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Abstract— In this article, we present the first approximation
algorithm for a routing problem that is frequently encountered
in the motion planning of Unmanned Vehicles (UVs). The
considered problem is a variant of a Multiple Depot-Terminal
Hamiltonian Path Problem and is stated as follows: There is a
collection of m UVs equipped with different sensors on-board
and there are n targets to be visited by them collectively. There
are restrictions on the targets of the following type: (1) A target
may be visited by any UV, (2) a target must be visited only by
a subset of UVs (with appropriate on-board sensor) and (3) a
target may not be visited by a subset of UVs (as the set of on-
board sensors on the UV may not be suitable for viewing the
targets). The UVs are otherwise identical from the viewpoint
of dynamic constraints on their motion and hence, the cost of
traveling from a target A to a target B is the same for all vehicles.
We will assume that triangle inequality is satisfied by the cost
associated with travel, i.e., it is cheaper to travel from a target
A to a target B directly than to go via an intermediate target C.
The UVs may possibly start from different locations (referred to
as depots) and are not required to return to the depot. While
there are different objectives that can be considered for this
problem, we consider the total cost of travel of all the UVs
as an objective to be minimized. The problem considered in
this article is a generalized version of single depot-terminal
Hamiltonian Path Problem and is NP-hard.

I. INTRODUCTION

Surveillance applications involving Unmanned Vehicles

(UVs) require different UVs with different capabilities to

gather information about a set of targets. Information is often

gathered about the targets by an appropriate UV visiting a

target and gathering information about the target using its

on-board sensors. Associated with the task of information

gathering is the problem of routing UVs in some optimal

manner and it is in connection with the routing, we address

the following problem: There are m UVs that must collec-

tively visit n targets. We assume that the vehicles are identical

dynamically and hence, the cost of traveling from any target

A to any other target B with identical headings is the same for

every UV in the collection. The UVs differ from each other

in their sensing capabilities and accordingly, we categorize

the targets into three disjoint subsets:

1) Category I: Subset of targets which can be visited by

any UV.
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2) Category II: Subset of targets that can be visited

only by a specific UV or a subset of UVs. This

arises in a scenario where the technology/equipment

to accomplish the desired task on a target is available

only to a subset of UVs. Also, if a group of targets

form a cluster i.e., they are very close to each other

in terms of distance, it might be economical to let one

UV perform all the tasks on these group of targets.

3) Category III: Subset of targets that are unsuitable to

be visited by a particular UV or a subset of UVs.

Even though the cost of traveling from one target to

another is the same for every UV, these restrictions on the

assignment of UVs to target, which we will refer to as

assignment constraints, introduce heterogeneity.

The problem considered in this article is as follows:

Given a set of depots (starting locations of UVs) and their

corresponding terminals (ending locations of UVs) find a

path for each vehicle such that

• the path of each UV starts from its respective depot and

ends at the corresponding terminal,

• each target is visited exactly once by some vehicle,

• the assignment constraints are satisfied and,

• the total cost of the paths of all the UVs is a minimum.

There are several applications ([1],[4],[11],[7], [6],[8])

where routing problems such as the one considered in this

article arise. The problem considered in this article is a

generalization of the Hamiltonian Path Problem (HPP) and

its closely related Traveling Salesman Problem (TSP) and

is NP-Hard. The generalizations of the HPP and TSP have

received significant attention in the field of Combinatorial

Optimization ([10],[9],[12],[3]). Because the problem is NP-

hard, one may not expect to find an optimal solution with

a running time guarantee that is polynomial in the size of

the problem. In this article, we will focus on approximation

algorithms, which are polynomial time algorithms but relax

the requirement of optimality; however, they provide bounds

on the deviation of the cost of the suboptimal solution from

the optimal cost without ever computing the optimal cost.

An α−approximation algorithm [12] is an algorithm that

• has a polynomial-time running time, and

• returns a solution whose cost is within α times the

optimal cost.

We will assume that the cost of traveling from an origin

to a target directly for each vehicle is no more expensive
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than the cost of traveling from the same origin to the

target through an intermediate location. We say that the

costs satisfy the triangle inequality if they satisfy the above

property. It is known that there cannot exist a constant

factor approximation algorithm for a HPP or a TSP if the

triangle inequality is not satisfied unless P = NP. For this

reason, we henceforth assume that this property holds for

the cost associated with travel for every UV.

