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Abstract— Stability conditions of continuous-time switched
stochastic dynamical systems driven by a Brownian motion and
a Markov modulated compound Poisson process are provided.
The mode signal, which manages the transition between sub-
systems, is modeled as a Markov chain. The state variables
of the switched stochastic system are subject to jumps of
random size occurring at random instances. The intensity of the
occurrences, as well as the size of these jumps are modulated by
the mode signal. A comparison approach is employed to show
the almost sure asymptotic stability of the zero solution. Finally,
an illustrative numerical example is presented to demonstrate
the efficacy of our results.

I. INTRODUCTION

Many real life processes from finance, physics and engi-

neering fields are subject to noise and random environmental

variations. Stochastic hybrid systems extend deterministic

hybrid systems by including stochasticity in the dynamics

to describe these processes accurately. There has been in-

creasing amount of studies regarding the stability of various

classes of stochastic hybrid systems. Particularly, the sta-

bility of switched stochastic systems has attracted attention

and been explored in several studies [1]–[8]. In addition,

researchers have recently shown interest in the stability of

switched stochastic systems with state jumps [9]–[12].

In this paper, we explore stability conditions of switched

stochastic dynamical systems that incorporate several types

of random elements. First, the dynamics include Brownian

motion. Second, we model the mode signal as a Markov

chain. In addition to Brownian motion and the probabilistic

mode signal, the state of the dynamical system is subject

to jumps of random size occurring at random instances.

We model the occurrences and size of the state jumps by

employing a compound Poisson process modulated by the

mode signal. Specifically, the intensity of occurrences of

state jumps depends on the active mode. Moreover, the state

jump size, at a particular state jump instance, is modeled as

a random variable distributed by a cumulative distribution

function assigned for the active mode. As a result, the

distribution of state jump sizes and the intensity of the

occurrences of state jumps have different characteristics for

each mode. Stochastic models with probabilistic state jumps

can describe systems that face randomly occurring sharp

and sudden dynamical changes. We employ a comparison
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approach to derive sufficient conditions of stability. In the

literature, comparison approach has been used in several

studies to investigate conditions of existence/uniqueness [13],

and conditions of stability [4], [13], [14]. In our paper,

we derive almost sure asymptotic stability conditions by

analyzing a comparison system, which is another switched

stochastic dynamical system. The comparison system that we

analyze is special in the sense that state jumps occur exactly

at mode switching instances. We first investigate the stability

of this comparison system, then we use our results to obtain

stability conditions of switched stochastic systems driven by

the Brownian motion and the Markov modulated compound

Poisson process.

The paper is organized as follows. In Section II, the

notation used in the paper is explained; a review of Markov

chains, Markov modulated compound Poisson processes, and

the definition of almost sure asymptotic stability are given. In

Section III, we present the mathematical model of switched

stochastic dynamical systems driven by the Brownian mo-

tion and the Markov modulated compound Poisson process;

furthermore, we explain the comparison approach that we

use to obtain sufficient conditions of stability. We present a

numerical example in Section IV to demonstrate the utility

of the results. Finally, we conclude the paper in Section V.

II. MATHEMATICAL PRELIMINARIES

In this section we introduce notation, several definitions,

and some key results concerning stochastic dynamical sys-

tems that are necessary for developing the main results of

this paper. Specifically, R and R
+ respectively denote the

set of real numbers and positive real numbers, Rn denotes

the set of n × 1 real column vectors, R
n×m is the set of

n×m real matrices, N and N0 respectively denote positive

and nonnegative integers. ‖ · ‖ is the Euclidean vector norm.

Furthermore, we write (·)T for transpose and tr(·) for trace

of a matrix, In for the identity matrix of dimension n. A

function V : Rn → R is said to be positive definite if V (x) >
0, x 6= 0, V (0) = 0 and proper if lim‖x‖→∞ V (x) = ∞.

