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Abstract— In this paper a new concept of set invariance,
called D-invariance, is introduced for dynamical systems de-
scribed by delay difference equations. We will be interested
in the definition and computation of such invariant sets in a
specified bounded region of the state-space. The Minkowski
algebra will be used to define mappings over the set of compact
sets in direct relationship with the invariance of time-delay
systems. Set-iterates based on these mappings can be used for
the construction of a non-decreasing sequence of D-invariant
sets.

I. INTRODUCTION

The invariant set theory is an important topic in mathemat-

ics and receives an increased attention in control literature

in relationship with constrained systems or robust control

design (see the monograph [1], the survey paper [2] and

the references therein). The link between invariant sets and

classical stability theory is well understood and comes back

as an active research topic particularly in optimization-

based control design and related feasibility or reachability

problems.

An important family of invariant sets is represented by

the class of polyhedral sets. Even if the complexity of their

representation is higher than in the ellipsoidal case [3],

polyhedral sets have the advantage to follow more accurate

the shape of the limit (maximal/minimal) invariant set in

different frameworks. Due to safety guaranties for the system

evolution in the presence of constraints the invariant sets

were studied in the literature [4], [5], [6].

From the system dynamics point of view, the reaction of

real systems and physical processes to exogenous signals can

rarely be described as “instantaneous”. One of the classical

ways of modelling such phenomena is by using time-delays.

Roughly speaking, the delays (constant or time-varying)

describe coupling between the dynamics, propagation and

transport phenomena, heredity and competition in population

dynamics. Various motivating examples and related discus-

sions ca be found in [7], [8], [9]. Networking (congestion

mechanisms, consensus algorithms, tele-operation and net-

worked control systems) is one of the classical examples

among numerous application domains where the delay is

a critical parameter in understanding dynamics behavior

and/or improving (overall) system’s behavior. Independently

of the mathematical problems related to the appropriate rep-

resentation of such dynamics, the delay systems are known
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to rise challenging control problems due to the instabilities

introduced in the closed loop by the presence of delays.

In the framework of time-delay systems the invariance

conditions are often difficult to characterize. In [10], [11]

the existence conditions for set invariance of continuous-time

time-delay systems are derived using similar arguments to

the nominal linear time invariant case (see [12] and [13]).

In the discrete-time case, the set invariance wih respect to

time-delay systems has been addressed recently [14], [15],

[16], [17]. It was shown that for an uncertain polytopic

system affected by delays, a stabilizing feedback gain and

an invariant set can be obtained in an extended state-space,

where all the retarded control (or state) entries must be

stored. Although finite (due to the discrete time framework),

the dimension of the augmented state-space depends on the

delay and sampling period and can lead to intractable analy-

sis and design problems. In order to avoid this inconvenient

several stabilization methods concentrate on the original

state-space, based on Lyapunov-Krasovskii candidates (as

in [18]), but the invariant set treatment is still performed

in an augmented state space. In the reference [17], the

relationship between Lyapunov-Krasovskii and Lyapunov-

Razumikhin constructions was discussed, the associated con-

cept of invariance associated with the Lyapunov-Razumikhin

stability being close to the proprieties we are interested in

here.

The present paper concentrates on set-invariance proper-

ties for discrete-time systems with state delays in the non-

augmented state space. The concept of D-invariance under-

stood as set-invariance in both the current and retarded state

space is introduced and the main properties are discussed in a

set-theoretic framework. As a main contribution we propose

an algorithm for the construction of D-invariant sets. The

theoretic foundation for this construction is provided by a

non-decreasing mapping on the space of compact convex

sets, related to the Minkowski algebra based condition of

D-invariance. The sequence of D-invariant sets is limited by

the original bounded region of the state space thus placing

a limitation on the iterative procedure.

This paper is structured as follows. Section II presents

some preliminary mathematical notations and the description

of the dynamics. The concept of D-invariance is defined in

Sec. III while further properties are presented in Sec. IV with

a focus on the related set-iterates, along with the description

of an effective procedure for D-invariant sets construction.

Sec. V presents a numerical example and Sec. VI draws some

concluding remarks.
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II. PRELIMINARIES

A. Basic notions and definitions

Let R, R+, Z and Z+ denote the field of real numbers, the

set of non-negative reals, the set of integer numbers and the

set of non-negative integers, respectively. For every subset Π
of R we define RΠ := R ∩ Π and ZΠ := Z ∩ Π.

