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Abstract— In this paper, we consider a surveillance problem,
where a number of mobile nodes are tasked with surveying
an area for the possible presence of stationary targets and
reporting their findings back to a fixed base station, in the pres-
ence of realistic fading communication channels. We develop
a mathematical framework for robust communication-aware
surveillance, in order to survey the environment efficiently
while maximizing the probability of connectivity of the nodes
to the base station at all the time. More specifically, we show
how to design local motion planning strategies that properly
integrate both sensing and communication goals. By using
Chernoff bound on the probability of detection error, we prove
that the motion planning objective can be separated into a
sensing function that maximizes the Kullback-Leibler (KL)
divergence between the maximum uncertainty state and the
current one, and a communication function, that maximizes
the probability of being connected. The resulting motion
trajectories provide the right balance between sensing and
communication objectives and demonstrate interesting trade-
offs. Our simulation results then show the performance of our
proposed communication-aware surveillance framework.

I. INTRODUCTION

Over the past few years, considerable progress has been

made in the area of mobile wireless sensor networks

(MWSNs). Applications include environment surveillance,

structure monitoring, active coverage, oceanographic sam-

pling and military reconnaissance [1]–[4]. Communication

plays a key role in the overall performance of a MWSN

as the nodes rely on receiving information from others in

order to achieve their task. Due to the already existing

complexity of control of robotic networks, however, it is

common to assume ideal or over-simplified communication

links. Such simplified models may not suffice for ensuring

robust group operation and maintaining the connectivity of a

MWSN. This necessitates considering realistic link models

and devising an integrative approach to communication and

motion planning, in order to take into account channel

variations when planning the motion.

More recently, a number of papers have started to highlight

the importance of considering realistic communication links

in cooperative control scenarios [5]–[7]. In our previous

work in [5], [6], we considered tracking and maintaining

a fixed distance to a moving vehicle by communicating over

realistic communication links, showing the importance of

considering both communication and navigation objectives.
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In this paper, we extend our previous work and study a multi-

robot surveillance problem using a MWSN. We consider a

number of mobile sensors that are tasked with surveying an

area, for the possible presence of targets, and reporting their

findings back to a fixed base station, by communicating over

realistic communication channels that experience path loss,

shadow fading and multipath fading.

In the communication literature, surveillance networks

have been mainly considered with an emphasis on coop-

erative signal processing considering fading channels [8]–

[10], but without considering motion optimization and nav-

igation. On the other hand, the robotics/control community

has looked at robotic surveillance problems, mainly from

the perspective of navigation/control of motion, emphasizing

sensing objectives [3], [11]–[13]. In this paper, we develop a

framework for communication-aware surveillance in realistic

communication environments, where each node considers

the impact of its motion decisions on both its sensing and

communication qualities and optimizes its trajectory accord-

ingly. This is a challenging task and requires 1) assessing

wireless link qualities at places that are not yet visited

by the robots and 2) proper integration of communication

and sensing goals such that each robot chooses a trajectory

that provides the best balance between communication and

sensing, considering imperfect wireless links. In our previous

work in [5], [14], we proposed a probabilistic framework

for online channel assessment, based on a small number

of a priori wireless measurements. In this paper, we in-

tegrate that framework with motion planning and propose

a communication-aware surveillance strategy that enables

each node to explore the area the best possible (in order

to minimize the overall probability of detection error at

the base station), while maximizing the probability of its

connectivity to the base station. We prove that the overall

motion optimization problem, in this case, can be separated

into a sensing function that maximizes the Kullback-Leibler

(KL) divergence [15] between the maximum uncertainty state

and the current one, and a communication function that

maximizes the probability of being connected.

The rest of the paper is organized as follows. In Section

II, we describe our system model and briefly summarize the

probabilistic multi-scale modeling of a channel. In Section

III, we mathematically characterize target detection quality

of both mobile nodes and the base station. We then propose

communication-aware navigation strategies and explore the

underlying tradeoffs in Section IV. We present our simulation

results in Section V, followed by conclusions in Section VI.
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II. PROBLEM FORMULATION

Consider a scenario where a remote fixed station (to which

we refer as a base station) needs to survey a workspace

W ⊂ R
2 for the possible presence of a number of fixed

targets (the total number of targets is assumed unknown).