Finally, ∇V denotes the vector of the first order spatial

derivatives of a twice continuously differentiable scalar V ,

that is, ∇V =
[

∂V
∂x1

, ∂V
∂x2

, . . . , ∂V
∂xn

]

and ∇(∇V ) denotes the

matrix of the second-order spatial derivatives of V , that is,

∇(∇V ) =









∂2V
∂x1∂x1

· · · ∂2V
∂x1∂xn

...
. . .

...
∂2V

∂xn∂x1
· · · ∂2V

∂xn∂xn
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Fig. 1. Transition diagram of a 3-state Markov chain

Let (Ω,F ,P) be a probability space. A filtration {Ft}t≥0

on this probability space is a family of σ-algebras such that

Fs ⊂ Ft ⊂ F , 0 ≤ s < t.

A stochastic process {x(t)}t≥0 is adapted to the filtration

{Ft}t≥0 if the random variable xt : Ω → R
n is Ft-

measurable, that is,

{ω ∈ Ω : xt(ω) ∈ B} ∈ Ft

for all Borel sets B ⊂ R
n.

A. Markov Chains and Markov Modulated Compound Pois-

son Processes

A finite-state Markov chain is a piecewise-constant and

right-continuous stochastic process that takes values from a

finite set I , {1, 2, . . . ,M}. Mathematically, it is the col-

lection of I-valued, Ft-adapted random variables {r(t)}t≥0,

with r(0) = r0 ∈ I . It is characterized by a generator matrix

Q ∈ R
M×M , which determines the transition rates between

each pair of states i, j ∈ I such that

P[r(t+∆t) = j|r(t) = i] =

{

qi,j∆t+ o(∆t), i 6= j,

1 + qi,j∆t+ o(∆t), i = j,

where qi,j denotes the element on the ith row, jth column

of the matrix Q. Note that qi,j ≥ 0, i 6= j and qi,i =
−
∑

j 6=i qi,j , i ∈ I . A Markov chain can be represented by a

state transition diagram. For example, a 3-state Markov chain

is represented by a graph of 3 nodes as shown in Fig. 1. The

nodes in the figure represent the states of the Markov chain,

the arrowed edges represent a possible transition between

the states in the direction of the arrows, and the labels on

the edges indicate the transition rates between the paired

states. A Markov chain is called “irreducible” if it is possible

to reach from any state to another state with one or more

transitions. Thus, a Markov chain is irreducible if there exist

a directed path from each node to another node in the state

transition diagram. For example, the Markov chain presented

in Fig. 1 is irreducible provided qi,j , i, j ∈ {1, 2, 3}, are

nonzero. For all finite-state, irreducible Markov chains there

exists a unique stationary probability distribution π ∈ R
M

such that πTQ = 0, πi > 0, i ∈ I , and
∑

i∈I πi = 1 [15].

A Markov modulated compound Poisson process is a pure

jump stochastic process, mathematically defined as a collec-

tion of R-valued, Ft-adapted random variables {Z(t)}t≥0,

given by

Z(t) =

N(t)
∑

k=1

ξr(tk)(k),

for t ≥ 0 with initial condition Z(0) = 0, where {N(t)}t≥0

is a Markov modulated Poisson process that counts the

number of jumps that occur in the interval (0, t], {r(t) ∈

I , {1, 2, . . . ,M}}t≥0 is a finite-state Markov chain, and

{tk > 0, k ∈ N} is the sequence of jump time instances.

The intensity parameter of the Markov modulated Pois-

son process {N(t)}t≥0 is given by the piecewise constant

process {λr(t)}t≥0, where λi > 0, i ∈ I . The size of

the jump that occurs at time tk is given by the random

variable ξr(tk)(k) ∈ R which is distributed by the cumu-

lative distribution function Fr(tk)(ν) , P[ξr(tk)(k) ≤ ν].
Note that both jump sizes and the intensity of occurrences

of jumps depend on the Markov chain. The distribution

functions Fi, i ∈ I , can be purely continuous or purely

discrete functions; they can also be combinations of both.

