
  

  

Abstract—A two-fold control method is proposed consisting 
of a nonlinear robust controller working in conjunction with an 
extremum seeking gradient search controller. The robust 
controller provides stable control of the rotor angular velocity 
while also producing an estimation of the hard to measure and 
nonlinear aerodynamic torque provided by the wind. The 
gradient search method uses the estimate to update the tip-
speed ratio and blade pitch which will drive the system in the 
direction of increasing turbine power capture. The efficacy of 
the control method is demonstrated through simulation in the 
presence of a realistic wind signal and measurement noise in 
the wind velocity feedback.  

I. INTRODUCTION 
IND turbines provide a means of generating clean 
electric power by utilizing an almost limitless natural 

resource.  The lack of fuel combustion and associated 
greenhouse gas emissions is a very attractive feature of wind 
turbine power generation.  Downsides of wind turbines 
include mechanical reliability, unpredictability of wind, 
remote location of facilities, blade aerodynamic disturbances 
from air turbulence created by upwind turbines, and variable 
power capture efficiencies that depend on rotor speed and 
blade pitch.  This paper addresses the last point, controlling 
the blade pitch and rotor speed in order to capture the 
greatest amount of power possible for a given turbine. 

The power available in a wind stream of speed v is 
    

              (1) 
 

where ρ is the air mass density, A is the rotor swept area, and 
Pavail is the available power (watts, BTU/hr, etc.) in the wind.  
The power captured by the turbine is 

  
  
         (2) 

where Cp(λ,β), the coefficient of performance, is the ratio of 
the captured power to the available power, β is the blade 
pitch, and λ is the tip speed ratio given by 

    
                      (3) 
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The quantity Cp(λ,β) is a nonlinear function that is difficult 
to measure, is difficult to predict analytically, and can differ 
between like model turbines.  Figure 1 illustrates a Cp(λ,β) 
curve that is found in [1]. 

Wind turbine operation is divided into three regions.  In 
the first region, the wind speed is too low for turbine 
operation and no power is generated.  In region 2, both the 
blade pitch and rotor speed can be varied.  In region 3, the 
turbine has reached its rated speed and the speed is 
controlled by either the use of brakes or by changing the 
blade pitch.  A common operation scenario is to vary the tip 
speed ratio by changing the generator loading for speed 
control in region 2 and by varying the blade pitch, if so 
equipped, in region 3.  Note that both variables do play a 
role in changing the Cp value. 

A good description of the fundamentals behind wind 
power is contained in [2].   

 
Fig. 1:  Coefficient of performance curve as a function of blade pitch and 
tip-speed ratio. Peak value of Cp

* = 0.4735 at λ*
 = 7.8 and β* = -1º. Entire Cp 

data table contains information for 0 ≤ λ ≤ 20 and -90º ≤ β ≤ 90º.  
 

The difficulty in changing the tip speed ratio and blade 
pitch in order to increase the size of Cp is that the value of Cp 
is not a directly measureable quantity.  The wind turbine 
power capture control system has the duties of regulating 
rotor speed as well as to choose better values of λ and/or β.  
To this end, many types of control schemes have been tried.  
Linear control methods have been used to regulate wind 
turbines [3].  Such approaches use PID or similar controllers. 
Gains are then tuned to each wind turbine system. These 
control methods assume prior knowledge of the optimal 
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operating point, as well as manual re-tuning in the event of 
any parameter variation. 

Sliding mode control has also been used as a nonlinear 
control approach.  In [4] and [5], sliding mode controllers 
were proposed for a system in order to provide trajectory 
tracking of blade pitch and tip speed ratio set points.  The 
sliding mode results provided good tracking control; 
however, the approach still needed a reference track to be 
provided from a known Cp curve. 

Adaptive control has been used for rotor speed control 
and Cp identification.  Johnson et al. proposed a nonlinear 
controller, [2] and [6], where an adaptive gain is tuned based 
on an estimation of the power captured over a period of time 
to provide torque control. Although the adaptation period 
was lengthy, this control scheme was applied to a real 
turbine and was able to achieve convergence to the region of 
maximum power capture. 