The targets, for instance, could be mines that are hidden over

a field. The base station uses a team of n mobile robots,

which are tasked to survey the workspace and report the

locations of the targets. The robots are equipped with sensors,

which are able to sweep circular regions around them for

the possible presence of targets. The outputs of the local

sensors, however, are not perfect and the quality of sensing

at a specific position is degraded as its distance to a sensor

becomes larger. Each node uses a (local) detection algorithm

to fuse its overall gathered data, at any time, and build a

discrete binary map for the presence of the targets in the

environment, where one (zero) at any position indicates the

presence (absence) of the target at that position. The nodes

then send their updated binary maps to the base station,

which fuses its received data and builds a more precise binary

map of the targets.1

Without loss of generality, we assume a discretized grid-

like workspace that consists of a number of cells. Any

position q ∈ W then refers to the position of a cell in the

discretized workspace. We furthermore assume that the cells

are small enough such that there exists at most one target

at any cell. The communication links between the nodes

and the base station are assumed realistic wireless channels.

The dynamics of the links affect the reception of the base

station (and as a direct result the performance of the fusion

algorithm) in two ways:

• The base station may drop a received packet in case of

poor reception.

• The packets that are kept may not be fully error-free

due to fading and receiver thermal noise.

Then, the overall goal is for the base station to have the

most reliable map of the targets at any time, which requires

connectivity maintenance. Fig. 1 shows a schematic of the

considered surveillance scenario.

The trajectories of the robots affect both their sensing qual-

ities and received Signal-to-Noise Ratios (SNRs) at the base

station, impacting the overall detection quality of the base

station. In this paper, we propose a novel communication-

aware navigation framework that aims to minimize the

overall uncertainty at the base station, while maximizing the

probability of being connected. We furthermore show that

the optimum trajectories are the ones that provide the right

balance between sensing and communication of the robots,

given system constraints.

A. Sensing and Dynamical Models of Mobile Sensors

Let H0 and H1 denote two hypothesis corresponding to

the absence and presence of a target at position q ∈ W . The

1Note that in many applications, the nodes can not afford to send their
raw measurements to the base station due to constraints on the available
resources such as power and bandwidth [9], [10]. Thus, we assume that the
robots communicate their updated binary maps.

mobile node
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Fig. 1. A schematic of the surveillance scenario considered in this
paper. The nodes are not connected to the base station in the black
areas, i.e. the received SNR in the black areas is below an acceptable
threshold.

observation of the ith node is then given as follows:

H0 : yi,k(q) = vi,k(q)

H1 : yi,k(q) = A + vi,k(q), (1)

where yi,k(q) ∈ R is the observation of the ith node at

position q ∈ W and at time instant k ≥ 1, A > 0 is

a positive constant and vi,k(q) ∈ R is a zero-mean white

Gaussian noise representing the effect of sensing error. The

variance of vi,k(q) is given by σ2
i,k(q) = Ψi

(
‖qi,k − q‖

)
,

where qi,k is the position of the ith node at time instant

k ≥ 1, ‖.‖ represents the Euclidean norm and Ψi(.) is a

positive function [11], [12]. To keep our analysis general,

we do not make any assumption on the form of Ψi(.) other

than the fact that Ψi(d) is positive and an increasing function

of its argument. Each node also has a limited sensing range,

such that any target located outside this range simply can

not be sensed. Let Si,k =
{
q ∈ W | ‖qi,k − q‖ < di,sen

}

denote the sensing region of the ith node at time instant

k ≥ 1, with di,sen representing its sensing radius. Then, we

have Ψi

(
‖qi,k − q‖

)
→ ∞ for q ∈ W \ Si,k. As for the

dynamics of the robots, we consider the following general

discrete-time form qi,k+1 = Φi

(
qi,k, xi,k

)
, where Φi(.) is a

smooth function, xi,k ∈ Xi is the motion control input of

the ith node at time instant k ≥ 1 and Xi is the set of the

admissible control inputs of the ith node. Then, finding the

optimum trajectories of the nodes translates to finding the

optimum set of motion control inputs.

B. Probabilistic Characterization of Communication Chan-

nels

Consider a discretized workspace. Each robot constantly

updates its decision over this grid and transmits its updated

binary decision map to the base station. Consider the case

where (0, 1) is modulated to (−1, 1) at the transmitter.

