). We next show that the CRB for (6) is a function

of the spatial variable apq for each edge epq, and, therefore,

there exists an optimal apq for each edge corresponding to

which the estimation error is minimal.

Remark 1 : As the estimation is done for each edge epq ,

the inertia Hp of the pth node (p = 1, 2, . . . , n) will be

estimated dp number of times, where dp is the degree of the

pth node. A reasonable estimate for Hp can then be generated

by taking the average of these dp estimates.

III. STATISTICAL PRELIMINARIES

Before addressing the estimation problem for (6), we

intend to provide a brief background on CRB and their

applications to linear dynamic models in this section. Our

discussion is based on the definitions provided in [6].

A. Cramer-Rao Bound

The Cramer-Rao Bound is used to lower bound the second

order moments of any stochastic parameter-estimator. A

general form of the CRB can be derived by considering the

following estimation problem. Given the data record y, let

us consider the problem of constructing an estimator ĝ(y)
to estimate the vector function ζ = g(Θ). Let the Fisher

Information Matrix (FIM) for the parameter set Θ be J(Θ)
and assume that it is invertible. Assume that the estimator

ĝ(y) is unbiased and let the estimator covariance matrix be

Cĝ = E[(ĝ(y)− g(Θ))(ĝ(y)− g(Θ))T ]. (7)

The CRB for the estimator ĝ(y) is then defined as

Cĝ ≥ J−1(ζ = g(Θ)). (8)

B. Estimation Error Ellipse

Consider a Λ-dimensional unbiased estimator Θ that is

normally distributed as N [Θ, C]:

fc(Θ̂) =
1

(2π)Λ/2(det C)0.5 e
− Θ̃

T
C
−1

Θ̃

2 (9)

where Θ̃ = Θ− Θ̂, and det(C) denotes the absolute value of

the determinant of C. The volume of the Euclidean Λ-space

for which R2
c = (Θ̂ − Θ)TC−1(Θ̂ − Θ) < R2 is defined as

the volume of the ellipsoid described by R2
c < R2. For Λ

even, the volume of the ellipsoid is given by

VC = VΛ(det C)1/2RΛ, VΛ =
πΛ/2

Λ/2
(10)

which, by Hadamard’s inequality, and for R = 1 implies that

V2
C ≤ V2

Λ

q
∏

i=1

var(Θ̂i). (11)

Equation (11) indicates that it is always desirable that the

volume V 2
C be small since this volume measures the estimator

quality in some sense. Since (8) states that Cĝ > J−1, it

follows that

VJ−1 = Vq(detJ−1)1/2rΛ ≤ VC . (12)

In other words, the FIM for an estimator generates the

smallest achievable concentration ellipsoid [6]. Equation (12)

is of crucial importance for this paper as in the following

section we show that for our identification problem (6), the

FIM for each epq is a function of apq; therefore, it is possible

to find an optimal apq ∈ [0, 1] for which VJ−1 is minimum,

or equivalently the lower bound for the parameter estimation

error with respect to the PMU location is tightest.

C. Construction of FIM for Linear Models

When the measurement model is linear, i.e., y = x +
n, where x is a deterministic signal observed in additive

Gaussian noise n: N [0, R], then the FIM is of the form:

J(θ) =

(
∂x

∂θ

)

R−1

(
∂x

∂θ

)T

(13)

Thus, if we partition the parameter vector as θ = col(a,b),
assume R = σ2I, and define

∂x/∂a := H, ∂x/∂b := K (14)

then the FIM can be constructed as

J(a,b) =
1

σ2

[
HHT HKT

KHT KKT

]

. (15)

For estimating (6) we will consider a = {rpq, xpq}, b =
{Hp, Hq}, for each epq , and construct J(a,b), which we

next show is a function of apq .

IV. OPTIMAL PLACEMENT & SIGNAL COMBINATION

Returning to the electrical network of Section II, to derive

the FIM J(a,b) we linearize (2)-(3) about an initial equi-

librium (δi0, 0) where 0 < δi0 < 90◦ for all i = 1, 2, . . . , n,

and denote the perturbed state variables as

∆δ = col(∆δ1,∆δ2, . . . ,∆δn) (16)

∆ω = col(∆ω1,∆ω2, . . . ,∆ωn). (17)

We assume that a disturbance u enters the system (note: the

network graph is connected, by assumption) through the jth

node, j ∈ {1, 2, . . . , n}, and that u can be modeled as an

impulse. The linearized network dynamics then take the form
[

∆δ̇
∆ω̇

]

=

[
0 I

M−1L 0

]

︸ ︷︷ ︸

A

[
∆δ
∆ω

]

+

[
0
Ej

]