Other estimation approaches have also been studied 
such as Ma’s wind turbine controller given in [7]. The 
Kalman filter is used to estimate the unknown nonlinearities 
while a proportional-integral controller regulates the turbine 
to a desired set point.  In [7], it is assumed that the optimal 
point is known. Ma’s paper also excludes blade pitch 
control. 

Creaby et al. [8] made use of extremum seeking 
algorithms studied in [9] to maximize the captured power. 
These extremum seeking control (ESC) methods rely on 1) 
a dither perturbation signal, usually a sinusoidal type, added 
to the peak seeking variable and then demodulated in the 
feedback loop, and 2) measurements of the cost function. 
The ESC-based power maximization method introduced in 
[8] does not require wind velocity measurement. The 
simulation results show a very promising improvement in 
power capture, even under turbulent wind conditions. Chen 
et al. [10] used a similar ESC method to maximize the 
captured electric power. They, at least, improved the 
previous results in two ways.  First, the maximized power 
was the electric power, which is of more interest than 
maximization of the rotor power. Second, the performance 
of the ESC algorithm was improved by considering the 
variations in the power map and studying the robustness 
stability condition of the method. 

Requirements of any non-dither based control scheme 
for wind turbine power capture are the rotor speed 
regulation, estimation of Cp, and the choosing of a new set 
point at which the Cp value would be higher.  Recently, a 
new robust control strategy, termed as Robust Integral of the 
Sign of the Error (RISE) [11], was developed in [12, 13] that 
can accommodate for sufficiently smooth bounded 
disturbances. A significant advantage of this new control 
method is that it enables asymptotic stability in the presence 
of uncertain disturbances, which has been demonstrated in 
[14-17], just to name a few. In [14], the authors leveraged 
this strategy to develop a tracking controller for nonlinear 
systems in the presence of additive disturbances and 
parametric uncertainties. In [15], the authors utilized this 
strategy to propose a new output feedback discontinuous 
tracking controller for a general class of second-order 
nonlinear systems. In [16], the authors combined the high 
gain feedback structure with a high gain observer at the 
sacrifice of yielding a semi-global, uniformly ultimately 

bounded result. In [17], the authors leveraged this strategy to 
develop a tracking controller for a general Euler–Lagrange 
system that contains a new continuously differentiable 
friction model with uncertain nonlinear parameterizable 
terms. Iysare et al. [18,19] used this method for estimating 
the rotor torque. A similar idea was employed by Hawkins et 
al. [20]. 

The significant contribution of this paper is that it does 
not rely on introducing a sinusoidal perturbation or dither 
signal to the generator torque command together with the 
necessity to perform a demodulation for feedback purposes 
in order to drive the estimation process.  The perturbation 
introduced by changing the rotor angular velocity set point 
is sufficient to drive the robust estimation.  The generator 
power output is not required to estimate the captured 
power.  A measured wind turbine data set is used in 
modeling and simulating the turbine.  The control algorithm 
does not make any use of this information.  So that new set 
points in rotor speed and blade pitch can be determined that 
increase the power capture, the extremum seeking controller 
makes use of the gradient of Cp with respect to λ and β.  
As Cp nears the peak, the gradient becomes small and is 
susceptible to noise.  Two procedures are presented that 
reduce the numerical difficulties that sometimes occur when 
trying to estimate a small gradient component. 

Assumptions made in this analysis are: 
1. The rotor pitch change time constant is small compared 

to the time necessary to respond to a rotor angular 
velocity set point change and to estimate Cp. 