There are a few approximation algorithms that are

available for the variants of the TSP and the HPP. The

symmetric TSP has two well known approximation

algorithms - the 2 approximation algorithm obtained by

doubling the minimum spanning tree (MST) and the 1.5

approximation algorithm of Christofides obtained through

the construction of MST and a minimum perfect matching

of vertices of MST with odd degree [2].

The best approximation algorithm currently available for

the single HPP (a path that contains each vertex exactly

once of minimum total cost) was proposed by Hoogeveen

[3]. In [3], he proposed an approximation algorithm for

three variants of single HPP that depend on the choice of the

endpoints of the path. Hoogeveen modified the Christofides

algorithm, and provided a 3
2
−approximation algorithm for

the variant of the HPP problem when at most one endpoint

is fixed and proposed a 5
3
−approximation algorithm when

both endpoints are fixed.

Rathinam et al. have provided 2−approximation

algorithms for variants of the homogenous, multiple TSP

and HPP in ([7],[6],[5]). A 3
2
−approximation algorithm was

also developed for two variants of a 2-depot Hamiltonian

path problem in [8] when the the costs are symmetric and

satisfy the triangle inequality.

In this article, we present a 11
3

-approximation algorithm

for the multiple depot-terminal HPP with functional

heterogeneity constraints. In the special case when the

locations of the terminals coincides with their respective

depots, the approximation factor of the proposed algorithm

reduces to 3.5. This approximation factor of 3.5 also holds

true for other variants of the heterogenous, multiple depot

HPP when at most one endpoint is specified for each vehicle.

II. PROBLEM FORMULATION

Let the set of vertices D and T represent all the distinct

depots and terminals respectively. Let |D| = |T |. Assume

that there is an UV initially located at each of the depots.

For every depot, di ∈ D, let there exist exactly one terminal

vertex denoted by ti ∈ T . We require that each UV starting

at its depot end its path at its corresponding (fixed) terminal.

Let p := |D| denote the total number of depots.

We first consider all the targets belonging to categories

in I and II. We assume that all the targets are distinct, i.e.,

there are no two targets present at the same location. Let

the set of targets which can be only visited by the ith UV

that starts at di ∈ D be represented by Ai. Let us define A =

A1 ∪A2...∪Ap. We assume that all the Ai’s are disjoint, i.e.,

A1 ∩A2...∩Ap = φ . Let the common set of targets which

can be reached by all UVs be F .

Define a graph (V,E) with V = D
⋃

T
⋃

A
⋃

F denoting

the set of all the vertices and E := V ×V denoting the set of

all the edges joining any two vertices in V . Let c(Vi,Vj) or

simply ci j represent the cost of traveling from vertex Vi to

vertex Vj for all Vi,Vj ∈V . We further assume that the costs

are positive, symmetric and satisfy the triangle inequality,

i.e., for all Vi,Vj,Vk ∈V and i 6= j 6= k, Ci j +C jk ≥Cik. The

symmetry of costs may not hold true for all UVs in general;

however, by relaxing motion constraints, we assume that one

can obtain symmetry in the cost of travel between any two

targets. This is especially so when the constraint associated

with forward travel in a Dubins’ vehicle is relaxed, one

gets a Reed-Shepp vehicle and the costs are symmetric.

While such a relaxation may not solve the original problem,

it serves two purposes: firstly, it provides a lower bound

for the optimal solution, and secondly, if the distances

between targets is sufficiently large compared to the turning

radius as in the case of Dubins’ vehicle, the asymmetry in

the cost is not so significant compared to the Euclidean

distance between the targets. In such circumstances, the

proposed approximation algorithms provide “adequate”

feasible solutions.

A path for a UV is a sequence of vertices visited by the

vehicle. The first vertex is called the start vertex and the last

vertex in the sequence is called the end vertex. A path with

no repeated vertices is called a simple path. In this work,

we refer simple paths as simply paths. However, it should

be noted that since the costs satisfy triangle inequality, it

is always possible to shortcut a repeated vertex and obtain

another path of lower cost spanning (or visiting) all the

vertices.