Expectation of a function µ : R → R of ξr(tk)(k) is given by

E[µ(ξr(tk)(k))] ,
´∞

−∞
µ(ν)dFr(tk)(ν). The discrete random

process {ξr(tk)(k), k ∈ N} is independent of {N(t)}t≥0.

Furthermore, occurrences of jumps are independent of the

Markov chain {r(t)}t≥0. A Markov modulated compound

Poisson process has finite number of jumps in a finite time

interval, almost surely.

In this study, the mode signal, which manages the tran-

sition between subsystems (modes) of the switched system,

is modeled as a finite-state Markov chain. Additionally, we

assume that the state variable of the switched system is

subject to jumps which are modulated by the mode signal of

the switched system.

B. Almost Sure Asymptotic Stability

In our analysis we adopt almost sure asymptotic stability

notion. The zero solution x(t) ≡ 0 of a stochastic system is

asymptotically stable almost surely if

P{ω ∈ Ω : lim
t→∞

‖xt(ω)‖ = 0} = 1, (1)

for t ≥ 0 and x0(ω) = x0 ∈ R
n. This notion is also called

“asymptotic stability with probability one” [16].

III. STABILITY ANALYSIS FOR SWITCHED STOCHASTIC

DYNAMICAL SYSTEMS WITH STATE JUMPS

In this section we provide sufficient conditions for almost

sure asymptotic stability of switched stochastic dynamical

systems with state jumps. First, we give the mathemati-

cal model of a continuous-time multi-dimensional switched

stochastic system with state jumps where state jump inten-

sities and jump sizes are modulated by the mode signal of

the system.

A. Mathematical Model

Consider the switched stochastic dynamical system driven

by the Brownian motion and the Markov modulated com-

pound Poisson process given by

dx(t) = fr(t)(x(t))dt+Gr(t)(x(t))dW (t), t 6= tk, (2)

x(t) = ξr(t−)(k)Jr(t−)(x(t
−)), t = tk, k ∈ N, (3)

for t ≥ 0 with initial conditions x(0) = x0, r(0) = r0,

where {x(t)}t≥0 is the R
n-valued Ft-adapted state vector

and {W (t)}t≥0 is an R
l-valued Ft-adapted Wiener process.

The dynamical system described by (2), (3) is assumed to
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have M ≥ 1 number of subsystems (modes). The transition

between the modes is characterized by the piecewise constant

mode signal {r(t) ∈ I , {1, 2, . . . ,M}}t≥0, which is

assumed to be an irreducible Markov chain with generator

matrix Q ∈ R
M×M with a stationary probability distribution

π ∈ R
M . The continuous dynamics of the modes are

described by the vector- and the matrix-valued functions

fi : R
n → R

n and Gi : R
n → R

n×l with fi(0) = 0,

Gi(0) = 0, i ∈ I , respectively. The state of the system is

discontinuous at state jump instances, {tk > 0, k ∈ N}. At

these time instances, the state moves to a random point in the

state space according to the equation (3), where {ξr(t−
k
)(k) >

0, k ∈ N} is a discrete stochastic process composed of

R
+-valued random variables distributed by the cumulative

distribution functions Fr(tk)(ν) , P[ξr(tk)(k) ≤ ν]. The

cumulative distribution functions for all modes, Fi, i ∈ I

are assumed to have positive support, that is, there exist

θi > 0, i ∈ I such that P[ξi(k) < θi] = 0, i ∈ I, k ∈ N.

Furthermore, for the vector-valued functions Ji : R
n →

R
n, i ∈ I , we assume Ji(x(t)) = 0, only when x(t) = 0.

Hence, at state jump instances, non-zero states are not reset

to the origin, although the state size may decrease. The

occurrences of state jumps are governed by the Markov

modulated Poisson process {NJ(t) ∈ N0}t≥0 with the mode

dependent intensity {λr(t)}t≥0, where λi > 0 denotes the

intensity of occurrences of state jumps when ith mode is

active. Note that the distribution of state jump sizes and the

intensity of the occurrences of state jumps differ for each

mode.

