
  

  

Abstract— The present study applies an approximate output 

regulator for controlling a MIMO nonlinear non-minimum 

phase system, considering the example of a four degree of 

freedom spherical inverted pendulum. The spherical pendulum 

consists of a slim cylinder attached to a universal joint upon 

which the planar control force acts. The aim in output tracking 

is to control the pendulum such that the base follows a desired 

reference trajectory as closely as possible while maintaining the 

upright position. The standard output regulator requires the 

solution to a mixed algebraic partial differential equation, 

which entails finding the manifold on which the system state 

trajectories result in exact tracking of the reference signal. This 

can be very difficult to solve in practice for the non-minimum 

phase case thus motivating the use of approximation methods. A 

local approximation method, based on a Taylor series expansion 

of the system dynamics is used, such that an output regulator 

may be applied to the spherical inverted pendulum. This gives 

the first application of output regulation for the output tracking 

of this system. 

I. INTRODUCTION 

UCH  research has been carried out during the past 

few decades for stabilization and tracking of complex 

nonlinear systems considering the 2 degree of freedom 

(DoF) linear cart inverted pendulum  as a benchmark (see [1] 

and the references therein). More recently, the spherical 

inverted pendulum, which is essentially a multi input multi 

output (MIMO) underactuated non-minimum phase 

nonlinear system, has become of interest as this provides a 

greater control challenge. The spherical inverted pendulum 

consists of a slim cylindrical rod attached to a universal joint 

at the base about which it can rotate with two degrees of 

freedom (Fig 1.). The universal joint is free to move in the 

horizontal plane with two translational degrees of freedom 

and is acted upon by a planar control force.  

The spherical inverted pendulum control problem 

represents an increase in complexity from the standard 2-

DoF linear cart pendulum due to the additional degrees of 
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freedom and the coupled nature of the motion about the two 

rotational axes. To date very few results are available for 

either the stabilization or output tracking of the spherical 

inverted pendulum based on a non-simplified nonlinear 

model. Most of the results that have been found are 

pertaining to the stabilization  of this system, e.g. [2], [3]. 

However, for nonlinear output tracking controllers these 

results are even more limited. The focus in output tracking is 

to control the pendulum such that the base follows a desired 

reference trajectory while maintaining the upright position of 

the pendulum. Some initial successful output tracking control 

results for the spherical inverted pendulum are presented in 

[4], [5], where non causal "exact" tracking methods were 

carried out using stable inversion in [4] and homotopy 

method in [5]. These methods were used to track specific 

individual trajectories which must be specified in advance 

due to their non-causal nature. In contrast to these methods, 

an output regulator can track a family of trajectories, where 

only the structure of the external dynamic system capable of 

generating these trajectories need to be known, not specific 

trajectories themselves. Also, unlike restrictions on the 

homotopy method used in [5], the desired reference 

trajectory generated by the exosystem is not required to be 

periodic.  

The output regulation problem is the problem of finding a 

control law which allows the output of a system to 

asymptotically track a family of desired reference trajectories 

(and/or reject a family of known disturbances) that can be 

generated by an external dynamic system, referred to as the 

exosystem. The output regulator is casual as it is capable of 

tracking many possible reference trajectories that may be 

generated from the exosystem without explicit knowledge of 

which specific trajectory is to be tracked. In the seminal 

work on output regulation for nonlinear systems [6] it was 

established that the ability to design a controller to solve the 

nonlinear output regulation problem is dependent on the 

existence of a solution to a mixed algebraic partial 

differential equation. These equations, known as the 

regulator equations, are in practice very difficult to solve and 

in many cases it is often impossible to find a closed form 

solution. Much subsequent research in nonlinear output 

regulation control has been put into the advancement of 

output regulation theory ([7],[8],[9],[10] for example). These 

theoretical advancements have mostly been carried out 

without use of practical examples. This is generally because 

for most practical systems the solution to the regulator 

equations cannot readily be attained. Methods for finding an 
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approximate solution to the regulator equations were also 

investigated in [11, 12], and are of more practical 

significance if the output regulation theory is to be applied to 

real systems. In [11] the approximation approach described 

was based on the Taylor series expansion of the regulator 

equations. In [12] the regulator equations were approximated 

by a neural network. Approximate output regulation, using 

the method of Taylor series expansion, has been applied to a 

linear cart inverted pendulum in [13] and a 2-dof rotary 

inverted pendulum in [14]. Research into methods for 

estimating the region of convergence for the local output 

regulation problem and local approximate output regulation 

problem are documented in [15]. The effectiveness of the 

approximation method based on the Taylor expansion for the 

output regulator as applied to the spherical inverted 

pendulum was investigated here. This work represents the 

first results on output regulation control of the spherical 

inverted pendulum and is based upon the theory of [16].   