Because of fading, the base station receives a corrupted

version of the transmitted decision, given by

zi,k(q) =
√

Pi,k ui,k(q) + wi,k, (2)
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where ui,k(q) ∈ {−1, 1} is the modulated binary decision of

the ith node at time instant k ≥ 1, regarding the presence of a

target at position q, and Pi,k > 0 is the instantaneous channel

power in the transmission from the ith node to the base station

at time instant k ≥ 1, which is space-varying. Moreover, wi,k

is a zero-mean Gaussian noise with the variance σ2
th, which

represents the receiver thermal noise.

As shown in the communication literature [16], Pi,k can be

modeled as a multi-scale system with three major dynamics:

multipath fading, shadow fading and path loss. Let P (q)
denote the channel power in the transmission from a node at

q ∈ W to the base station, such that Pi,k = P (qi,k). We then

have the following characterization for P (q) (in dB), using

a 2D non-stationary random field model [5], [16]: PdB(q) =
KdB − 10 nPL log10

(
‖q − qb‖

)
+ PSH(q) + PMP(q), where

PdB(q) = 10 log10

(
P (q)

)
, qb is the position of the base

station, KdB and nPL are path loss parameters and PSH(q)
and PMP(q) are random variables representing the effects

of shadow fading and multipath fading in dB respectively.

As an example, Fig. 2 shows the received signal power

(which is proportional to channel power) across a route in

the basement of ECE building at UNM [17], where the

three main dynamics are marked. It can be seen that in
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Fig. 2. Underlying dynamics of the wireless channel across a route
in the basement of the ECE building [17]. d is the distance to the
transmitter.

a realistic communication setting, the spatial variations of

the channel can make connectivity maintenance and robust

operation challenging.

III. MULTI-ROBOT SURVEILLANCE USING MOBILE

SENSOR NETWORKS

In order to find proper communication-aware motion deci-

sions, in this section we derive expressions for the detection

performance of a robot and the base station, as a function of

channel and sensing qualities. The results are then used in the

next section, when devising a framework for communication-

aware surveillance.

A. Sequential Detection at Mobile Nodes

Let 0 ≤ π0(q) ≤ 1 denote the prior probability that

a target exists at position q ∈ W , in the absence of

any observation. Assuming i.i.d observations, we have the

following Likelihood Ratio (LR) at the ith node, given all its

observations up to time instant k ≥ 1 and for any q ∈ W :

Li,k(q) =
∏k

ℓ=1 Li,ℓ(q), where

Li,ℓ(q) = exp

(
2Ayi,ℓ(q) − A2

2 σ2
i,ℓ(q)

)
. (3)

The optimum decision regarding the presence (or absence)

of a target at position q ∈ W can then be made as follows:

Li,k(q)
H1

≷
H0

1−π0(q)
π0(q)

. It can be easily confirmed that this is

equivalent to the following sequential detection:

Li,k(q)
H1

≷
H0

1 − πi,k−1(q)

πi,k−1(q)
. (4)

In this equation, πi,k(q) is the updated posterior of the ith

node using its observations up to (and including) time instant

k ≥ 1 and is given by the following recursion:

πi,k(q) =
πi,k−1(q) Li,k(q)

πi,k−1(q) Li,k(q) + 1 − πi,k−1(q)
, (5)

where we set πi,0(q) = π0(q) for all i. Note that if position

q is out of the sensing range of node i at time instant ℓ, then

Li,ℓ(q) = 1, which does not impact the overall detection.

Similarly, if q has not been sensed by node i for all the time

instants ℓ ≤ k, then Li,k(q) = 1. In this case, the decision

regarding the presence of a target is made solely based on

the value of the initial prior, i.e. a target will be reported if

π0(q) > 0.5. It should be noted that node i only needs to

update its decision at time k ≥ 1, regarding the presence of

a target at position q ∈ W , if q ∈ Si,k.

1) Analysis of the Performance at Mobile Nodes: Let

Ii,k(q) ,
{
1 ≤ ℓ ≤ k

∣∣ q ∈ Si,ℓ

}
denote the set of time

instants, up to and including time k, when q ∈ W has been

visited by the ith node. The local hypothesis testing of the

ith node is then equivalent to

∑

ℓ∈Ii,k(q)

Ayi,ℓ(q)

σ2
i,ℓ(q)

H1

≷
H0

log
[1 − π0(q)

π0(q)

]
+

∑

ℓ∈Ii,k(q)

A2

2σ2
i,ℓ(q)

.