2. The time necessary to change the generator torque 
loading is small. 

3. Both rotor angular velocity and wind speed feedback is 
available. 

4. The yaw angle is steady. 

II. WIND TURBINE ENERGY CAPTURE MODEL 
The wind turbine model considered in this paper 

consists of a known lumped inertia, J, a torque provided by 
the wind acting on the rotor, τaero, a known lumped damping 
coefficient, CD, and a control torque, τc, which will be 
provided by the loading of the electric power generator. The 
wind turbine system dynamic model is described by the first 
order differential equation 

)(1
cDCaeroJ

τωτω −−=             (4) 

where ω is the shaft angular velocity and is one state 
variable of the inner loop control system.  The remaining 
state variables are the tip speed ratio, λ, the blade pitch, β, 
and the filtered tracking error introduced in the next section.  
Another way to express the captured power is 
     

              (5) 
The function Cp(λ,β) is an unknown nonlinear 

relationship described by a three dimensional surface.  In 
general, the Cp function shape is convex and has a single 
maximum denoted as Cp(λ*,β*) > 0 for some λ* and β*.  
Cp(λ,β) is maximized as λ → λ* and β → β*.  The function in 
Figure 1 is convex and shows a single extremum. 

In Eqs. (1) and (3), the air density ρ and the wind speed 
v are presumed measurable with some measurement error w. 

.ωτ aeroaeroP =
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It is also assumed that the shaft angular velocity is a 
measurable quantity. The angular shaft acceleration, ω , 
however, is not available from measurements.  Combining 
(1), (2), and (5) shows that the aerodynamic torque is 

2),(
2
1 v

C
AR p

aero λ
βλ

ρτ = .       (6) 

A Lyapunov-based approach is proposed for developing 
the wind turbine control law.  The constraints to be satisfied 
by the controller include robust estimation of the turbine 
aerodynamic properties, stabilization of the tip speed ratio 
about a set point, and optimization of the power capture 
coefficient, Cp.  The controller design will be divided into 
two steps. The first is the control of the inner loop which is 
accomplished by the use of a robust identifier-based 
controller. This controller is responsible for the regulation of 
the angular shaft velocity, ω, to the desired shaft velocity, 
ωd.  This controller also provides an estimate of the 
unknown aerodynamic torque, denoted as f̂ . The second 
step is the development of the Lyapunov-based controller 
which uses f̂ for generating the desired state trajectories for 
the robust controller to regulate.  This is known as the outer 
loop controller. A Lyapunov candidate function will be used 
to ensure that the values of the outer loop states, λ and β, 
converge towards the optimal values of λ* and β* which 
maximize Cp, thus Cp converges to Cp

*. 

III. TWO-FOLD CONTROL METHOD DEVELOPMENT 

A. Robust Control Development 
A nonlinear robust controller is developed to regulate 

the angular velocity of the system to a desired set-point.  As 
a result, an estimation of the unknown parameter, τaero, is 
also obtained.  A loading torque from the generator, denoted 
as τc, is used to control the shaft speed of the system.  As 
stated previously, the open-loop dynamics are stated in (4).  
       The objective of this identifier-based control design is 
twofold:  
(1) Achieve asymptotic tracking in the sense of ω → ωd 
where ωd represents a desired angular velocity. 
(2) Estimate the unknown value of the nonlinear function 
τaero.  

An angular velocity tracking error is defined as 
.             
      (7) 

To facilitate the subsequent control design and analysis, a 
filtered tracking error, denoted as r(t) is defined as 
 

         (8) 
where α denotes a positive constant. The filtered tracking 
error r(t) is not measurable because it depends on )(tω
which is also not measurable. The quantity r(t) is the last 
state variable. 
        Multiplying (4) by J gives  

caeroDd CeJJJr ττωαω −+−+−=                (9) 
where (7) and (8) were utilized.  Based on the expression in 
(9) the control torque is designed as  

)(ˆ tfCeJJ Ddc +−+−= ωαωτ                    (10) 

where )(ˆ tf  denotes a subsequently designed control term.  
By substituting (10) into (9), the result is 

.        (11) 
 
From (11) it is evident that as r(t)→0, )(ˆ tf will identify the 
unknown input torque τaero.  Therefore, it is desirable to 
design a controller such that r(t)→0. To facilitate the design 
of ),(ˆ tf (11) is differentiated to get 

dt
tfdrJ aero
)(ˆ

−= τ .                 (12) 

Based on (12) and the subsequent analysis, the control law 
for )(ˆ tf is designed as [13, 17] 

)0()1()()1()(ˆ ektektf ss +−+=                (13) 