The paper is organised as follows. Section II briefly 

describes the output regulation problem for nonlinear 

systems and the approximation approach used here. Section 

III defines the control problem being solved. Section IV 

gives the control design and Section V gives the results of 

the simulation studies with conclusions in section-VI.  

II. PRELIMINARIES 

A. Standard output regulation problem 

We briefly review the standard nonlinear output regulation 

problem considered herein.  

Consider a general time-invariant nonlinear system,   
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    (2.1) 

Where n
Rx ∈  is the system state, m

Ru ∈  is the control input, 

p
Ry ∈  is the system output and qRv ∈  is the exosystem 

signal generated by the exosystem  

         )(vav =&           (2.2) 

The control error associated with this system is  

))(()()( tvrtyte −= ,  

where r(v(t)) gives the reference trajectories to be tracked 

and/or known disturbance signals to be rejected. 

For the case of state feedback, a control law of the form 

))(),(()( tvtxktu =  is sought. This control law comprises 

some feedforward component based on the reference signal 

from the exosystem and feedback of the system states. This 

control law solves the output regulation problem if it renders 

the system (2.1) closed loop stable under the influence of the 

exosystem (2.2), such that the tracking error asymptotically 

approaches zero. 

In [6] the most notable condition for the existence of the 

controller solving the output regulation problem was 

established. That is, there exists an invariant zero-error 

manifold for the closed loop system. The existence of such is 

posed by the task: find the smooth functions x(v), u(v) which 

solve the non trivial set of mixed algebraic partial differential 

equations, called the regulator equations 
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While the existence of such functions that solve the above 

problem can be proven to exist, finding the exact closed 

form solution has been found to be a very difficult, if not 

impossible task for many systems. 

B. Local approximate output regulator 

Due to the difficulty in finding a closed form solution to 

(2.3), the regulator equations were modified in [11] to allow 

for an approximate solution to the zero-error manifold to be 

found such that the output regulator could actually be 

applied in practice. The statement of the local approximate 

solution to the regulator equations is given next.  

Definition 2.1 [11]: Let there exist an open neighbourhood 

of the origin in 
q

R , denoted as Γ , then there exists 

sufficiently smooth functions n
k Rvx →Γ:)()( , 

m
k Rvu →Γ:)()(  with  0)0(,0)0( )()( == kk ux , such that for 

Γ∈v  the following modified regulator equations hold 
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where )( 1+k
vO is such that 

)1()1(

0
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kk

v
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is a finite constant. The functions )(),( )()( vuvx kk  thus give 

the approximate solution to the regulator equations (2.3) of 

the k
th

 order. The term O(v
(k+1)

) essentially represents extra 

information about the zero-error manifold that is lost through 

approximation.  

In [16] it was shown that through Taylor series expansion 

of the equations governing the system dynamics (2.1) the 

partial differential equation of (2.4) reduces to a set of linear 

matrix equations which are solvable provided the solution to 

(2.4) is proven to exist. A sufficient condition for the 

existence of the solution to (2.4) i.e. the k-th order 

approximate solution to (2.3) was given in [11] (Theorem 

1.2). 

III. APPROXIMATE OUTPUT TRACKING OF THE SPHERICAL 

INVERTED PENDULUM 

A. Spherical inverted pendulum 

The spherical inverted pendulum considered in the present 

study is shown in Fig. 1. The generalized coordinates shown 

are Ryx ∈, which represent the position of the base of the 

pendulum in the horizontal plane, and  RYX ∈, represent the 

x and y positions of the of the vertical projection of the 

centre of the pendulum onto the horizontal plane. RFF yx ∈,  

are the control forces being applied to the base of the 
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pendulum, m is the mass of the uniform rod, L is the distance 

from the base of the pendulum to the centre of mass, and g is 

the gravitational constant. 