A polyhedron (or a bounded polyhedral set) in R
n is a

set obtained as the intersection of a finite number of open

and/or closed half-spaces. The set of vertices of a polyhedron

A ⊆ R
n is denoted V(A).

For two arbitrary sets A ⊆ R
n and B ⊆ R

n

A⊕ B := {x + y | x ∈ A, y ∈ B}

denotes their Minkowski sum,

A ∼ B := {x ∈ R
n | x + B ⊆ A}

denotes their Pontryagin difference, Co(A,B) = Co(A∪B)
denotes the convex hull of A and B and

B \ A := {x ∈ B | x /∈ A}

denotes the set difference between B and A.

For an arbitrary set A ⊆ R
n and α ∈ R+, we define

αA := {αx | x ∈ A}.

For an arbitrary set A ⊆ R
n, int(A) denotes the interior of

A. In set theory, a set A is a subset of a set B if A ⊂ B.

Correspondingly, set B is a superset of A.

For the Euclidian space R
n, we denote by Com(Rn) the

space of compact subsets of R
n. A convex and compact set

in R
n that contains the origin in its interior is called a C-set.

ComC(Rn) denotes the space of C-subsets of R
n containing

the origin. B
n
0,r denotes the ball of radius r in Euclidean

norm, centered in the origin of R
n.

The spectrum of a matrix A ∈ R
n×n is the set of

eigenvalues of A, denoted λ(A), while the spectral radius

is defined as

ρ(A) := max
λ∈λ(A)

(|λ|).

The spectral norm will be denoted σ(A) and is defined as:

σ(A) :=
√

ρ(AT A)

B. System Dynamics

We consider delay difference equations of the form:

x(k + 1) = A0x(k) + Adx(k − d) (1)

where x(k) ∈ R
n is the state vector at the time k ∈ Z+.

d ∈ Z+ is the fixed time-delay, the matrices Aj ∈ R
n×n, for

j ∈ Z[0,d] and the initial conditions x(−i) = x−i ∈ R
n, for

i ∈ Z[0,d].

III. D-INVARIANCE RELATED DEFINITIONS AND

BASIC PROPERTIES

A. Definitions

Definition III.1 A set P ⊆ R
n is called D-invariant for the

system (1) with initial conditions x−i ∈ P for all i ∈ Z[0,d]

if the state trajectory satisfies xk ∈ P,∀k ∈ Z+. �

The concept of D-invariance introduced in the previous

definition will be used extensively in this paper. It is related

to the dynamics of systems affected by time-delay and to the

state constraints which describe a region with invariant prop-

erties with respect to the given dynamics. It is noteworthy

the difference between the D-invariance introduced here and

the invariance of systems with disturbance inputs as defined

in [5], [6] and related works. In the present framework, the

dynamics are autonomous and the presence of the retarded

argument is not interpreted as a disturbance signal but is

treated as a state dependence in a nominal manner.

Theorem III.2 The following affirmations are equivalent:

i) A set P ⊆ R
n is D-invariant for system (1).

ii) A0P ⊕ AdP ⊆ P .

Proof: i) → ii) P is D-invariant ⇒ x1 ∈ P for all x0 ∈ P
and x−d ∈ P , which is equivalent to A0x0 + Adx−d ∈
P,∀x0 ∈ P and x−d ∈ P .

ii) → i) ∀x0, x−d ∈ P, x1 = A0x0 + Adx−d ∈ A0P ⊕
AdP ⊆ P . Then, xk ∈ P,∀k follows by induction.

In the following, several properties are reviewed in order

to fix a set of basic relations to be used in the algorithmic

construction of D-invariant sets.

Proposition III.3 The following properties hold:

P1 If P ∈ R
n is D-invariant then αP is D-invariant for any

α ∈ R>0.

P2 Let P1,P2 ⊆ R
n be two D-invariant sets for the dynam-

ics (1). Then P1 ∩ P2 is a D-invariant set for the same

dynamical system.

P3 Let P ⊆ R
n be a convex set containing the origin. If P is

D-invariant with respect to (1) then P is positive invari-

ant with respect to the time invariant linear dynamics:

x(k + 1) = A0x(k), (2)

x(k + 1) = Adx(k). (3)

Equivalently, A0P ⊆ P , AdP ⊆ P .