︸ ︷︷ ︸

B

u (18)

where I is the n-dimensional identity matrix, Ej is the jth

unit vector with all elements zero except the jth element

which is 1, M = diag(M1,M2, . . . ,Mn), Mi is the inertia

of the ith generator, and L is the n × n Laplacian matrix

with elements:

Lii = −
∑

k∈Ni

EiEk

pik
sin(δi0 − δk0 + αik), (19)

Lik =
EiEk

pik
sin(δi0 − δk0 + αik), k ∈ Ni, (20)

Lik = 0, otherwise (21)

for i = 1, 2, . . . , n. It follows that if Mi = Mj , ∀(i, j),
then L = LT . To construct the FIM, we next consider three
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different outputs, namely the magnitude, the phase and the

frequency of the voltage phasor measured along any edge

epq at a normalized distance apq from the reference node,

and derive their respective expressions in terms of the state

variables (∆δ(t),∆ω(t)).

A. Voltage Magnitude

Using Ohm’s law, the voltage phasor Ṽpq at any point on

epq at an impedance z̄pq away from the reference node, as

shown in Figure 2, can be written as

Ṽpq , Vpq∠θpq = apqẼp + (1− apq)Ẽq (22)

from which the voltage magnitude is given as

Vpq=
√

E2
q (1−apq)2+E2

pa
2
pq+2EpEqapq(1−apq) cos(δpq) (23)

where, δpq , δp − δq . A small change in the voltage,

linearized over an existing equilibrium voltage Vpq0 ,

Vpq(δpq0), therefore, can easily be derived as ∆Vpq =
ψpqlpq(∆δq −∆δp) where, ψpq(apq) = apq(1 − apq)/Vpq0,

and lpq = EpEq sin(δpq0). The discrete-time transfer func-

tion for the LTI model (18) with output Vpq will then be of

the form

GV
pq(z) = CV

pq(zI −Ad)
−1Bd (24)

where Ad = eAT , Bd =
∫ T

0
eAτBdτ , and CV

pq is a (2n× 1)
matrix (i.e., a row vector) whose pth element is −ψpqlpq ,

qth element is ψpqlpq , and all other elements are zero. Due

to this special structure of CV
pq , equation (24) can also be

written in the form

GV
pq(z) = ψpq(apq)G̃pq(z) (25)

where G̃pq is a 2n-order transfer function with n second-

order pole pairs, one due to each node in the network.

Equivalently, the pole-residue form of (25) is

GV
pq(z) = ψpq(apq)

n∑

i=1

(
Apq,i

z −mi
+

A∗
pq,i

z −m∗
i

)

, (26)

where ∗ denotes complex conjugate, from which the output

voltage following an impulse input is

∆Vpq(k) = ψpq(apq)

n∑

i=1

(
Apq,im

k−1
i +A∗

pq,im
∗k−1

)
u(k − 1)

︸ ︷︷ ︸

ξpq(k)

,

(27)

for k = 1, 2, . . . ,∞, assuming unlimited time-series data are

available. It should be noted that as the network is connected

the residues and the poles, namely Apq,i and mi, and their

conjugates are functions of the unknown parameters for the

entire network and not just for a specific epq.

B. Voltage Phase

It follows from (22) that the phase angle at any point on

epq at a normalized impedance apq ∈ [0, 1] away from the

reference node is given as

θpq = tan−1 apqEp sin(δp) + (1− apq)Eq sin(δq)

apqEp cos(δp) + (1− apq)Eq cos(δq)
. (28)

A small change in the phase angle, linearized over an existing

equilibrium voltage θpq0 , θpq(δp0, δq0), therefore, can

easily be derived as ∆θpq = C1∆δp + C2∆δq where,

C1 =
apqEp(apqEp + (1− apq)Eq cos(δpq0))

a2

pqE
2

p+2apq(1−apq)EpEq cos(δpq0)+(1−apq)
2E2

q

(29)

C2 =
(1− apq)Eq((1− apq)Eq + apqEp cos(δpq0))

a2

pqE
2

p+2apq(1−apq)EpEq cos(δpq0)+(1−apq)
2E2

q

,(30)

where, δpq0 = δp0 − δq0. Since C1 6= C2, it is clear that the

transfer function will not be affine in any isolated function

of apq , as was the case in (25). The phase measurement in

response to an impulse input will, therefore, be

∆θpq(k) = Z−1
(
Cθ

pq(zI −Ad)
−1Bd

)
(31)

for k = 1, 2, . . . ,∞, where Z−1 indicates the inverse z-

transform, and Cθ
pq is a (2n × 1) row vector whose pth

element is C1, qth element is C2, and all other elements

are zero. Since Cθ
pq is a function of apq, we refer to the

RHS of (31) simply as ρpq(k, apq).