(6)

Let πd,i,k(q) and πf,i,k(q) denote the corresponding detec-

tion and false-alarm probabilities respectively: πd,i,k(q) =

Prob
{
Li,k(q) > 1−π0(q)

π0(q)

∣∣∣ H1

}
and πf,i,k(q) =

Prob
{
Li,k(q) > 1−π0(q)

π0(q)

∣∣∣H0

}
. The following can be easily

confirmed:

πd,i,k(q) = Q

(
log
[ 1−π0(q)

π0(q)

]
− 1

2

∑
ℓ∈Ii,k(q) A2/σ2

i,ℓ(q)√∑
ℓ∈Ii,k(q) A2/σ2

i,ℓ(q)

)
,

πf,i,k(q) = Q

(
log
[1−π0(q)

π0(q)

]
+ 1

2

∑
ℓ∈Ii,k(q) A2/σ2

i,ℓ(q)√∑
ℓ∈Ii,k(q) A2/σ2

i,ℓ(q)

)
,

(7)

where Q(α) = 1√
2π

∫∞
α e−τ2/2dτ . The error probability can

then be calculated as

πe,i,k(q) = π0(q)
(
1 − πd,i,k(q)

)
+
(
1 − π0(q)

)
πf,i,k(q).

(8)
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Note that, for the special case of Ii,k(q) = ∅, we obtain

πe,i,k(q) = min
{
π0(q), 1 − π0(q)

}
.2

B. Optimal Detection at the Base Station

Let SNRi,k represent the instantaneous received SNR in

the transmission from the ith node to the base station at

time k: SNRi,k = Pi,k/σ2
th. The base station will drop

any received decision with the received SNR below a pre-

defined threshold, denoted by SNRTH. Define the binary

variable λi,k as follows: λi,k ,

{
1 SNRi,k > SNRTH

0 otherwise
.

Let κi,k denote the last time instant that node i was connected

to the base station, up to (and including) time k ≥ 1:

κi,k = max
{
{0}∪ {1 ≤ ℓ ≤ k |λi,ℓ = 1}

}
. Note that since

k ≥ 1, we define κi,k = 0 to indicate the case that the ith

node has not been yet connected to the base station up to time

k ≥ 1, i.e. λi,ℓ = 0 for ℓ = 1, · · · , k. At any time instant, the

base station fuses the last received decisions of all the robots

(if available), regarding the presence of a target at position

q ∈ W . Assuming independent received observations from

the nodes, we then have the following LR at the base

station and at time k ≥ 1: Lb,k(q) =
∏n

i=1 Lb,i,κi,k
(q) and

hypothesis testing: Lb,k(q)
H1

≷
H0

1−π0(q)
π0(q)

. Here, Lb,i,κi,k
(q) is

the LR corresponding to the last received observation from

the ith robot and can be easily shown to be:

Lb,i,ℓ(q) =
πd,i,ℓ(q) exp

(
2hi,ℓ zi,ℓ(q)

σ2
th

)
+ 1 − πd,i,ℓ(q)

πf,i,ℓ(q) exp
(

2hi,ℓ zi,ℓ(q)

σ2
th

)
+ 1 − πf,i,ℓ(q)

,

(9)

for ℓ ≥ 1, where hi,ℓ =
√

Pi,ℓ. Note that in case q ∈ W
has not been visited by the ith node up to the last time it

was connected to the base station, i.e. q ∈ W \
⋃κi,k

ℓ=1 Si,ℓ

for κi,k ≥ 1, then Lb,i,κi,k
(q) = 1. We, furthermore, define

Lb,i,0(q) , 1 and the expression for Lb,k(q) holds if κi,k = 0
for any i.

C. Mathematical Characterization of the Performance at the

Base Station considering both Sensing and Communication

Goals

The trajectories of the nodes affect both their sensing

(target detection) and communication qualities. In order

to optimize the motion planning accordingly, we need to

mathematically characterize the impact of both on the prob-

ability of error at the base station. Finding a closed-form

expression for the probability of error at the base station,

however, is considerably challenging in general. We thus

propose to use the Chernoff bound [15], which is typically

a tight upper bound on the probability of error, in order

to mathematically characterize the performance at the base

station. This derivation will then serve as the foundation for

devising communication-aware navigation strategies in the

next section.

2Throughout this paper, we traditionally assume that if I = ∅, then 1)∏
i∈I

αi = 1, 2)
∑

i∈I
αi = 0 and 3)

⋃
i∈I

Ni = ∅, where αi ∈ R and
Ni denotes an arbitrary set.