We assume that the stochastic processes {NJ(t)}t≥0 and

{r(t)}t≥0 are independent of {W (t)}t≥0. Furthermore, the

stochastic processes {fi(x(t))}t≥0 and {Gi(x(t))}t≥0, i ∈ I

are assumed to be adapted to the filtration {Ft}t≥0 to ensure

that the Ito integrals with these terms are well defined. For

existence of a unique solution, it is assumed that all modes of

the switched system satisfy linear growth and local Lipschitz

continuity conditions.

B. Stability Analysis via a Comparison Approach

We will now show almost sure asymptotic stability of

the system (2), (3) by employing a comparison approach.

Specifically, we will obtain sufficient stability conditions for

the dynamical system (2), (3) by analyzing the stability of a

“comparison system”, which is another switched stochastic

dynamical system with state jumps. The comparison system

that we analyze is special in the sense that state jumps occur

exactly on mode switching instances.

Consider the comparison system,

dv(t) = f̄r̄(t)(v(t))dt+ Ḡr̄(t)(v(t))dW (t), t 6= τs, (4)

v(t) = ηr̄(t−), r̄(t)(s)J̄r̄(t−),r̄(t)(v(t
−)), t = τs, s ∈ N, (5)

for t ≥ 0, v(0) = v0, r̄(0) = r̄0, where {v(t) ∈ R
n}t≥0

is the state vector, {W (t) ∈ R
l}t≥0 is the Wiener process,

{r̄(t) ∈ Ī , {1, 2, . . . , M̄}}t≥0 is the mode signal which

is assumed to be an irreducible Markov chain with the

generator matrix Q̄ with a stationary probability distribution

π̄ ∈ R
M̄ . The mode signal r̄(t) randomly chooses a value

from the index set Ī at mode switching time instances,

{τs > 0, s ∈ N}. Additionally, at mode switching in-

stances, the state is subject to state jumps according to

the equation (5), where {ηr̄(τ−

s ),r̄(τs)
(s) > 0, s ∈ N} is a

discrete stochastic process composed of R
+-valued random

variables distributed by the cumulative distribution functions

F̄r̄(τ−

s ),r̄(τs)
(y) , P[ηr̄(τ−

s ),r̄(τs)
(s) ≤ y]. The cumulative

distribution functions F̄i,j , i, j ∈ Ī are assumed to have

positive support, that is, there exist θ̄i,j > 0, i, j ∈ Ī such

that P[ηi,j(s) < θ̄i,j ] = 0, i, j ∈ Ī , s ∈ N. Furthermore,

for the vector-valued functions J̄i,j : Rn → R
n, i, j ∈ Ī ,

we assume J̄i,j(v(t)) = 0, only when v(t) = 0. Note that

the state jumps occur exactly on mode switching instances,

and jump sizes depend on two modes: the mode right before

the switch (denoted by r̄(τ−s )), and the mode that becomes

active right after the switch (denoted by r̄(τs)).
The stability of the switched stochastic system with state

jumps that occur on mode switching instances given by

(4), (5) can be analyzed using a Lyapunov-like function

V̄ : R
n → R. In the statement of the following results,

let LiV̄ (v) , ∇V̄ (v)f̄i(v) +
1
2 tr

(

Ḡi(v)Ḡ
T
i (v)∇

(

∇V̄ (v)
))

,

i ∈ Ī .