C. Angular Frequency

Since the angular frequency fpq at any point on epq is the

rate of change of the phase angle at that point, i.e., fpq = θ̇pq ,

it follows from (28) that

fpq = θ̇pq = C1ωp + C2ωq (32)

where the expressions for C1 = ∂θpq/∂δp|δp0,δq0 , C2 =

∂θpq/∂δq|δp0,δq0 are as in (29) and (30), respectively. A

small change in the frequency, in response of an impulse

input will, therefore, be

∆fpq(k) = Z−1
(
Cf

pq(zI −Ad)
−1Bd

)
(33)

for k = 1, 2, . . . ,∞, where Z−1 indicates the inverse z-

transform, and Cf
pq is a (2n×1) row vector whose (n+p)th

element is C1, (n+q)th element is C2, and all other elements

are zero. It should be noted that equations (27), (31) and

(33) assumes the state vector to be arranged in the form

col(∆δ,∆ω). Since Cf
pq is a function of apq , we refer to the

RHS of (33) simply as ϑpq(k, apq).

D. Linear Combination of Outputs

Considering (27), (31) and (33), we next consider the

output measured along epq ∀p = 1, ..,m, q ∈ Np for the

n-machine system (18), as a linear combination of voltage

magnitude, phase and frequency, namely

ypq(k) = µ1ψpq(apq)ξpq(k)+µ2ρpq(k, apq)+µ3ϑpq(k, apq)
(34)

where µ1, µ2 and µ3 are positive constants denoting the

contribution of each measured variable in the output, with

µ1 + µ2 + µ3 = 1. The actual measured output is, however,

ỹpq(k) = ypq(k) + wpq(k) (35)

where wpq is stationary Gaussian noise with zero mean and

variance σ2
pq . To compute the error in estimating the network
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parameters from ỹpq, we next construct the FIM for epq as

in Section IIIC. We first stack the noise-free outputs as

Ypq =
[
ypq(1) ypq(2) . . . ypq(k)

]
. (36)

With a slight change of notations, we next assign numbers

to each edge as 1, 2, . . . ,m, and denote the resistance and

reactance of the jth edge simply by the subscript j, using

which we define

a = [r1, x1, r2, x2, . . . , rm, xm]T , (37)

b = [H1s, H1r, H2s, H2r, . . . , Hms, Hmr]
T (38)

where Hjs and Hjr are, respectively, the inertias of the

sending and receiving nodes of the jth edge. Note that b

may have repeated elements as one node can be connected to

multiple edges. The next step is to construct the two matrices

H and K as in Section IIIC for epq:

Hpq =
∂Ypq

∂a
, Kpq =

∂Ypq

∂b
. (39)

From (34), (36) it follows that (dropping the functional

arguments for brevity)

Hpq = µ1

(
∂ψpq

∂a
ξpq + ψpq

∂ξpq
∂a

)

+ µ2
∂ρpq
∂a

+ µ3
∂ϑpq
∂a

Kpq = µ1ψpq(apq)
∂ξpq
∂b

+ µ2
∂ρpq
∂b

+ µ3
∂ϑ

∂b
. (40)

Denoting µ = col(µ1, µ2, µ3), the final step is to construct

the FIM for epq following (15) as

Jpq(a,b, apq, µ) =
1

σ2
pq

[
HpqH

T
pq HpqK

T
pq

KpqH
T
pq KpqK

T
pq

]

. (41)

Our objective is to find the value of apq and µ for which

the determinant of J−1 is minimized. Since for any square

non-singular matrix J

det(J−1) =
1

det(J)
, (42)

the problem is equivalent to finding the optimal (apq, µ for

which the determinant of J is maximized. We summarize

this result in the following theorem.

Theorem 1 : Given any edge epq of the electrical oscillator

network (2)-(3), p = 1, . . . , n, q ∈ Np, the optimal PMU

location a∗pq that generates the tightest CRB for Spq in (6)

∀ (p, q), is given by the solution of the following optimization

problem:

max
apq,µ

det(Jpq(a,b, apq), µ), (43)

s.t apq ∈ [0, 1], µ1 + µ2 + µ3 = 1 (44)

where det(·) denotes the absolute value of determinant, and

Jpq(a,b, apq) is given as in (41). �

V. ILLUSTRATIVE EXAMPLE: TWO-NODE NETWORK

A. Impulse Response and FIM

In this section we illustrate the results of Section IV with

a simple network of two oscillators connected by an edge as

shown in Figure 3). Assuming power is flowing from node

1 to 2, we set the reference at node 2, and define any point

P at any arbitrary impedance of z̄ = r̄ + jx̄ way from this

reference. The impedance of the entire edge is denoted as

z = r + jx. We define a = z̄/z ∈ [0, 1], and α = x/r.
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Fig. 3. Two-machine power system
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Fig. 4. Noisy voltage and angle responses at Bus 1