1) Chernoff Bound On the Probability of Error at the Base

Station: Let Ik(q) ,
{
1 ≤ i ≤ n

∣∣q ∈
⋃κi,k

ℓ=1 Si,ℓ∧κi,k ≥ 1
}

denote the set of the nodes that have been connected to the

base station at least once up to time k ≥ 1 and visited q ∈ W
at least once before their last connection to the base station.

Based on the previous discussion, for any position q ∈ W ,

only the nodes in Ik(q) need to be considered for data fusion:

Lb,k(q) =
∏

i∈Ik(q) Lb,i,κi,k
(q). Then, after a few lines of

derivations, we can show that the Chernoff bound on the

probability of detection error at the base station is given by

πe,b,k(q) ≤ inf
0<s<1

πs
0(q)

(
1 − π0(q)

)1−s
(10)

×
∏

i∈Ik(q)

Λ
(
hi,κi,k

, σth, πd,i,κi,k
(q), πf,i,κi,k

(q), s
)

︸ ︷︷ ︸
, π̃e,b,k(q, s)

,

where πe,b,k(q) is the exact probability of detection at the

base station, hi,κi,k
=
√

Pi,κi,k
and Λ

(
h, σ, πd, πf , s

)
=

1√
2πσ

∫∞
−∞ e−

(z+h)2

2σ2

[
πde

2zh

σ2 + (1 − πd)
]s[

πfe
2zh

σ2 + (1 −

πf )
]1−s

dz, for 0 < s < 1.

Consider the case where SNRTH ≫
supi,k,q max

{
1, log

(
1/πf,i,k(q)

)
, log

(
1/
(
1 − πd,i,k(q)

))}
.

This assumption can be thought of as requiring that

the communication quality be better than the sensing

quality (when a node can get connected). Under this

assumption, Λ
(
h, σ, πd, πf , s

)
can be approximated as

follows: Λ
(
h, σ, πd, πf , s

)
≈ πs

dπ
1−s
f +(1−πd)

s(1−πf )1−s,

which results in the following:

π̃e,b,k(q, s) ≈
∏

i∈Ik(q)

[
πs

d,i,κi,k
(q)π1−s

f,i,κi,k
(q) (11)

+
(
1 − πd,i,κi,k

(q)
)s(

1 − πf,i,κi,k
(q)
)1−s

]
.

As for the exponent s, it is common to use s = 0.5 instead

of solving an optimization problem to find the optimal s.

Case of s = 0.5 is referred to as Bhattacharyya bound [15].

Note that in case Ik(q) = ∅, we have Lb,k(q) = 1. Then, the

base station reports presence of a target at q if π0(q) > 0.5
and reports otherwise if π0(q) < 0.5. Furthermore, in this

case πe,b,k(q) = min
{
π0(q), 1 − π0(q)

}
, which is equal to

its Chernoff bound.

IV. PLANNING STRATEGIES FOR MINIMIZING THE

DETECTION ERROR PROBABILITY AT THE BASE STATION

In this section, we propose a communication-aware navi-

gation strategy that aims to minimize the overall probability

of detection error at the base station while maximizing the

probability that the robots are connected. Devising such

communication-aware navigation strategies requires assess-

ing channel quality at places that are not yet visited by the

robots. Wireless channels, however, are not fully predictable

due to the rapidly-changing dynamics such as multipath

fading, as can be seen from Fig. 2. Therefore, in order to

address this, we developed a probabilistic channel assessment

framework in [5] and [14]. In this framework, a robot
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characterizes a pdf for channel quality in an unvisited lo-

cation, based on very few channel measurements in the field

(possibly collected along its trajectory during operation). We

next summarize this probabilistic approach, which will then

be utilized in Section IV-B.

