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Abstract— An efficient algorithm for the optimal control
of a batch crystallization process with size-dependent growth
kinetics is proposed. By means of a unique diffeomorphism, new
independent coordinates for the time and size variables of the
underlying population balance equation are introduced, leading
to a closed infinite dimensional moment model. The posed
optimal control problem is solved using the minimum principle
for a simplified model with neglected natural feedback of the
nucleation mass into the crystallization kinetics. The solution
is obtained in analytical form, and it is shown to be unique.
Additionally, for the original optimization problem involving the
full process dynamics, a simple feasible sub-optimal solution, as
well as a lower and an upper bound for the cost, are suggested.

I. INTRODUCTION

A. Population balance equation

A batch crystallizer is made up of a large number of crystal
particles immersed in a dispersed phase system, constituted
by a continuous solvent liquid medium (typically, water)
and dispersed solute crystalline entities (molecules or ions),
in which, with regard to the crystal growth and nucleation
phenomena, a mass transfer of the solute from the liquid
to a pure solid crystalline phase occurs, see e.g. [1]. Such a
crystallization process is commonly modeled by a population
balance equation (PBE) of the form (see e.g. [2])

∂f

∂t
+
∂ (Gf)
∂`

= 0, ` > 0, t > 0, (1a)

with the associated boundary and initial conditions

f(t, 0) =
B(t)
G(t, 0)

, t ≥ 0, (1b)

f(0, `) = f0(`), ` ≥ 0, (1c)

where each particle is assigned the size (or, the internal)
coordinate `. The function f = f(t, `) represents the popu-
lation density function or particle size distribution, defined
as the number density of particles per unit length `. The
term f0(`) stands for the given initial density function of
the crystal seeds. The birth rate term B = B(t) counts the
number of born particles at the size ` = 0 in a unit time, and,
hence, it impacts the boundary condition (1b). G = G(t, `)
in the advection term in (1a) represents the growth rate of the
particle size which in general is a time- and size-dependent
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function. In this article, the following separability condition
for G(t, `) is assumed

G(t, `) = γ(`)G0(t), (2)

where γ(`) > 0 and G0(t) > 0 stand for the size-
dependent and size-independent factors, respectively. Note
that, in practice, γ(`) is given, while G0(t) is a priori not
known. Without loss of generality, we assume γ(0) = 1. The
separability condition (2) is widely used in literature. For
instance, this condition is satisfied by the Abegg-Stevens-
Larson (abbr. ASL) model with γ(`) = (1 + α`)z, z <
1, the linear Canning-Randolph (abbr. C-R) model with
γ(`) = 1 + α`, etc., see [1]. The latter linear model is well
suited for validation purposes of the proposed integration and
optimization algorithms in the article, since, therefore, closed
solutions are obtainable.

An accurate prediction of the evolution of the population
density function f = f(t, `) for given initial and operating
conditions in (1a-1c) can, in general, be challenging in that
the distribution may extend over orders of magnitude in
both, size and time, and changes in the distribution can
be very sharp, see [3]. Different solution methods, such as
the methods of moments and characteristics, and a variety
of numerical discretization schemes (e.g. the finite volume
schemes) have been developed in the past several decades
(e.g. [3]).

Our work focuses on the method of characteristics and
the method of moments, since some structural properties
revealed thereby will be useful for the development of the
essentially analytical integration and optimization schemes
that we propose in this article. The method of characteristics
is used to convert the PDE (1a) into a family of ODEs along
the characteristic curves in the (t, `)-plane. The method of
moments, at the other hand, introduces a closed system
of ODEs, involving the moments of the underlying density
function f=f(t, `), defined by the integral transforms

µi(t) =
∫ ∞

0

`if(t, `)d`, i = 0, 1, 2, . . . . (3)

Note that in a more complex setting, in particular, in the case
of size-dependent growth rate which is considered here, the
method of moments may get afflicted with the violation of
the closure condition.