Theorem 3.1: Consider the nonlinear stochastic switched

system (4), (5). If there exist a twice continuously differen-

tiable, positive definite, and proper function V̄ : Rn → R,

scalars ζ̄i ∈ R, ᾱi ≥ 0, β̄i ≥ 0, i ∈ Ī and positive definite

functions µ̄i,j : R → R, i, j ∈ Ī such that

LiV̄ (v) ≤ ζ̄iV̄ (v), i ∈ Ī , (6)

ᾱiV̄ (v) ≤ ‖∇V̄ (v)Ḡi(v)‖ ≤ β̄iV̄ (v), i ∈ Ī , (7)

V̄ (yJ̄i,j(v)) ≤ µ̄i,j(y)V̄ (v), i, j ∈ Ī , (8)

∑

i∈Ī

π̄i

(

∑

j 6=i

q̄i,j γ̄i,j + ζ̄i −
ᾱ2
i

2

)

< 0, (9)

where γ̄i,j ,
´∞

−∞
ln(y)dF̄i,j(y), i, j ∈ Ī , then the zero

solution v(t) ≡ 0 of the system (4), (5) is asymptotically

stable almost surely.

Proof: All subsystems of the switched system (4), (5)

are described by multi-dimensional Ito stochastic differential

equations. We can employ Ito formula to obtain

dV̄ (v(t)) = LiV̄ (v(t))dt+∇V̄ (v(t))Ḡi(v(t))dW (t), (10)

which determines the evolution of V̄ (v(t)), between conse-

quent switching instances, when the ith mode is active. Now

consider the function ln V̄ (v(t)), which is well-defined for

non-zero values of the state, since V̄ is a positive definite

function. We use Ito formula once again to compute

d ln V̄ (v(t)) =
1

V̄ (v(t))
LiV̄ (v(t))dt

−
1

2V̄ 2(v(t))
‖∇V̄ (v(t))Ḡi(v(t))‖

2dt

+
1

V̄ (v(t))
∇V̄ (v(t))Ḡi(v(t))dW (t). (11)

During the time interval [τ0, τ1) where τ0 = 0 and τ1
denotes the first mode switching instance, the system evolves
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according to the dynamics of the mode r̄0. We integrate (11)

over this time interval to obtain

ln V̄ (v(τ−1 ))

= ln V̄ (v(0)) +

ˆ τ1

0

1

V̄ (v(τ))
Lr̄(τ)V̄ (v(τ))dτ

−

ˆ τ1

0

1

2V̄ 2(v(τ))
‖∇V̄ (v(τ))Ḡr̄(τ)(v(τ))‖

2dτ

+

ˆ τ1

0

1

V̄ (v(τ))
∇V̄ (v(τ))Ḡr̄(τ)(v(τ))dW (τ), (12)

By (6) and (7), it follows that

ln V̄ (v(τ−1 ))

≤ ln V̄ (v(0)) +

ˆ τ1

0

(ζ̄r̄(τ) −
ᾱ2
r̄(τ)

2
)dτ

+

ˆ τ1

0

1

V̄ (v(τ))
∇V̄ (v(τ))Ḡr̄(τ)(v(τ))dW (τ). (13)

At mode switching instance τ1, the state is subject to a jump

according to equation (5). By using (8), we obtain

ln V̄ (v(τ1))

= ln V̄
(

ηr̄(τ0),r̄(τ1)(1)J̄r̄(τ0),r̄(τ1)(v(τ
−
1 ))

)

≤ ln µ̄(ηr̄(τ0),r̄(τ1)(1))V̄ (v(τ−1 ))

= ln µ̄(ηr̄(τ0),r̄(τ1)(1)) + ln V̄ (v(τ−1 ))

≤ ln µ̄(ηr̄(τ0),r̄(τ1)(1)) + ln V̄ (v(0))

+

ˆ τ1

0

(ζ̄r̄(τ) −
ᾱ2
r̄(τ)

2
)dτ

+

ˆ τ1

0

1

V̄ (v(τ))
∇V̄ (v(τ))Ḡr̄(τ)(v(τ))dW (τ). (14)

We repeat the calculations until arbitrary time t and use (6),

(7), (8) to obtain

ln V̄ (v(t))

≤ ln V̄ (v(0)) +

N̄S(t)
∑

s=1

ln µ̄(ηr̄(τs−1),r̄(τs)(s))

+

ˆ t

0

ζ̄r̄(τ) −
ᾱ2
r̄(τ)