P4 Given a D-invariant set P ∈ R
n for the system

x(k + 1) = A0x(k) + Adx(k − d) (4)

then P is D-invariant for

x(k + 1) = Adx(k) + A0x(k − d) (5)

P5 For some d ∈ Z>0, given a D-invariant set P ∈ R
n for

the system

x(k + 1) = A0x(k) + Adx(k − d) (6)
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then P is D-invariant for

x(k + 1) = A0x(k) + Adx(k − d̄) (7)

for any d̄ > 0.

Proof:

P1 Using basic properties of the Minkowski addition (see

[19]) for ∀P ⊂ ComC(Rn) and Theorem III.2 one

obtains:

αA0P ⊕ αAdP = α(A0P ⊕ AdP) ⊆ αP. (8)

P2 Consider two points x ∈ P1∩P2 and y ∈ P1∩P2. The

set P1 is D-invariant and x, y ∈ P1, thus:

A0x + Ady ∈ P1.

Similarly P2 is D-invariant and x, y ∈ P2 imply:

A0x + Ady ∈ P2

and thus observing that x, y were chosen arbitrarily it

completes the proof:

A0x + Ady ∈ P1 ∩ P2.

P3 By using the fact that {0} ∈ P and the D-invariance

property with respect to (1) then for any i ∈ Z[0,d] the

following set inclusions hold:

AdP = A0{0} ⊕ AdP ⊂ A0P ⊕ AdP ⊂ P,

A0P = A0P ⊕ Ad{0} ⊂ A0P ⊕ AdP ⊂ P,

which corresponds to the definition of a positive invari-

ant set P with respect to the dynamics in (2).

P4 This represents a direct implication of Theorem III.2

since the set theoretic description of the D-invariance

with respect to (4) and (5) is identical due to commu-

tativity of the Minkowski addition.

P5 The set P is D-invariant for the system (6) with d = 1
if A0P ⊕ AdP ⊂ P . When d = 2 the set P is D-

invariant if A0P ⊕AdP ⊂ P and by induction, the set

P is D-invariant if A0P ⊕ AdP ⊂ P for all d > 0.

The properties P4 and P5 underline the fact that D-

invariance is related to the algebraic properties of pair

(A0, Ad) and thus delay-independent from a structural point

of view. The effective link with the specificity of dynamical

systems affected by delays is resumed by the conditions

x−i ∈ P, i ∈ Z[1,d] (with their dimensional and complexity

implications).

B. Necessary Conditions and Sufficient Conditions

The goal of the present paper is to present a constructive

procedure for D-invariant set descriptions. It is obvious that

the existence of a nondegenerate and bounded D-invariant

set1 is related to the stability of the discrete-time dynamical

system affected by delay (1). As shown by the previous

1Note that sets like {0} or R
n are D-invariant but they do not satisfy

the non-degenerate or boundedness conditions.

example, these prove to be only necessary conditions for

the existence of a D-invariant set. In the following we

enumerate a set of necessary conditions and, alternatively, a

set of sufficient conditions which are easily checkable using

classical numerical routines for the eigenvalues problems.

Let us introduce the following notation for the extended

state-space matrix:

Aξ =

















A0 0 . . . 0 Ad

I 0 . . . 0 0

0 I
. . . 0 0

...
. . .

. . .
. . .

...

0 0 · · · I 0

















(9)

1) Necessary conditions: Considering the system (1), the

existence of a D-invariant C-set P implies:

N1 The spectral radii of the matrices A0 and Ad are

subunitary: ρ(Ai) ≤ 1, ∀i ∈ {0, d};
N2 The spectral radius of the matrix (A0 + Ad) is subuni-

tary: ρ (A0 + Ad) ≤ 1;
N3 The spectral radius of the extended state-space matrix

is subunitary:

ρ (Aξ) ≤ 1.

2) Sufficient conditions: Considering the system (1), the

existence of a D-invariant C-set P is guaranteed if one of

the following conditions hold:

S1 The sum of the spectral radius of A0 and the spectral

radius of Ad is subunitary:

σ(A0) + σ(Ad) < 1.