A three-phase short-circuit fault is applied at the midpoint

of the line without line switching using Power System

Toolbox in Matlab, and voltages and current flows at different

points are captured with 5-dbW white noise. Figure 4 shows

traces of the voltage magnitude and phase measured at Bus

1. Starting from Bus 2, we apply Algorithm 1 using measure-

ments at different point on the line computed from Ṽ2 and

Ĩ . The algorithm converges roughly in 5 iterations, and the

optimal measurement position is obtained as approximately

a∗ = 0.78 measured from Bus 2. The estimated and actual

values of the unknown parameters are listed in Table 2. The

determinant of the FIM at the 5th iteration as a function of

a is shown in Figure 5(a). The determinant of the FIM at

the 5th iteration as a function of a, when only the voltage

magnitude is used as the output, is shown in Figure 5(b).

From the ordinates of these two figures it is clear that

the value of the determinant reduces significantly when an

optimal combination of voltage, phase and frequency is used

for estimation compared to the case when only the voltage is

used [9]. Observing the final values of µ1, µ2 and µ3 from

Table 1, it is also noteworthy that among all three variables

V , θ and f , the contribution of the phase angle for generating

the best possible parameter estimate is maximum.

VI. CENTRALIZED ESTIMATION

We wrap up our discussion with a brief discussion on the

situation where the network parameters might be estimated
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TABLE I

TWO-MACHINE MODEL PARAMETER ESTIMATION AND MEASUREMENT LOCALIZATION

Parameters Actual values (per unit) Estimated values (per unit)
Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

r 0.1 0.05 0.05 0.089 0.081 0.085
x 1 0.50 0.61 0.68 0.73 0.97
H1 19 11.86 18.91 18.95 18.95 18.98
H2 13 9.68 11.01 11.16 12.80 12.81
a - 0.504 0.561 0.711 0.761 0.780
µ1 - 0.25 0.17 0.15 0.15 0.14
µ2 - 0.50 0.61 0.65 0.68 0.69
µ3 - 0.25 0.22 0.20 0.17 0.17
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Fig. 5. Determinant of FIM with and without phase measurement in output

using every set of measurement streams available from the

m PMUs in a centralized way instead of the edgewise

estimation described in Section IV. In that case, assuming

that the measurement process of the PMUs are independent

of each other, the log-likelihood function of the unknown

parameter vector Θ will be [10]

Υ(Θ,A) = −
∑

p=1,2,..,n

j∈Np

∫

Tb

|ỹpq(apq, t)− ypq(apq, t,Θ)|2
2σ2

pq

dt

(45)

where ỹpq is the actual measured value, corrupted with

Gaussian noise wpq with mean zero and variance σ2
pq , while

ypq is the theoretical value as derived in (34). A is the set of

apq for all edges stacked together in some specified order. Tb
is the final time instant for measurement. The FIM J(A,Θ)
can then be constructed as follows :

Jii = E

{(
∂Υ(Θ,A)

∂Θi

)2}

, i = 1, 2, . . . , (2m+ n)

Jij = E

{(
∂Υ(Θ,A)

∂Θi

∂Υ(Θ,A)

∂Θj

)}

, i 6= j, (46)

where Θi denotes the ith element of the vector Θ. The total

number of unknown parameters (i.e. the size of Θ) is 2m+
n, namely m resistances, m reactances and n inertias. The

approach, thereafter, would be to maximize the determinant

of J(A,Θ) with elements of A as the optimization variables.

The algorithm can be iterated by starting from an initial A,

finding Θ from the maximum-likelihood estimate, and then

use this estimate to compute a new value for A.

VII. CONCLUSIONS

In this paper we presented several results on the problem

of choosing optimal ‘measurement points’ and ‘optimal com-

bination’ of measurement variables on the edges of a network

of dynamic electrical oscillators such that the noise-corrupted

measurements at that point can be used for generating the

most accurate estimates for the network parameters. The

approach is not to assign edges for PMU placement but rather

to find the best location for placing it along any assigned

edge. Estimation has been done for the network in open

loop i.e., there is no feedback from the measured outputs

to the network nodes. An interesting observation because of

this open-loop structure is that the estimation error bound for

each edge parameter in this situation is dependent only on

the sensor location on that specific edge, whereby the opti-

mization problem can be addressed in a distributed fashion

for each edge separately. Simulation results show significant

improvement over our previous results in [9] where only

voltage measurements were used for estimation, and, testify

that combining the voltage with phase and frequency in an

optimal way can reduce the estimation error remarkably.
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