A. Probabilistic Modeling and Assessment of the Spatial

Variations of a Wireless Channel [5], [14]

Let Qi,k =
{
q1, · · · , qN

}
denote the set of the positions

corresponding to the small number of channel measurements

available to node i at time instant k. The channel measure-

ments can be gathered by the ith node along its trajectory,

partly received from other nodes or available through an of-

fline survey of the channel. Note that Qi,k and the number of

available channel measurements are generally time-varying,

but we drop the time dependency for the sake of simplicity

and label the positions of the samples available to a node

at time instant k by q1, · · · , qN . The stacked vector of the

channel power measurements (in dB), available to the ith

node at time k, is then given by the following linear relation:

Yi,k = Γi,kθ + Ξi,k + Ωi,k, where Γi,k = [1N − Di,k]
with 1N denoting the N -dimensional vector of all ones and

Di,k =
[
10 log10(‖q1 − qb‖) · · · 10 log10(‖qN − qb‖)

]T
,

θ = [KdB nPL]T, Ξi,k =
[
PSH(q1) · · · PSH(qN )

]T
and Ωi,k =[

PMP(q1) · · · PMP(qN )
]T

. PSH and PMP are the shadow

fading and multipath terms in dB, as described in Section II-

B. Based on the commonly-used lognormal distribution for

shadow fading and its reported exponential spatial correlation

[16], Ξi,k is a zero-mean Gaussian random vector with

the covariance matrix Ri,k ∈ R
N , where

[
Ri,k

]
ℓ1,ℓ2

=

ξ2 exp
(
−

‖qℓ1
−qℓ2

‖
β

)
for 1 ≤ ℓ1, ℓ2 ≤ N , with ξ2 and

β denoting the variance of shadow fading component in dB

and its decorrelation distance respectively. As for the pdf

of multipath fading, distributions such as Rayleigh, Rician,

Nakagami and lognormal are shown to match the distribution

of multipath fading (in non-dB domain), depending on the

environment [16]. Here, we assume lognormal multipath

fading, in which case Ωi,k has a Gaussian distribution.3

We also take the elements of Ωi,k to be uncorrelated.4

As a result, Ωi,k will be a zero-mean Gaussian random

vector with covariance ω2IN , where ω2 is the power of

multipath fading component and IN is the N -dimensional

identity matrix. Let P̂dB,i,k(q) = E
{
PdB(q)

∣∣ Yi,k

}
and

δ2
i,k(q) = E

{(
PdB(q)−P̂dB,i,k(q)

)2∣∣Yi,k

}
denote the MMSE

assessment of channel power at any position q ∈ W and

its corresponding error variance, based on the measurements

available to the ith node at time k. Assuming negligible esti-

mation error for shadow fading and multipath parameters, we

have [5], [14]: P̂dB,i,k(q) = γT(q) θ̂i,k + φ̂T
i,k(q)Û−1

i,k

(
Yi,k −

Γi,kθ̂i,k

)
and δ2

i,k(q) = ξ̂2
i,k + ω̂2

i,k − φ̂T
i,k(q)Û−1

i,k φ̂i,k(q) +

3Note that Rayleigh, Rician and Nakagami provide a better fit than
lognormal in general. However, mathematical derivations are easier with
a lognormal distribution.

4This is the case whenever the channel samples are far enough comparing
to the wavelength [16], which is usually the case.

[
γ(q) − ΓT

i,kÛ−1
i,k φ̂i,k(q)

]T

∆θ,i,k

[
γ(q) − ΓT

i,kÛ−1
i,k φ̂i,k(q)

]
,

where ξ̂i,k , β̂i,k, ω̂i,k and θ̂i,k denote the estimated values of

ξ, β, ω and θ, based on the available measurements at the

ith node at time k, γ(q) =
[
1 − 10 log

(
‖q − qb‖

)]T
, Ûi,k =

R̂i,k + ω̂2
i,k IN , R̂i,k denotes the corresponding estimation

of Ri,k with ξ and β replaced by ξ̂i,k and β̂i,k respectively,

φ̂i,k(q) =
[
ξ̂2
i,k e−‖q−q1‖/β̂i,k · · · ξ̂2

i,k e−‖q−qN‖/β̂i,k

]T

and

∆θ,i,k is the estimation error covariance of the path loss

parameters.5 We can then model the channel probabilistically

and take the channel power (in dB) at any position q ∈ W
to have a Gaussian distribution with the conditional average

and variance of P̂dB,i,k(q) and δ2
i,k(q) respectively.

B. A Navigation Strategy to Minimize the Detection Error

Probability at the Base Station and Maintain the Connectiv-

ity of the Mobile Nodes

Consider the performance analysis of Section III-C.