S2 In the case of nonsingular matrix A0 (or Ad)

(1 + σ(A−1
0 Ad))σ(A0) ≤ 1,

or alternatively

(1 + σ(A−1
d A0))σ(Ad) ≤ 1.

IV. SET DYNAMICS AND D-INVARIANCE

The equivalence between the D-invariance in its nominal

description and the set-theoretic counterpart evidenced in

Theorem III.2 lead us to the treatment of the constructive

algorithms for D-invariance in a set-theoretic framework

[20]. Considering the matrices A0, Ad ∈ R
n×n as in (1)

we define the mappings:

Φ : ComC(Rn) → ComC(Rn)
Φ(P) = A0P ⊕ AdP;

(10)
Ψ : ComC(Rn) → ComC(Rn)

Ψ(P) = Co(P, A0P ⊕ AdP) = Co(P,Φ(P)).
(11)

We remark that using (10) and as a direct consequence of

the Theorem III.2, a given compact set P is D-invariant if

Φ(P) ⊆ P .

The mappings (10)-(11) can be further used to define k-

iterates over the family of C-sets:

Φk(P) = Φ(Φk−1(P)), k ≥ 0 with Φ0(P) = P,
Ψk(P) = Ψ(Ψk−1(P)), k ≥ 0 with Ψ0(P) = P.

(12)
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The next remark points out several properties of the

iterative set mappings.

Remark IV.1 For the mappings defined in (10)-(11), the

following properties hold2:

i Ψk(P) is set-wise non-decreasing, i.e.

Ψk(P) ⊇ Ψk−1(P),∀k ≥ 1,

for any P ∈ ComC(Rn).
ii If Φ(P) ⊆ P then Φk(P) with k > 0 is set-wise non-

increasing, i.e. Φk(P) ⊆ Φk−1(P),∀k ≥ 1.

iii If P is D-invariant and convex then P is a fixed point

for Ψ(.), i.e.:

Ψ(P) = P. (13)

The space ComC(Rn) is endowed with the Hausdorff

distance. Consider two non-empty arbitrary sets P1 ⊆ R
n

and P2 ⊆ R
n. The Hausdorff distance is defined as:

dH(P1,P2) = max

(

max
x∈P1

min
y∈P2

d(x, y), max
x∈P2

min
y∈P1

d(x, y)

)

,

where d(x, y) is the Euclidian distance between the points x
and y in R

n.

The property iii in Remark IV.1 points out that a D-

invariant set is related to one of the fixed points of the

set-dynamics described by (11). Starting with a set P ∈
ComC(Rn), the convergence of the iterates Ψk(P) to a fixed

point is directly related to the convergence of the Hausdorff

distance between the iterates and the fixed point to zero.

The mapping Φ(·) in (10) is a contraction [20] if there

exists an α ∈ R[0,1) such that for two arbitrary sets P1 ⊆ R
n

and P2 ⊆ R
n:

dH(Φ(P1),Φ(P2)) ≤ αdH(P1,P2),

The contractive behavior of the mapping Ψ(·) in (11) is

defined similarly.

Next, we propose an algorithmic procedure for the com-

putation of a non-decreasing sequence of D-invariant sets for

the system (1). This procedure considers as input argument

a predefined region in the state space which confines the D-

invariant candidates and exploits the contractive properties

of the mappings (10)-(11).

A. A generic procedure for D-invariant set construction

In this subsection, we describe the main steps of an

iterative construction of D-invariant sets. One of the main

concepts to be exploited is the upper boundedness of the

set-wise non-decreasing sequence of sets Ψ(P) in case of

the existence of a bounded D-invariant set. The following

results are instrumental in this sense.

Lemma IV.2 If P ∈ ComC(Rn) is a D-invariant set for (1)

then for any subset S ⊆ P we have:

Φk(S) ⊆ P,∀k ≥ 0.

2The definition of non-increasing/non-decreasing sequence of iterates is
similar to the one in [20].

Proof: By assumption, the set P is D-invariant which assures

Φ(P) ⊆ P . Since S ⊆ P we have Φ(S) ⊆ Φ(P) ⊆ P . The

result hold for all k ≥ 0 by induction.

Theorem IV.3 Given a convex set P ∈ ComC(Rn), the

sequence Ψk(P), k ≥ 0 converges toward a D-invariant

convex superset.