               
∫ +++
t

cs deek
0

))](sgn()()1[( ττβτα  

where ks, α, and βc are positive control gains and sgn(·) 
denotes the standard signum function. Note that α was 
previously defined in (8).  The time derivative of (13) is 
given by 

)sgn()1()(ˆ
erk

dt
tfd

cs β++= .           (14) 

After substituting (14) into (12), the closed-loop error 
dynamics are obtained as 

NeerkrJ cs +−−+−= )sgn()1( β                  (15) 

where the auxiliary function N denotes the unmeasurable 
auxiliary term of 

etN aero += τωω  ),,( .                 (16) 
Before analyzing the stability of the error dynamics, we 
introduce a new, unmeasurable auxiliary parameter Nd that is 
defined as 

aerod tN τ=)( .              (17) 
The reason to introduce N and Nd is to facilitate the 
stabilizing analysis. These quantities are used in the proof of 
the theorem that is about to be presented.  
 
Theorem 1: The controller given in (10) and (13) achieves 
semi-global asymptotic position tracking in the sense that 

e(t)→0   as   t→∞ 
provided that βc is selected according to the sufficient 
condition 

cβ > aeroτ  +
α

τ aero
. 

In addition, all system signals are bounded, and τaero can be 
identified in the sense that.  

( ) ∞→→− tastf aero 0)(ˆ τ . 
Proof: The proof is similar to that shown in [13].  

B. Estimating the Coefficient of Performance 

As a result, the quantity )(ˆ tf will be used to estimate the 
quantity τaero, which, in turn, will be used in the estimate of 
Cp.  Under the stability analysis of the identifier-based 

d
e ωω −=

eer α+= 

)(ˆ tfJr aero −= τ
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controller, )(ˆ tf → τaero as t becomes large.  Let ε be a 
specified angular velocity stabilization error tolerance.  For a 
given set point when ω = ωd ± ε, then τaero = )(ˆ tf  + ζ where 

ζ represents the resulting estimation error in )(ˆ tf .  At this 

point, )(ˆ tf very closely approximates τaero.  Now define a 

bounded estimation of aeroP̂  as 

 ωfPaero
ˆˆ = .                 (18) 

By substituting (18) into (2), we now have an estimation of 
the unknown function of energy capture coefficient 

avail

aero
p P

PC
ˆˆ =                   (19) 

or rewritten by using (18) and (1), the estimate becomes 

3

2
1

ˆˆ
Av

fC p
ρ

ω
= .                   (20) 

The closed loop control in (10) and (13) have driven the 
angular velocity to ωd and, in the process, has provided an 
estimate for Cp(λ,β).  This is the inner loop of the turbine 
control.  

C. Lyapunov Extremum Seeking Controller 
Now that the state, ω, is regulated, a control law is 

needed to generate new angular velocity set points, ωd.  The 
sequence of set points constitutes a trajectory for ωd.  It is 
desired that the trajectory converges to the optimal point by 
means of choosing new values of blade pitch and tip-speed 
ratio. We begin with the development of the Lyapunov 
controller. The Lyapunov candidate function is 

2~
2
1

pCV =                        (21) 

where 

ppp CCC −= *~ .     (22) 
Taking the time derivative of V provides 

ppCCV  ~
−= .                           (23) 

We assume that the optimal operating point, Cp
*, is either 

constant or slowly time varying.   The time derivative of Cp
* 

is then small and can be neglected.  Replacing pC with 

β
β

λ
λ


∂

∂
+

∂

∂
= pp

p
CC

C ,        (24) 

the Lyapunov time derivative becomes 









∂

∂
+

∂

∂
−= β

β
λ

λ
 pp

p
CC

CV .            (25) 