2
dτ

+

ˆ t

0

1

V̄ (v(τ))
∇V̄ (v(τ))Ḡr̄(τ)(v(τ))dW (τ) (15)

where N̄S(t) denotes the total number of mode switches in

the time interval (0, t]. By the strong law of large numbers

for irreducible Markov chains [15], [17] we have

lim
t→∞

1

t

N̄S(t)
∑

s=1

ln µ̄(ηr̄(τs−1),r̄(τs)(s))

=
∑

i∈Ī

π̄i

∑

j 6=i

q̄i,j γ̄i,j , (16)

where γ̄i,j =
´∞

−∞
lnµi,j(y)dF̄i,j(y), i, j ∈ Ī , and

lim
t→∞

1

t

ˆ t

0

ζ̄r̄(τ) −
ᾱ2
r̄(τ)

2
dτ =

∑

i∈Ī

π̄i(ζ̄i −
ᾱ2
i

2
), (17)

almost surely. Furthermore, the Ito integral in inequality (15),

L(t) =

ˆ t

0

1

V̄ (v(τ))
∇V̄ (v(τ))Ḡr̄(τ)(v(τ))dW (τ) (18)

is a local martingale with quadratic variation

[L]t =

ˆ t

0

‖
1

V̄ (v(τ))
∇V̄ (v(τ))Ḡr̄(τ)(v(τ))‖

2dτ

≤

ˆ t

0

max
i∈Ī

β̄idτ = max
i∈Ī

β̄it. (19)

Consequently, limt→∞
1
t
[L]t < ∞. Thus, by using the same

approach presented in [2], [6], we can employ the strong law

of large numbers for local martingales [16] to show

lim
t→∞

1

t
L(t) = 0, (20)

almost surely. Moreover, it follows from (15)–(17), and (20)

that

lim
t→∞

1

t
ln V̄ (v(t)) ≤

∑

i∈Ī

π̄i

(

∑

j 6=i

q̄i,j γ̄i,j + ζ̄i −
ᾱ2
i

2

)

. (21)

Finally, by (9),

P[ lim
t→∞

V̄ (v(t)) = 0] = 1, (22)

which implies almost sure asymptotic stability of the zero

solution.

We will now show that the switched system (2), (3) can

be expressed as the comparison system given by (4), (5).

For the switched stochastic dynamical system (2), (3), the

state jumps and mode switchings occur independently. As a

consequence, it can be shown that a state jump and a mode

switching do not occur at the same time, with probability

one. We introduce the comparison system as a new switched

system of M̄ = 2M modes, where the first M modes and

the second M modes share the same dynamics. Specifically,

ith and (i +M)th mode of this comparison system has the

dynamics of ith mode of the system (2), (3). This comparison

system is also subject to state jumps, which only occur at

mode switching instances.

The transition between the modes of this comparison

system can be represented by a special graph structure of

2M nodes. In this graph structure, the nodes are placed

in two layers. The nodes in the first layer are numbered

as {1, 2, . . . ,M}, and we number the nodes in the second

layer as {M + 1, . . . , 2M}. Mode switchings within the

layers of the comparison system (4), (5) correspond to mode

switchings in the original system (2), (3), on the other

hand, mode switchings between layers in the comparison

system correspond to state jumps in the original system. For

example, consider the switched stochastic dynamical system

(2), (3) with M = 3 modes. The transition rates between

each mode of the system are shown on the graph presented

in Fig. 1. The nodes of this graph represent the modes

of the system, and the arrowed edges represent possible

transitions between these modes. The transition diagram for

the comparison system of this example is shown in the graph

presented in Fig. 2. In this graph, an edge that connects a
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Fig. 2. Transition diagram of a Markov chain of 6 states with a special
structure

node in the first layer to a node in the second layer indicates

a state jump in the system (2), (3). Specifically, the edges

between ith node and (i+M)th node represent a state jump

while the ith mode of the system (2), (3) is active. Since

ith and (i + M)th mode share the same dynamics in the

comparison system, a transition between these modes does

not mean a change in the dynamics of the original system. In

addition, the edges between the nodes of the first layer and

the edges between the nodes of the second layer represent

mode transitions of the system (2), (3).