Proof: Let D ⊆ R
n be a convex D-invariant superset of

P (a set which contains P). Using Lemma IV.2, P ⊆ D
implies Φ(P) ⊆ D. Exploiting the fact that we are dealing

with convex sets, we have Co(P,Φ(P)) ⊆ D which further

implies Ψ(P) ⊆ D. By induction Ψk(P) ⊆ D and in the

same time Ψk(P) is a non-decreasing sequence of sets. Thus

the following inclusion holds:

P ⊆ Ψ(P) ⊆ Ψ2(P) ⊆ · · · ⊆ Ψk(P) ⊆ · · · ⊆ D. (14)

The relationship (14) holds for any D-invariant C-superset

of P .

At this point, we proved the existence of a non-decreasing

sequence of sets upperbounded by a D-invariant set. In order

to complete the proof we have to show that the limit set

D̄ = limk→∞ Φk(P) is a D-invariant set. This is immediate

by the fact that Φ(Ψk(P)) ⊆ Ψk+1(P) and thus

lim
k→∞

Φ(Ψk(P)) ⊆ lim
k→∞

Ψk+1(P) ⇒ Φ(D̄) ⊆ D̄ (15)

This main result offers a basis for a generic construction

of convex D-invariant sets based on set-iterations. Our main

objectives will be to enlarge this set all by preserving the D-

invariance properties and remaining in the pre-defined region

X ⊆ R
n.

Algorithm IV.4

Input: A convex set X ∈ ComC(Rn), A0, Ad ∈ R
n×n

Output: A D-invariant set in X
1) Obtain R0, a initial D-invariant C-set in X0. Set i = 0;

2) Compute a set T = Co(Ri, x) with x ∈ int(X \ Ri);
3) Compute the limit set D = limk→∞ Φk(T );
if D ⊆ X then

Ri+1 = D;

if Ri has to be improved (enlarged) then
Start over from 2) with i = i + 1;

else
return Ri

end

else
Start over from 2) with a new point x and note that

the previous selected point is not contained in the

final D-invariant set;
end

An advantage of this algorithm is that at each intermediary

step we dispose of a D-invariant set and generate a non-

decreasing sequence of D-invariant sets in X .

In order to have an effective implementation of this

algorithm, there are two issues that have to be clarified :
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• How to estimate the Hausdorff distance between the

current D-invariant set and the limit D-invariant set

(the former one being à priori unknown). In fact, this

estimation will be used in the evaluation of a stopping

criteria for the set-iteration.

• How to chose points in X \Ri and how to use them in

the approximation of a new D-invariant set.

B. Auxiliary routines

We define in an algorithmic form several operations which

are instrumental for the proposed practical D-invariant set

construction.

In order to evaluate the converge rate, a pair of inner-outer

approximations has to be used. If the inner approximation is

mainly based on the numerical exploitation of the Theorem

IV.3, for the outer approximation we propose the use of the

complementary set for a D-invariant set R with respect to a

given subspace of the state space X0. This will be defined

as the collection of points in X0, which mapped by either

A0 or Ad can be summed up (in the Minkowski sense) with

any point in AdR or A0R and remain in the collection.

• P = outer(R,X0, A0, Ad): An iterative algorithm

which use a D-invariant set R to construct the largest

set P ⊆ P0 = X0 ⊆ R
n that verifies:

A0P ⊕ AdR ⊆ P
A0R⊕ AdP ⊆ P

.

Algorithm IV.5

Input: Convex sets R ⊆ P0 ∈ ComR
n, A0, Ad ∈ R

n×n

Output: P
P1 = {x ∈ P0 | A0x ⊕ AdR ⊆ P0;

A0R⊕ Adx ⊆ P0}
;

i = 1;

while Pi 6= Pi−1 do

Pi+1 = {x ∈ Pi | A0x ⊕ AdR ⊆ Pi;
A0R⊕ Adx ⊆ Pi}

;

i = i + 1;
end

return P = Pi

The routine providing a D-invariant set by set-iterations

from an initial arbitrary set S:

• R = get Dinv(S): an algorithmic construction of the

limit set lim
k→∞

Ψk(S).