The full dynamics governing the motion of the spherical 

inverted pendulum based on the generalized coordinates 

shown in Fig 1 is given in [4]. Defining new state variables 

as: xx =1 , xx &=2 , yx =3 , yx &=4 , Xz =1 , Xz &=2 , 

Yz =3 , Yz &=4   and 
T

zzzzxxxxx ][ 43214321= , the 

ODEs defining the dynamics of the pendulum can be put into 

state-space form: 
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B. Problem formulation 

The problem of the approximate output regulation of the 

spherical inverted pendulum can be formulated as follows. 

Consider the equations governing the dynamics of the 

spherical inverted pendulum (3.1). Let (r1(t), r2(t)) be the 

piece-wise reference trajectory generated by the exosystem 

(2.2). Find a control law of the form ))(),(()( tvtxktu = such 

that the base of the pendulum given by (x(t), y(t)) 

asymptotically converges to within a small bound of (r1(t), 

r2(t)) i.e. ∞→→−→− tastrtytrtx ,)()(,)()( 2211 δδ . 

IV. CONTROL DESIGN FOR THE SPHERICAL INVERTED 

PENDULUM 

The approximate output regulation method seeks to find 

an approximate solution to the regulator equations by using a 

truncated Taylor series expansion of the system dynamics. 

 First consider the input-output linearization of the system 

(3.1) [17]. It is immediately apparent that the system has 

relative degree {r1,r2}={2,2}, and that the dynamics of the 

system can easily be separated into those directly describing 

the output dynamics and those describing the internal 

dynamics as in (3.1) without using any coordinate 

transformation. Taking the r
th

 derivative of the output gives 
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Using the following input transformation   

        ( ))()( 1
xuxu αβ −= −

            (4.2) 

where )(xβ is invertible, the output dynamics take the form 

i
rr

udtyd ii =             (4.3) 

for i = 1,2. For exact tracking, where y = r(v), the new 

control input can be chosen as 

ii rr
i dtvrdu )(=

           

(4.4) 

 Transforming iu  in (4.4) back to the original control 

input by (4.2) gives the following ideal control signal for 

exact tracking  

 

 

 
Fig. 1.  Visualization of the spherical inverted pendulum with (x,y,X,Y) 

coordinates (reproduced from [4]) 
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This control input cannot yet be implemented as the 

mappings )(),(),(),( 4321 vzvzvzvz , under the condition 0=e  

are not yet known. These mappings under the zero tracking 

error condition represent the zero dynamics. By defining z1
*
, 

z2
*
, z3

*
, z4

*
, as the zero dynamic states, the zero dynamics of 

(3.1) become 

 

The zero dynamics given in (4.6) are unstable (the 

eigenvalues of dγ/dz at v=0 are hyperbolic), implying that 

(3.1) describes a nonminimum phase system. 

Solving the zero dynamics under the flow of the exosystem 

requires solving the following PDE, derived from the 

regulator equations (2.3), for z1(v), z2(v), z3(v), z4(v)  

( )vvzva
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A closed form solution to (4.7) is not easily attainable and 

may even be nonexistent. Therefore, in the present study an 

approximate solution is sought based on Definition 2.1. The 

existence of the solution was affirmed by the satisfaction of 

the appropriate condition given in [18] (Lemma 4.13), which 

is equivalent to the condition referenced in Section II.     

Following the approach described in [16, 18] to carry out 

the approximation approach through the use of Taylor series 

expansion, the zero dynamics (4.7) are rewritten as a power 

series  
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where l denotes the order of the approximation used, and 

the superscript ‘(i)’ denotes i successive uses of the 

Kroneckor product, e.g. zzzzzz ⊗=== )2()1()0( ,,1 etc. 

An approximate solution to (3.5) is sought of the form 

∑
≥
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where v
[l]

 contains only the unique components of v
(l)

. 