We now state our main result for the almost sure asymp-

totic stability of the switched stochastic dynamical system

with state jumps (2), (3) based on the stability analysis for

the comparison system (4), (5) stated in Theorem 3.1.

Theorem 3.2: Consider the nonlinear stochastic switched

system with state jumps (2), (3). If there exist a twice contin-

uously differentiable, positive definite, and proper function

V : Rn → R, scalars ζi ∈ R, αi ≥ 0, βi ≥ 0, i ∈ I and

positive definite functions µi : R → R, i ∈ I such that

LiV (x) ≤ ζiV (x), i ∈ I, (23)

αiV (x) ≤ ‖∇V (x)Gi(x)‖ ≤ βiV (x), i ∈ I, (24)

V (νJi(x)) ≤ µi(ν)V (x), i ∈ I, (25)

∑

i∈I

πi

(

λiγi + ζi −
α2
i

2

)

< 0, (26)

where γi ,
´∞

−∞
lnµi(ν)dFi(ν), i ∈ I , then the zero

solution x(t) ≡ 0 of the system (2), (3) is asymptotically

stable almost surely.

Proof: Consider the Markov modulated Poisson process

{NJ(t) ∈ N}t≥0, which counts the number of state jumps

in the time interval (0, t]. We define the piecewise-constant

stochastic process {YJ(t)}t≥0 based on {NJ(t) ∈ N}t≥0 as

YJ(t) ,

{

1, NJ(t) = 2k, k ∈ N0,

2, NJ(t) = 2k + 1, k ∈ N0.
(27)

Clearly, {YJ(t)}t≥0 takes values from the finite

set {1, 2}, and YJ(0) = 1. Now consider the

bivariate process {r̃(t)}t≥0 , {(YJ(t), r(t))}t≥0,

which is a Markov chain with 2M states given by

{(1, 1), (1, 2), . . . , (1,M), (2, 1), (2, 2), . . . , (2,M)}. We

enumerate the states in this order as {1, 2, . . . , 2M}. The

generator of the Markov chain {r̃(t)}t≥0 is given by

Q̃ =

[

Q− Λ Λ
Λ Q− Λ

]

, (28)

where Λ ∈ R
M×M is the diagonal matrix with the diagonal

elements λ1, λ2, . . . , λM . The Markov chain {r̃(t)}t≥0 is

irreducible, and has the stationary probability distributions

π̃i = π̃i+M = 1
2πi, i ∈ I .

Consider the comparison system (4), (5) for t ≥ 0 with

initial conditions v(0) = x(0) = x0, r̄(0) = r̃(0), where

r̄(t) = r̃(t), f̄i = f̄i+M = fi, Ḡi = Ḡi+M = Gi, i ∈ I ,

J̄i,j(x) =



















x, i, j ∈ {1, 2, . . . ,M},

x, i, j ∈ {M + 1,M + 2, . . . , 2M},

Ji(x), j = i+M, i ∈ {1, 2, . . . ,M},

Jj(x), i = j +M, j ∈ {1, 2, . . . ,M},

and

F̄i,j(y) =



















´ y

−∞
δ(τ − 1)dτ, i, j ∈ {1, 2, . . . ,M},

´ y

−∞
δ(τ − 1)dτ, i, j ∈ {M + 1, . . . , 2M},

Fi(y), j = i+M, i ∈ {1, 2, . . . ,M},

Fj(y), i = j +M, j ∈ {1, 2, . . . ,M},

where δ(·) denotes Dirac’s delta function. The state variable

of the comparison system (4), (5), is equal to the state

variable of the original system (2), (3), that is, v(t) = x(t),
t ≥ 0, almost surely. Consequently, almost sure asymptotic