By setting s = 0.5 (Bhattacharyya bound) and π0(q) =
0.5 ∀q ∈ W , we obtain the following approximation for the

log of the Chernoff bound using (11): log
(
π̃e,b,k+1(q, s)

)
≈

∑
i∈Ik+1(q)

log
(
2
√

πd,i,κi,k+1
(q)
(
1 − πd,i,κi,k+1

(q)
))

. Let

KL(πd) denote the Kullback-Leibler (KL) distance

(divergence) between two discrete distributions

Bern(0.5) and Bern
(
πd

)
, where Bern(πd) represents

the Bernoulli distribution with the success probability of

πd [15]. We have KL(πd) = − log
(
2
√

πd(1 − πd)
)
.

Using the definition of KL(πd) and λi,k, we obtain

log
(
π̃e,b,k+1(q, s)

)
= −

∑n
i=1

[
λi,k+1KL

(
πd,i,k+1(q)

)
+(

1 − λi,k+1

)
KL
(
πd,i,κi,k

(q)
)]

, where we define

πd,i,κi,k
(q) = 0.5 for κi,k = 0 (the case where the ith node

has not yet been connected to the base station up to and

including time k ≥ 1). The average of log
(
π̃e,b,k+1(q, s)

)
,

conditioned on the channel values up to (and including)

time k, is then given by

E

{
log
(
π̃e,b,k+1(q, s)

) ∣∣∣ λk

}
= −

n∑

i=1

[
E{λi,k+1}×

(
KL
(
πd,i,k+1(q)

)
− KL

(
πd,i,κi,k

(q)
))

+ KL
(
πd,i,κi,k

(q)
)]

,

(12)

where λk = [λ1,1 · · ·λn,k]T. Using the probabilistic channel

modeling and learning framework of the previous section,

we have

E
{
λi,k+1

}
= Q

(
PTH,dB − P̂dB,i,k(qi,k+1)

δi,k(qi,k+1)

)
, (13)

with PTH,dB = 10 log10

(
σ2

thSNRTH

)
denoting the channel

power threshold (in dB). Note that by applying Chernoff

bound approximation, (12) becomes separated into n separate

contributions from individual nodes. We then propose the

following localized motion objective for the ith node at

time k, in order to minimize its contribution to the average

5We omit the details of the estimation of the underlying parameters and
refer the readers to [5], [14], [18] for more details.
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detection error probability of the next time step at the base

station:

Ji,k

(
qi,k+1

)
= E

{
λi,k+1

}
︸ ︷︷ ︸

Comm. obj.

[∫

W
KL
(
πd,i,k+1(q)

)
dq − Ci,k

]
,

︸ ︷︷ ︸
Sensing obj.

(14)

where Ci,k ,
∫
W KL

(
πd,i,κi,k

(q)
)

dq is a constant (is not

a function of qi,k+1). The optimal control input for node

i at time k is then calculated using the following online

optimization problem:

x∗
i,k = argmax

xi,k

Ji,k

(
qi,k+1

)

s.t. 1) qi,k+1 = Φi

(
qi,k, xi,k

)
and 2) xi,k ∈ Xi. (15)

Note that the sensing part of (14) is always non-negative as

KL
(
πd,i,k+1(q)

)
≥ KL

(
πd,i,κi,k

(q)
)

for every q ∈ W .

The motion objective of (15) takes an interesting form

that shows 1) the separation of communication and sensing

objectives for the purpose of navigation, 2) that solely

from a sensing perspective, each node should minimize its

surveillance uncertainty by maximizing its KL distance to

Bern(0.5), 3) that solely from a communication perspective,

each node should maximize the percentage of times that

it is connected to the base station and 4) that the optimal

trajectory is the one that provides the right balance between

these objectives. In other words, the localized navigation

strategy is the one that minimizes the sensing uncertainty

while maximizing the probability of being connected to the

base station.

V. SIMULATION RESULTS

In this section we present simulation results to show the

performance of the proposed communication-aware surveil-

lance approach. Consider a surveillance scenario where three

mobile sensors are tasked with exploring a given environment

to detect the possible presence of targets.

We assume the following first-order dynamics for the

mobile nodes: qi,k+1 = qi,k + xi,k, where ‖xi,k‖ ≤ dmax

is the control input. We also consider a distance-dependent

sensing model for the mobile nodes, where σ2
i,k(q) is given

by the following:

σ2
i,k(q) =

{
ν‖qi,k − q‖2 + ε ‖qi,k − q‖ < dsen

∞ otherwise
(16)

where ν > 0 and ε > 0 are positive constants and dsen

is the sensing radius (sensing range) of the mobile sensors.