A path travelled by the ith UV is an ordered set, PAT Hi,

and can be represented by the form {di,Vi1 , .....,Vir , ti},

where Vil ∈ A
⋃

F , l = 1, ....,r corresponds to the r distinct

targets being visited in that sequence by the ith UV. These

set of targets being visited by the ith UV must include the set

Ai (which can be only visited by ith UV and subset (could

be empty) of common targets, F . The cost of traveling

PAT Hi is defined as C(PAT Hi) = cdii1 +∑
j=r−1
j=1 cikik+1

+cirti .

The Combinatorial Motion planning Problem (CMP)

addressed in this article is to find a PAT Hi for the ith UV

(i = 1, · · · , p) such that each target is visited exactly once,

all the assignment constraints are satisfied and the total cost

defined by ∑
i=p
i=1 C(PAT Hi) is minimized.
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III. APPROXIMATION ALGORITHM FOR THE CMP

Here, we present an algorithm, Approxcmp, which

constructs a feasible solution to the CMP. We later

prove that this algorithm produces a solution with an

approximation factor of 11
3

. Approxcmp is as follows:

1) For each i ∈ 1, · · · , p, do the following:

• Consider the subset of vertices Si = {di} ∪ Ai ∪
{ti} ∀i = {1.....p}, where di and ti are the depot

and terminal vertices corresponding to the ith UV.

Compute a feasible depot-terminal path, HPPi, that

starts from di and ends at ti using the Hoogeveen’s

algorithm [3]. Let EHPPi
be the set of all the edges

present in HPPi.

Let EHPP =
⋃p

i=1 EHPPi
. Let the total cost of these

paths be denoted by CHPP = ∑
i=p
i=1 C(HPPi).

2) In this step we distribute the common targets, F ,

among all the UVs. After the distribution, we will

construct a tour for each UV that starts at its depot

and visits its assigned set of common targets. The

algorithm for distributing the common targets among

the UVs is as follows:

Consider the set M = D∪F . Assign zero costs to all

the edges among the depots. For the rest of edges

retain the costs assigned earlier. Now, construct a

Minimum Spanning Tree (MST) on M with the

assigned costs using Kruskal’s algorithm. Truncate all

the zero cost edges (among depots) in the resultant

MST. This results in a forest with exactly p connected

components. Each of the connected component has

exactly one depot in it. (This follows from the fact

that, during each iteration, the Kruskal’s algorithm

adds a (non-used) cheapest, cost edge to the solution

such that no cycle is formed among all the added

edges in the solution. Therefore, there are exactly

|p − 1| zero cost edges joining the p depots in the

solution.) Let EF be the set of the remaining edges

after removing all the zero cost edges from the MST.

EF corresponds to a forest with p trees where each

tree contains one depot. Also, let EFi
be the set of

edges present in the ith tree.

3) Double the edges of EFi
. Since EFi

is a tree, doubling

the edges of EFi
would result in a connected, Eulerian

graph. Therefore, one can find an tour (TFi
) by

shortcutting the edges in the Eulerian tour. The cost of

this tour must be at most twice the cost of the edges

in EFi
since the costs satisfy the triangle inequality.

4) Consider the set of edges denoted in TFi
∪HPPi. By

construction, there are exactly three edges incident on

di where one belongs to the path HPPi and two belong

to the tour, TFi
. By shortcutting an edge from TFi

and

an edge that belongs to HPPi one can form a path Pi

that starts from depot di, ends at terminal ti and visits

all the targets in Ai and Fi. Let P = ∪i=p
i=1Pi. Since P is

a collection of edge-disjoint simple paths and satisfies

all the constraints, P is a feasible solution to CMP.

The following theorem establishes the approximation ratio

of the above algorithm.

Theorem 1. The approximation factor of Approxcmp is 11
3

.

Proof. First, we will prove that the running time of

Approxcmp is a polynomial function of the number of

targets and depots. The number of steps required by

Approxcmp is dominated by the computations in steps 1

and 2 of the algorithm. Step 1 of Approxcmp uses the

Hoogeveen algorithm which requires O(m3) steps where m

is the total number of targets. Step 2 of Approxcmp uses the

Kruskal’s algorithm which requires O((m + p)2log(m + p))
steps to compute. Therefore, the running time of Approxcmp

is a polynomial function of the number of targets and depots.