B. Process kinetics

The fundamental force for crystallization from the solution
arises effectively from the level of supersaturation S, which
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is a measure of the difference between the solution con-
centration (or mass fraction) c and saturation concentration
(csat), S = c/csat with c = mc/(mw+mc), where mw is the
solvent and mc the solute mass. The saturation concentration
csat can be controlled by the temperature T using the
empirical model csat(T ) = a0 + a1T + a2T

2, where a0, a1,
and a2 are given empirical parameters. Within the so-called
metastable region of a moderately supersaturated solution,
the nucleation rate B and the growth rate G0 are driven by
the supersaturation level according to

B(t)=kb (S(t)− 1)bµ3(t), G0(t)=kg (S(t)− 1)g (4)

where kg , g, kb and b are positive empirical parameters, and
µ3 is the net 3rd moment of the density function. Note that
for most substances b > g.

For the completion of the process model, the PBE (1a-1c)
needs to be augmented by an additional algebraic equation
for the mass balance, which implicitly impacts the boundary
term B/G in (1b), and G in (1a), by providing a feedback
from the solid to the liquid phase

mc(t) = m0 − ρkv(µ3(t)− µ3,0) (5)

where mc(t) is the mass dispersed in the continuous phase,
µ3,0 = µ3,s(0) is the initial 3rd moment of the crystal seeds,
ρ is the particle mass density, and kv is a volume shape
factor, see [2].

C. Problem formulation

The population density function can be decomposed as
f(t, `) = fn(t, `) + fs(t, `), where fn = fn(t, `) arises from
the nucleation crystal particles, and fs = fs(t, `) refers to
the seed population. It is important to note that for the PBE
(1a)-(1c), involving a source and an advection term only [no
breakage and agglomeration!], the functions fn and fs do
not “mix”, in that no (t, `) exists, where both fn and fs
are non-zero. For the computation of fn and fs, each can be
associated a PBE, with a homogenous PDE of the form (1a),
with the respective boundary/initial conditions: fn(t, 0) =
B(t)/G(t, 0), t ≥ 0 and fn(0, `) = 0 for fn, and fs(t, 0) = 0
and fs(0, `) = f0(`), ` ≥ 0 for fs. Since (1a) is linear,
f = fn + fs is a solution of the PBE (1a)-(1c).

As a consequence, using (3), the 3rd moment can be
accordingly decomposed into µ3 = µ3,s + µ3,n, where

µ3,n(t)=
∫ ∞

0

`3fn(t, `)d`, µ3,s(t)=
∫ ∞

0

`3fs(t, `)d`. (6)

The general goal in a typical batch process is to produce
a sufficiently large amount of “mass” µ3f = µ3(tf ) within
a reasonable time scope 0 ≤ t ≤ tf , while guaranteeing a
certain level of product quality expressed, for instance, in
terms of the impurity defined by impf = µ3f,n/µ3f,s where
µ3f,n = µ3,n(tf ) and µ3f,s = µ3,s(tf ). Several [basically,
equivalent] optimization scenarios based on such require-
ments arise, with two constraints and one cost function stated
in terms of the variables tf , µ3f,s and µ3f,n.

In this paper, we consider the optimization problem

minimize
u(t)∈U, t∈[0,tf ]

µ3,n(tf ) subject to
µ3,s(tf ) =µ3f,sc

tf = tf,c
(7)

with fixed constants µ3f,sc and tf,c, and the compact set U
of admissible input values u(t), t ∈ [0, tf ]. Obviously, in this
scenario the final impurity impf = µ3,n(tf )/µ3,s(tf ) could
be equivalently used as penalization. Note further, that in our
scenario we explicitly use equality constraints, following the
results in [4] which show that the corresponding inequality
constraints on final values are always active [refer to the
discussion in Section III-C.2]. As the decision variable u =
u(t) one can consider either the temperature T = T (t)
or the supersaturation S = S(t). An input profile S =
S(t) determines uniquely the profile T = T (t), which is
ultimately used as the control variable in practice. With T as
the control input, U could be defined as U = [Tmin, Tmax].
For instance, the bounds on T can be determined by the
capabilities of the thermostat used for regulation. On the
other hand, the bounds on S, U = [Smin, Smax], restrict the
batch operation within the metastable region.

D. Related works

This work presents a systematic approach to the solution
of the optimal control problem based on the minimum prin-
ciple for a batch crystallization process with size-dependent
growth kinetics. The main ideas are firmly based and extend
the previous works of the authors in [5], [6] and [4]. In [5]
an infinite dimensional ODE system for the PBE (1a-1c) is
introduced, while [4] provides a near-optimal solution for
a batch crystallization process with size-independent growth
kinetics by making use of the minimum principle.