To ensure that V always remains negative semi-definite, λ

and β are selected to parallel their respective gradients of Cp, 

namely, 
λ∂

∂ pC and
β∂

∂ pC .  The term pC~ is guaranteed to be 

always greater than zero because of its definition in (22).  
The outer loop Lyapunov controller developed in this 

section works in conjunction with the identifier-based 
controller. The Lyapunov controller will choose a new set-

point once the shaft angular velocity has been stabilized 
within a given tolerance by the inner loop robust controller.  
Because of the different rates at which the inner and outer 
loops execute which can be appreciated by the necessary 
time for the regulation of ω→ωd, the outer loop becomes 

discrete.  Using numerical differentiation, 
λ∂

∂ pC and 
β∂

∂ pC are 

determined approximately as 

1

)ˆˆ(ˆ
1

−−

−
≈
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≈
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        (26) 

and  

1
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≈

∂
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≈

∂

∂
−

kk

pppp kk
CCCC
ββββ

        (27) 

where pĈ  is the estimate of Cp.  The time derivatives of the 
state variables, λ and β, are chosen so that the Lyapunov time 
derivative V remains negative semi-definite.  For the tip 
speed ratio, we choose 

λ
γλ λ ∂

∂
= pC          (28) 

where γλ is a positive constant.  For the blade pitch, we 
choose  

β
γβ β ∂

∂
= pC                        (29) 

and γβ is also a positive constant. 
The time derivatives λ and β provide a way of updating 

both set points so that Cp→Cp
*.  Because the gradients of 

λ∂

∂ pC and
β∂

∂ pC must be estimated, as shown in (26) and (27), a 

discrete update law is written to represent (28) and (29).  Let 
the subscript k denote the current time step and let k+1 
denote the next, future time step.  For the tip speed ratio, the 
discretized update law is given by 

)
ˆ

sgn(
1 λ

γλλ λ ∂

∂
+=

+

p
dd

C
kk

       (30) 

where 
kdλ is the current value of the desired tip-speed ratio 

set point and 
1+kdλ is the new value of the set point. A 

similar expression for the discretized blade pitch update is 
found to be 

)
ˆ

sgn(1 β
γββ β ∂

∂
+=+

p
kk

C
.                (31) 

The signum function is used to extract the sign information 
from the estimated gradient partial derivatives. The 
dynamics of actuating β have been neglected under the 
assumption that they are small compared to the stabilization 
of ω→ωd. The set point ωd is determined by rewriting (3) in 
terms of

1+kdλ as 
                                   (32) 
 

D. Implementation of Alternating Gradient Search 
The implementation of the update laws require them to be 

executed in an alternating fashion. Because Cp is a scalar 

.1

R
v
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λ

ω
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quantity, only one gradient component can be extracted at a 
time.  The gradient information is necessary for the 
extremum seeking control to properly compute the update 
laws. To extract the gradient information, a two-loop 
alternating method is used. In the first loop, the tip-speed 
ratio is updated while the blade pitch is held constant. When 
the loop executes a second time, λ is held constant and β is 
updated. In this manner, the estimated changes in Cp are 
known to be only as a consequence of the parameter which 
was varied in the previous step. 

E. Techniques for Reduction of Error Effects 
Two sources of uncertainty are present in the wind turbine 

system with this control method. One is inherent in the wind 
velocity measurement.  The other is the uncertainty in the 
estimation of the aerodynamic torque computed by the 
robust controller. To reduce the influence of these sources of 
uncertainty, two compensation techniques are developed. 
The first technique is a continuous gain weighting function 
which is applied to the update law gains of γλ and γβ. The 
second is an averaging method which uses previous data 
points to assist in computing the computation of the 
gradients of Cp with respect to λ and β.  Gradient estimate 
through finite difference can be influenced by noise and 
uncertain values.  The purpose of the gain weighting 
function is to reduce the influence of gradient value 
uncertainty on choosing new set points of λ and β.  As the 
peak of Cp is approached, uncertainty can contribute larger 
influences on the result because the gradient magnitude 
becomes small. Using a function of the form 

 

( ).5)4- ˆ*21tanh(-1.750= pCγ ,           (36) 
 

gains γλ and γβ are weighted as a function of Cp. 
The second compensation technique is an averaging filter 

applied to the values of the set points and estimates of Cp.  
The moving average retains the previous n values of Cp, λ, 
and β.  Figure 2 shows the manner in which these arrays are 
constructed through time. By averaging the data points 
before the partial derivatives of (26) and (27) are computed, 
both the effects of measurement noise and estimation error 
are reduced.  