Now, we will prove the guarantee on the quality of the

solutions. Let OPT denote an optimal solution to the

CMP and let COPT denote its corresponding cost. Let the

optimal path corresponding to the UV at depot di in OPT

be OPT i.

We will now bound the costs of all the HPP’s found in

step 1 of Approxcmp. Consider the Single Depot-Terminal

HPP restricted to the set Si = {di}∪Ai ∪{ti}. Let HPP∗
i be

an optimal solution to this problem. Note that the HPPi found

in step 1 of Approxcmp is a feasible solution to the single

Depot-Terminal HPP on Si. Also note that the path OPT i

visits each target in Si in addition to some common targets

from F . Since the costs satisfy the triangle inequality, by

shortcutting all the common vertices in OPT i that do not

belong to Si, one can easily conclude that:

COPT i
≥CHPP∗

i
≥

3

5
CHPPi

. (1)

The latter part of the above inequality follows from

Hoogeveen’s result for Single Depot-Terminal HPP. Sum-

ming the above result for all the vehicles, we get,

5

3
COPT ≥CHPP. (2)

In the following discussion, we will bound the costs of

all the tours found in steps 2 and 3 of Approxcmp. Note

that the optimal path OPT i visits some common vertices

from F in addition to visiting each vertex in Ai. By short-

cutting all the vertices in ti∪Ai from OPT i, one can obtain

a tree that spans the depot vertex di and all the common

vertices in OPT i. Let the set of edges spanning this tree

be E
OPT i
F . Let EOPT

F = ∪i=p
i=1E

OPT i
F . The set of edges in

EOPT
F corresponds to a p−component forest that consists

of a depot in each tree and spans all the common vertices in

F . Since the costs satisfy the triangle inequality, it follows

that
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COPT ≥C(EOPT
F ) ≥C(EF), (3)

where C(EF) is the sum of the cost of edges in EF (found

in step 2 of Approxcmp). From inequalities (2) and (3), we

obtain:

11

3
COPT ≥CHPP +2C(EF) ≥CHPP +C(TF). (4)

In the above equation C(TF) is the total cost of the tours

obtained by doubling the trees and shortcutting. From step

4 of Approxcmp, we can deduce that

CHPP +C(TF) ≥CP. (5)

By combining Equations (4) and (5)

11

3
COPT ≥CP ≥COPT . (6)

Hence proved.

Remark 1. The approximation factor of Approxcmp can be

improved for the special case of the CMP when each location

of each terminal coincides with its respective depot. In this

case, instead of using Hoogeveen’s [3] algorithm in step 1

of Approxcmp, one can use the Christofides [2] algorithm

for finding a path for each vehicle that starts and ends at

its depot. Since the approximation factor of the Christofides

algorithm is 1.5, the approximation factor of Approxcmp for

this special case reduces to 2+1.5 = 3.5.

Remark 2. It is also easy to see that the Approxcmp can

be easily extended to the variant of the CMP when the final

vertex of each path is not specified. In this variant, instead

of using the 5
3
−approximation algorithm by Hoogeveen in

step 1 of Approxcmp, one can use the 1.5-approximation

algorithm by Hoogeveen [3] where the terminal vertex is

not specified for a path. Therefore, the approximation factor

of Approxcmp for this variant would be equal to 3.5.

IV. OTHER VARIANTS OF Approxcmp

In addition to the above approximation algorithm, we also

present three variants of Approxcmp which can also be used

to obtain feasible solutions for the CMP. In the first variant,

using steps 1,2 of Approxcmp, we first find the partition

of targets each vehicle must visit; then, we use the LKH

heuristic [17] to obtain a path for each vehicle instead of the

steps followed in 3,4 of Approxcmp.

In the second variant, we use a Kruskal-type algorithm to

find a partition of targets for each vehicle and then use the

LKH heuristic to find a path for each vehicle. The Kruskal-

type algorithm starts with a set of edges that are initially

empty. In each iteration of the algorithm, an edge is added

to this set such that the following properties are satisfied: 1)

the addition of the edge must not violate any of the vehicle-

target assignments, should not connect any two two depots

or terminals, must not connect any depot to a terminal other

than the one assigned to the depot, and 2) the cost of the

edge is a minimum. This addition of edges is repeated until

each target is connected to one of the depots. At the end of

this algorithm, the set of edges specify the partition of targets

each vehicle must be connected to. We then use this partition

to find a path for each vehicle using the LKH heuristic [17].