Algorithm IV.6

Input: A convex set S ∈ ComC(Rn), A0, Ad ∈ R
n×n

Output: R
R0 = S;

R1 = Ψ(R0);
i = 1;

while Ri 6= Ri−1 do
Ri+1 = Ψ(Ri);
i = i + 1;

end

return R = Ri

In order to adapt the outer approximation after each

refinement of the inner approximation, one has to introduce

new points in the step 2) of Algorithm IV.4. In our imple-

mentation, at each iteration we will make use of the vertex

of the outer approximation corresponding to the point which

generated the Hausdorff distance between the inner and the

outer approximation.

• [dH, vH ] = dH(P1,P2): is a function which returns

the Hausdorff distance between P1 ⊇ P2. The second

output argument is the point vH ∈ P1 for which

dH(P1,P2) = dH(vH ,P2)
3.

C. Non-decreasing sequence of D-invariant sets

Once all the generic steps are defined and the specific

routines are available, we can bring together all the elements

and describe an effective algorithm for the construction of

a sequence of non-decreasing D-invariant set up to a E-

improvement.

Algorithm IV.7

Input: Convex set X0 ∈ ComR
n, A0, Ad ∈ R

n×n and a

E ∈ R

Output: R, a convex D-invariant set in X0

S = get Dinv(X0);
Find γ such that γS ⊆ X0;

R0 = γS;

P0 = outer(X0,R, A0, Ad);
i = 1;

[dH, vH ] = dH(P0,R0);
while dH ≤ E do

Choose λ ∈ R(0,1)] such that λvH ∈ int(Pi \ Ri);
T = Co(λvH ,Ri);
Ri+1 = get Dinv(T );
Pi+1 = outer(Pi,Ri+1, A0, Ad);
if Ri+1 6⊆ Pi+1 then

Ri+1 = Ri;

Pi+1 = Co(Ri, λvH ,V(Pi) \ {vH});
end

i = i + 1;

[dH, vH ] = dH(Pi,Ri);
end

return Ri

The Algorithm IV.7 constructs a sequence of sets which

satisfies the following property:

X0 = P0 ⊇ P1 ⊇ · · · ⊇ Pi ⊇ · · · ⊇ Ri ⊇ R1 ⊇ R0. (16)

In terms of Hausdorff distance:

dH(P0,R0) ≥ dH(P1,R1) ≥ · · · ≥ dH(Pi,Ri) ≥ . . .
(17)

and due to the finite number of vertices and the the fact the

points λvH are in the strict interior of Pi \ Ri we have

dH(Pi,Ri) −→ 0. (18)

3The Hausdorff distance can be found by solving a quadratic program
for each vertex of the set A.
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Thus Algorithm IV.7 has an effective stopping criteria in the

condition dH < E . A transparent tuning parameter for the

proposed routine is the scalar λ which place the points to be

treated closer to the inner or to the outer approximation of

the limit D-invariant set. It is interesting to remark the fact

that λ can be adapted at each iteration.

V. ILUSTRATIVE EXAMPLE

Consider a dynamical system as in (1), with:

A0 =

[

0.0809 −0.0588
0.0588 0.0809

]

, Ad =

[

0.8257 −0.1308
0.1308 0.8257

]

.

(19)

Consider a set X0 which is the 1-norm unit circle in R
2. By

applying the Algorithm IV.7 the inner-outer approximation

of the limit D-invariant set is obtained iteratively. Figure 1

presents the inner-outer approximation for each iteration

(indexed on the z axis).

Fig. 1. Sequences of inner and outer approximations (Ri,Pi) indexed on
the z axis according to the number of iterations in the numerical procedure.

Figure 2 presents the evolution of the Hausdorff distance

between the inner and the outer approximation as a function

of the number of iterations.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

d
H

(P
i,R

i)

i

Hausdorff distance

Fig. 2. dH(Ri,Pi) vs. the iteration index i.

The test of D-invariance is depicted in Figure V.

VI. CONCLUSION

The paper introduced a new concept of set invariance (D-

invariance) for a class of discrete-time dynamical systems

affected by delay. The main contribution is an algorithm

for the effective construction of a D-invariant sets via set-

iterates. It is shown that a non-decreasing sequence of D-

invariant sets can be obtained in a predefined region of the

state space.

Fig. 3. Graphical illustration of D-invariance A0P ⊕ AdP ⊆ P . In
blue, the bounding box - X0; in red, the D-invariant set; in yellow, the set
A0P ⊕ AdP .
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