 
Fig. 2: The left array is built for the averaging of blade pitch. The right arry 

is for the averaging of tip-speed ratio. 
  

IV. SIMULATION 
The proposed control method is modeled and simulated 

using MATLAB/Simulink. The parameters used in Table 2 
have been chosen to emulate a commercial scale wind 
turbine. The Cp plot, shown in Figure 1, is a graph of the 
coefficient of performance data used in this simulation [1]. 
The peak of value of Cp is 0.4735 at λ* = 7.8 and β* = -1º. 

The initial conditions of the simulation are the turbine 
starting from rest (which implies that λ = 0) and the blade 
pitch at 3º. The wind generator is initialized at 10 m/s. These 
conditions have intentionally been selected to be distant 
from the optimal values of λ* and β* to demonstrate the 
extremum seeking behavior of the control method. 

A Kaimal wind model generator is used from the Simulink 
Wind Blockset, [1], to create a realistic wind condition with 
a mean value of 10 m/s and a turbulence of 12%. The time 
history of the wind is shown in Fig. 3.  A zero mean, white 
noise is also generated and added to the wind velocity signal. 
The parameters used to generate this wind signal can be seen 
in Table 2. 

Fig. 4 shows the evolution of Cp as it approaches the 
optimal value. Fig. 5 shows τaero as a function of time.  Fig. 6 
shows a comparison of the power captured to the maximum 
possible power capture. 

 

 
Fig.3: Graph of the wind velocity produced by the Kaimal wind velocity 

generator. 
As shown in the simulation figures, the coefficient of 

performance is maximized and thus the power captured is 
maximized. Not only has the control method achieved stable 
control of the angular velocity, it has also been able to find 
the peak of the Cp curve with respect to tip-speed ratio and 
blade pitch. The controller has also maintained operation of 
the turbine at the peak value of Cp. 

 

 
Fig.4: Graph of the coefficient of performance shown in blue plotted in 
comparison with the optimal value shown in red. 

V. CONCLUSION AND FUTURE WORK 
A controller for achieving wind turbine peak power 

capture has been presented.  An advantage of the extremum 
seeking control is that it does not require the introduction of 
a dither signal for providing plant perturbations.  The 
simulation made use of available wind turbine aerodynamic 
data.  Two means of inhibiting numerical problems in the 
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gradient calculation of Cp were presented.  These techniques 
consisted of a weighting method where diminishing weights 
were applied as the gradient magnitude decreased and an 
averaging technique where previous values of tip speed 
ratio, blade pitch, and Cp were utilized to eliminate spikes 
and unpredictable behavior in the new set points for λ and β.  
The controller showed robust behavior in the presence of 
turbulent wind and wind speed sensor noise.  The proposed 
controller is attractive alternative to other ESC. 

 

 
Fig. 5: Graph of the performance of the robust controller estimation of the 
unknown nonlinear aerodynamic torque 

 
The wind turbine block set of [1] was used in the 

simulation and testing of the controller presented in this 
work.  The immediate next step of this investigation is to 
incorporate the turbine model of FAST in the analysis.  The 
challenge of doing this is that the dynamic model of FAST 
will change the assumed turbine dynamics and these 
dynamics must be incorporated into the control laws of the 
inner loop.  The turbine dynamics assumed so far in this 
development have allowed the non-dither controller 
concepts to be proved and demonstrated. 

 

 
Fig 6. Graph of the power captured by the wind turbine, shown in blue, 
compared to the maximum possible power capture. 
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TABLE 2 
WIND TURBINE SIMULATION PARAMETERS 

Symbol Quantity Value 

J Rotational Inertia 100,000  kg m2 
CD Damping Coefficient 1  kg m2/s 

R Swept Radius 40  m 
v(t) Wind Velocity 10  m/s (avg) 
w(t) Feedback Noise N(0, 0.05)  m/s 
λ0 Initial Tip-Speed Ratio 0.001  dimensionless 
β0 Initial Blade Pitch 3  degrees 

Wind turbine model parameters and initial conditions used in the 
simulation. 
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