Remark 4.1: The accuracy of an approximate solution to 

(4.7) depends on the bounds on the exact solution to (4.7). In 

fact, the closer the exact solutions for z1(v), z2(v), z3(v), z4(v) 

are to zero the more accurate the approximate solution will 

be, as the higher order terms which are truncated by the 

approximation have less effect on the solution. The bounds 

on the exact solutions will differ from case to case, 

depending on the dynamic system being considered as well 

as the exosystem of interest. Also, the order of the 

approximation used is obviously a factor in the accuracy as 

well. Increasing the order of the approximation can be done 

to increase the accuracy of the solution. However, increasing 

the order of approximation increases the dimensions of the 

linear matrix equations associated with the approximate 

solution thereby increasing the computational complexity at 

the initial stage of controller implementation.  

 

The approximate solution to (4.7) based on the truncated 

power series expansion (4.8) was shown in [18]. This is 

achieved by the solving a number of linear matrix equations 

which result from substituting (4.8) & (4.9) into (4.7). These 

linear matrix equations are not shown here due to limitations 

of space and can be found in [16],[18]. A third order 

approximation was sought and was later seen to be sufficient 

to provide good tracking performance.  

Remark 4.2: The fact that the applicability of this 

approximate output regulation problem is dependent on 

finding the solution to some linear matrix equations, as 

opposed to requiring the solution to the nonlinear APDEs of 

(2.3), is the key reason why this approach is more practical 

than the standard output regulation problem. If the existence 

of a solution to the regulator equations is proven, the 

solution to the linear matrix equations can always be found; 

however, the same cannot be said for exact solution for (2.3). 

The dynamics of the exosystem which has been used to 

generate a family of trajectories to be tracked is chosen as  
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with initial conditions v(0)=[v1,0, v2,0, v3,0, v4,0]
T
. The desired 

output as yd=r(v)=[v1,v3]
T
, gives the desired output 

trajectories as a two periodic functions, 
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 . This exosystem 

is chosen for its ability to generate periodic trajectories 

which are generally of practical significance. This design 

procedure can easily be applied to track complex trajectories 

which can be generated by different exosystems. However, 

the use of a more complicated exosystem would increase the 

complexity of the linear matrix equations to be solved. 

Whilst solvable, the process of solving the required linear 

matrix equations is non-trivial, especially as the plant and 

exosystem increase in order and complexity. Finding the 

approximate solution to the zero-dynamics for the current 

system (3.1) under the exosystem given (4.10) required the 

solution of over 80 simultaneous equations. Unlike the 

approximate solution for the SISO linear cart pendulum 

found in [14] which could be realistically solved by hand, the 

solution found here (as well as the construction of the 

matrices to be solved) required computational aide.  
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Once the solution to the zero dynamics is resolved as a 

function of exosystem state, the feed forward control , u
*
(v), 

can be implemented. This control law would provide close 

approximate tracking of the desired output trajectory 

generated by the exosystem provided the system output lies 

on the desired trajectory and with the correct initial 

conditions. A stabilizing feedback control law can be 

additionally implemented to account for incorrect initial 

conditions or unknown disturbances by stabilizing the system 

states about state trajectories associated with exact tracking, 

z
*
(v). 

Controllability of the system in the first approximation 

was verified, so an LQR stabilizing law was used here as a 

simple means of providing feedback control. Based on the 

linearization of the original system (3.1) about the point 

(x,z)=0 the linear feedback law, ufb = –Kex, is used, where ex 

= (x – x
*
) and feedback gain matrix K is designed by solving 

the LQR optimal control problem.  

The complete controller used here is then given as 

),()(),( * vxuvuvxu fb+=
 
           (4.11) 

V. SIMULATION STUDIES 

Simulation of the controller was carried out in 

MATLAB/SIMULINK using system parameters, m=0.050 

kg, L=0.650m, ω1,2=1.5 rad/s, and initial conditions (x1, x2, 

x3, x4, x5, x6, x7, x8)=(0,0,0,0,0,0,0,0) 
y
for the pendulum 

system and (v1(0),v2(0),v3(0),v4(0)) = (0,-1.25,1.25,1.25) for 

the exosystem. During the simulation (at t = 10s) the 

exosystem is reset such that a new desired trajectory of 

similar magnitude is generated, achieved by the conditions, 

(v1(10),v2(10),v3(10),v4(10)) = (1.25,1.25,0,1.25). This is 

done to emphasize the causal nature of the output regulator 

in contrast to non-causal inversion techniques which have so 

far been applied to the spherical inverted pendulum i.e. that a 

piece-wise trajectory that can be generated by the exosystem 

can be the tracked without prior knowledge of the specific 

trajectory. These initial conditions give the reference signals 

as two elliptical trajectories.  