This model implies that no information will be gathered from

areas that are beyond the sensing range of the sensors. At any

time instant, the mobile nodes process their recently-gathered

data and send their updated map of targets to the base

station. The communication channel between each node and

the base station is simulated using our probabilistic channel

simulator [14]. The nodes assess the channel probabilistically

along their trajectories, using the framework of Section IV-A.

As more channel measurements become available, the value

of δi,k(qi,k) in (13) becomes smaller, resulting in a more

dominant communication part. In this example, we assume

that the robots start with 1% a priori channel measurements

that are randomly distributed over the environment. We use

the following parameters: dmax = 2.0 m, A = 5, ν = 0.5,

ε = 1.0, dsen = 3.0 m, KdB = −40 dB, nPL = 2, ξ = 4 dB,

β = 4 m, ω = 1.9975 dB, σ2
th = −80 dB, SNRTH = 22 dB

and π0(q) = 0.5.

Fig. 3 shows the communication and sensing parts of the

objective function of (14), in a window around one of the

robots at a specific time instant. The optimum position for

optimizing each individual part is shown by a white cross on

the corresponding figure. It can be seen that the optimum po-

sition that provides the best sensing objective is considerably

different from the one that provides the best communication

objective in this example. The overall optimum point is then

the one that provides the right balance between these two

objectives. Fig. 4 shows the trajectories of the mobile nodes

4 6 8 10

6

7

8

9

10

11

X (m)

Y
 (

m
)

Opt. Comm. Point

4 6 8 10

6

7

8

9

10

11

X (m)

Y
 (

m
)

Opt. Sensing Point

Fig. 3. The communication (left) and sensing (right) parts of the
objective function of (14), in a window around one of the robots at
a specific time instant. The optimum position for optimizing each
individual part is shown by a white cross on the corresponding
figure (see the pdf for better visual clarity).

when the localized navigation strategy of (15) is deployed.

The dark regions of Fig. 4 represent the positions where

the nodes are not connected to the base station. It can

be seen that by using the proposed communication-aware

navigation strategy, the nodes will gradually converge to

the connected regions (if they are not connected to begin

with) and maintain their connectivity. In other words, in this

case the communication-aware strategy forces the nodes to

explore the regions with better link qualities, in order to

minimize the next-step detection error probability at the base

station.

Finally, Fig. 5 shows the performance of the surveillance

at the base station. The plot shows the spatial average of

the probability of error at the base station, i.e. πk,ave =∫
W πe,b,k(q)dq/|W|, as a function of time. It can be seen

that the overall uncertainty decreases as the nodes move. It

should be noted that since each robot is required to maintain

its connectivity all the time, it is limited in its exploration.

This results in an error floor as can be seen from Fig. 5.

VI. CONCLUSIONS

In this paper, we considered the problem of

communication-aware surveillance, where a number of
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Fig. 4. The trajectories of the three mobile nodes when the localized
navigation strategy of (15) is used. The empty circles and the filled
ones denote the initial and final positions respectively. The dark
regions are areas where the nodes are not connected to the base
station. The nodes move along the trajectories that minimize their
sensing uncertainty while maintaining their connectivity to the base
station (see the pdf for better visual clarity).

5 10 15 20 25 30

0.25

0.3

0.35

0.4

0.45

time step (k)

S
p

a
ti
a

l 
a

v
e

. 
o

f 
p

ro
b

. 
o

f.
 d

e
t.

 e
rr

o
r 

a
t 

B
S

Fig. 5. Spatial average of the probability of detection error at the
base station as a function of time.

mobile nodes are tasked with surveying an area to detect

the possible presence of targets and reporting their findings

back to a fixed base station, in the presence of realistic

communication channels. We considered the scenario where

the base station needs to be constantly informed of the

surveillance result. We showed how to build local motion

planning objective functions that integrate sensing goals

with communication objectives that are reflective of link

qualities in realistic communication environments. More

specifically, we showed that the motion planning objective

can be separated into a sensing function that maximizes the

Kullback-Leibler (KL) divergence between the maximum

uncertainty state and the current one, and a communication

function, that maximizes the probability of being connected.

We then devised motion trajectories that provide the

right balance between sensing and communication. We

furthermore showed how the probability of connectivity

can be assessed online by using our previously-proposed

channel assessment framework.
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