In the third variant, we use a Prims-type algorithm to

find a partition of targets for each vehicle and then use the

LKH heuristic to find a path for each vehicle. The Prims-

type algorithm starts with a set of edges that are initially

empty. In each iteration of the algorithm, an edge is added

to this set such that the following properties are satisfied:

1) the edge connects any one of the vertices not connected

to a depot to some depot, 2) the addition of the edge must

not violate any of the vehicle-target assignments, should not

connect any two depots or terminals, must not connect any

depot to a terminal other than the one assigned to the depot,

and 3) the cost of the edge is a minimum. This addition of

edges is repeated until each target is connected to one of the

depots. At the end of this algorithm, the set of edges specify

the partition of targets each vehicle must be connected to.

We then use this partition to find a path for each vehicle

using the LKH heuristic [17].

V. COMPUTATIONAL RESULTS

The approximation algorithm was implemented using the

matlab software libraries from the graph theory toolbox [13]

and the boost library [14] [15]. Optimal solutions were found

for the CMP by using a multi-commodity integer program-

ming model presented in [18]. This model was implemented

and solved using the CPLEX callable libraries[16]. The open

source code available in [17] was used to implement the LKH

heuristic.

The algorithms were applied to a test area of 1000 by 1000

sq. units. For 2 to 4 vehicles, fifty random instances were

generated for each problem size ranging from 15 to 50 nodes.

The Euclidean distance between any two locations was used

to compute the cost of traveling between the locations for

each vehicle. For each instance of the problem, functional

heterogeneity was introduced by assigning 3 targets to each

vehicle.

All the tests were implemented on an Intelr Xeonr

X5650 2.66GHz/12GB machine. Due to the length of time

needed to find optimal solutions for all the instances, LP

relaxation solutions (by relaxing binary constraints from

the integer programming model) were used instead to find

the quality of each solution. Given an algorithm A and an

instance I, the following equation was used to calculate the

quality of the solution produced by the algorithm on I.

QualityI =
CostI(A)−CostI(LP)

CostI(LP)
.100% (7)

where,

CostI(A) = Cost of the solution obtained by an algorithm A

on the instance I,

CostI(LP) = LP relaxation cost of the CMP obtained by

solving the Linear Programming problem on the instance

I.
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Fig. 1. Average quality of the solutions.

The average quality of the solutions obtained for each

problem size are shown in Fig. 1. The average quality of

the solutions produced by the approximation algorithm were

around 50% for the small problems and increased along

with the problem size. When we use LKH with the parti-

tions derived from the approximation algorithm, the average

quality decreased to around 20-40%, which is between the

average quality of the solutions found by Prim and Kruskal’s

algorithms. The average computation times required for each

size of the problems are presented in Fig. 2, 3, and 4. The

average computation times required for the approximation

algorithm were less than 0.1 secs even for the relatively

large problem sizes we tested; however, the LP relaxation

of the multi-commodity flow model[18] needed around 100

secs for the large sized problems. The solutions found

by the approximation algorithm and heuristics, and their

corresponding optimal solution for an instance Î involving

three vehicles are presented in Fig.5.
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Fig. 5. Solutions obtained for an instance Î.

VI. CONCLUSIONS

We presented the first approximation algorithm for a vari-

ant of a Multiple Depot-Terminal Hamiltonian Path Problem

when the costs are symmetric and satisfy the triangle in-

equality. We considered a variant of the problem where each

vehicle starting from its depot should end its path at a termi-

nal corresponding to the depot. The vehicles considered in

this problem are identical dynamically. However, we consider

the possibility that their capabilities or equipment available

onboard could be different. Currently, the proposed algorithm

for considered problem has an approximation factor of 11
3

.

Future work can be include developing algorithms for more

general heterogeneous vehicle routing problems with motion

constraints on the vehicles, precedence and timing constraints

on the targets etc.
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