stability of the zero solution of the comparison system (4),

(5) implies almost sure asymptotic stability of the zero

solution of the original system (2), (3). Thus, the result

follows from Theorem 3.1 with V̄ = V , ζ̄i = ζ̄i+M = ζi,

ᾱi = ᾱi+M = αi, β̄i = β̄i+M = βi, i ∈ I , and

µ̄i,j(y) =



















‖y‖, i, j ∈ {1, 2, . . . ,M},

‖y‖, i, j ∈ {M + 1, . . . , 2M},

µi(y), j = i+M, i ∈ {1, 2, . . . ,M},

µj(y), i = j +M, j ∈ {1, 2, . . . ,M}.

We have obtained the stability conditions (23)–(26) for the

system (2), (3), by adapting the stability conditions for the

comparison system (4), (5).

IV. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section, we present a numerical example to demon-

strate the effectiveness of our results. Consider the 2-

dimensional switched stochastic dynamical system (2), (3)

with M = 3 modes characterized by the functions

f1(x) =

[

x1 + x1 sin
2 x2

x2 sin
2 x1 + x2

]

, G1(x) =

[

0.5x1

0.5x2

]

,

f2(x) =

[

sin(x1) cos(x2)x1

x2

]

, G2(x) =

[

0.7x1

0.5x2

]

,

f3(x) =

[

−2x1 + x2 sin
2(x1)

−x1 sin
2(x1)− 2x2

]

, G3(x) =

[

x1

x2

]

,

and J1(x) = [2x1, 3x2]
T, J2(x) = [0.5x1, 0.5x2]

T,

J3(x) = [x1, x2]
T. The mode signal {r(t) ∈ I ,

{1, 2, 3}}t≥0 of the system is assumed to be a 3-state Markov
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Fig. 3. State trajectory versus time

chain with equal mode transition probabilities. The generator

matrix is given by,

Q =





−0.5 0.25 0.25
0.25 −0.5 0.25
0.25 0.25 −0.5



 .

The stationary probability distributions for this Markov chain

are πi = 1
3 , i ∈ I . The switched stochastic system is

driven by a 1-dimensional Brownian motion and a Markov

modulated compound Poisson process with intensities λ1 =
1, λ2 = 4, λ3 = 2. For any state jump instance tk, the

distributions for the state jumps are assumed to be given by

the discrete distributions,

P[ξ1(k) = 0.5] = 0.5, P[ξ1(k) = 1] = 0.5,

P[ξ2(k) = 0.5] = 0.5, P[ξ2(k) = 1] = 0.5,

P[ξ3(k) = 1] = 1.

Note that the positive-definite function V (x) = 1
2x

2
1 +

1
2x

2
2, the scalars α1 = β1 = 1, α2 = 1, β2 = 2, α3 =

β3 = 2, ζ1 = 5, ζ2 = 2, ζ3 = −1, and the positive-definite

functions µ1(ν) = 9ν2, µ2(ν) = 1
2ν

2, µ3(ν) = ν2 satisfy

the conditions (23)–(26). As a consequence, it follows from

Theorem 3.2 that the zero solution x(t) ≡ 0 of the system

(2), (3) is asymptotically stable almost surely.

With initial conditions x(0) = [1, 1]T and r(0) = 1, we

obtain sample paths of x(t) and r(t), which we present in

Fig. 3 and Fig. 4 respectively.

V. CONCLUSION

The stability of continuous-time switched stochastic

dynamical systems driven by Brownian motion and Markov

modulated compound Poisson process has been investigated

by employing a comparison approach. Specifically, we first

analyzed the stability of a “comparison system”, which is

another switched stochastic dynamical system with state

0 1 2 3 4 5 6 7

1

2

3

Fig. 4. Mode signal versus time

jumps. The comparison system is special in the sense

that the state jumps only occur exactly at mode switching

instances. We have shown that the system at hand can

be expressed as the comparison system. Furthermore, by

analyzing the stability of this comparison system, we

obtained sufficient conditions of almost sure asymptotic

stability.
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