For the feedback part of the output regulator, the 

weighting matrices that were found to perform well were 

Q=diag(70,10,70,10,50,750,50,750), R=diag (1,1). 

It can be seen in Fig. 2 that the implementation of the 

approximate output regulator results in the pendulum 

following the elliptical paths. A third order approximation 

was made, i.e. k = 3. Despite the approximation being used 

in designing the controller, the tracking error after 

convergence remains within a very small bound (maximum 

steady state error of 1.57x10
-2

 m) for the given scenario.  

Remark 5.1: Using the approximation order k = 1 gives a 

linear controller. It is interesting to note that in this case the 

matrix equations to be solved are equivalent to the standard 

linear regulator equations (which can be found in [18]). 

For purpose of comparison, the performance of a linear 

regulator was also studied (taking k = 1). The results, also 

seen in Fig 2 show that the linear regulator is also capable of 

 

Figure 2 - Output state trajectories, pendulum base path transcribed in x-y plane, and tracking control error for the nonlinear 3rd order 

approximate regulator and linear regulator 
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stable regulation of the system, however the steady state 

errors are more significant than when the 3
rd

 order 

approximation is used (the maximum steady state error is 8.6 

times greater in magnitude).  

Remark 5.2: This difference in performance will vary in 

different cases; the extent of this difference is dependent on 

the system under consideration, as well as the specific 

trajectories to be tracked. Regardless, the 3
rd

 (or higher) 

order approximate regulator is expected to always provide 

better steady state performance than the standard linear 

regulator, as the nonlinear controller uses more information 

about the system. This was witnessed in the simulation 

studies carried out. Thus, it is desirable to use the nonlinear 

approximate regulator over the standard linear regulator 

where tracking performance is concerned.   

The local nature of the approximate output regulator used 

here means that the performance decreases as reference 

trajectories require the zero-error manifold to deviate further 

from the origin. This was illustrated for the spherical 

inverted pendulum by the results in Table 1 which show the 

maximum steady state error when the pendulum is made to 

track ellipses of fixed size (the same size as in Fig. 1) but 

with different speeds. Variation of the reference signal 

frequency alone was done to emphasize that the zero 

dynamics manifold is what directly affects the accuracy of 

tracking, rather than the deviation of the output itself from 

the origin. As expected the steady state tracking error 

increases with increase in the speed at which the pendulum is 

required to traverse the path, even up to five orders of 

magnitude comparing results of ω1,2=0.5 rad/s and ω1,2 = 2 

rad/s. However, for the first three cases at least (in the case 

of the nonlinear controller), the tracking errors are still very 

small in relation to trajectories being tracked. Again, the 

improved tracking performance of the nonlinear approximate 

regulator over the standard linear regulator can be seen.   

Table 1 - Maximum steady state tracking error 

Frequency (rad/s) Max steady state error (m) 

 Nonlinear, k=3 Linear, k=1 

0.5 0.00000107 0.000351 

1.0 0.000449 0.0175 

1.5 0.0157 0.135 

2.0 0.139 0.471 

VI. CONCLUSION 

In this paper an output regulator was applied to the 

spherical inverted pendulum for the tracking of a series of 

elliptical paths. This is the first application of output 

regulation to this system. The solution to the regulator 

equations for the spherical inverted pendulum is more 

complex compared to the linear cart and rotary pendulums 

for which this approach has been applied to before. The 

approximation approach based on a Taylor series expansion 

of the system dynamics had to be adapted to this more 

complex system.  Simulations were conducted to evaluate the 

effectiveness of this approach and showed that tracking of a 

series of elliptical trajectories was achieved with very small 

steady state error. Comparison of a third order nonlinear 

approximate regulator to the standard linear regulator 

showed the benefit of the nonlinear approximate regulator as 

witnessed by greater steady state tracking performance. The 

application of output regulation allowed specific trajectories 

to be tracked which were unknown at the control design 

stage, giving an advantage over the non-causal tracking 

controllers that have recently been applied to the spherical 

inverted pendulum. 
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