II. INFINITE DIMENSIONAL SYSTEM

A. Coordinate transformation

Consider the population balance equation in (1a-1c) with
(2). Introduce new independent coordinates (τ, λ) by

τ = φ(t), λ = ψ(`), t ≥ 0, ` ≥ 0 (8)

where the mappings φ and ψ are defined as the solutions of
the initial value problems

dφ
dt

= G0(t),
dψ
d`

=
1
γ(`)

, φ(0) = 0, ψ(0) = 0. (9)

As G0(t) > 0 and γ(`) > 0 are assumed to hold, the
functions φ : [0, tf ] → [0, τf ] and ψ : [0, `f ] → [0, λf ] are
strictly monotone and bijective. Hence, the inverse functions
t = φ−1(τ) and ` = ψ−1(λ) are uniquely defined. [Note: We
will rather use the notations t = t(τ) and ` = `(λ) instead.]
The size-independent factor G0(t) of the growth rate is a
priori unknown since it depends on the process evolution.
Therefore, τ = φ(t) and t = t(τ) must be integrated for on-
line. The size-dependent growth rate term γ(`) is, however,
typically given, implying that λ = ψ(`) [and its inverse
` = `(λ)] can be a priori computed using (9).
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λ

ττff̃b.c.(τ) = B̃
G̃0

(τ)

f̃ (τf , λ) = B̃
G̃0

(τf − λ), λ < τf

f̃ (τf , λ) = f̃0(λ− τf ), λ > τf

f̃ i
.c
.(

λ
)
=

f̃ 0
(λ

)

d
λ
d
τ
=
1f̃ =

co
ns
t

Fig. 1. Characteristic lines (dλ/dτ = 1) for the PBE (10a)-(10c).

The diffeomorphism maps (9) transform the original PBE
(1a-1c) into a simple transport equation

∂f̃

∂τ
+
∂f̃

∂λ
= 0, λ > 0, τ > 0 (10a)

f̃(τ, 0) =
B̃

G̃0

(τ), τ ≥ 0 (10b)

f̃(0, λ) = f̃0(λ), λ ≥ 0 (10c)

where the following settings hold

f̃(τ, λ) := γ(`(λ)) · f(t(τ), `(λ)) (11a)

B̃(τ) := B(t(τ)) (11b)

G̃0(τ) := G0(t(τ)) (11c)

f̃0(λ) := γ(`(λ)) · f0(`(λ)). (11d)

Equations (9) infer that the curves d`/dt = γ(`)G0(t) :=
G(t, `) map to dλ/dτ = 1 in the (τ, λ)-domain. It is the
solution of the both latter equations, that is,

∫ `
0

dξ/γ(ξ) =∫ t
0
G0(η)dη in the (t, `)-domain, and λ = τ in the (τ, λ)-

domain, which defines the boundary in the underyling do-
main which separates the two functions fs and fn, see
Section I-C. For any other initial conditions, (t = 0, ` > 0) in
the (t, `)-domain, and (τ > 0, λ = 0) in the (τ, λ)-domain,
the solutions represent the projected characteristic curves.
The characteristic curves for the PDE (10a), in particular,
are directly given by the initial data which are propagated
along the straight lines with unity slope, see Fig 1. The
evolution of the density function in (10a) is then explicitly
expressed in terms of the initial (i.e. seed) and boundary
condition (i.e. nucleation) density functions

f̃(τ, λ) =
{
f̃(τ − λ, 0) = B̃/G̃0(τ − λ), λ < τ

f̃(0, λ− τ) = f̃0(λ− τ), λ > τ.
(12)

As a consequence, the integration of the PBE (10a-10c)
reduces to the computation of the temporal evolution of
the boundary density function B̃/G̃0(τ). Therefore, next, a
generalization of the method of moments will be used.

B. Convolution method of moments

Notice that, by definition, f̃dλ = fd`, implying∫∞
0
f̃(τ, λ)dλ =

∫∞
0
f(t, `)d`, which means that the 0th

moment of the density function f , µ0, is an invariant of the
coordinate transformation (8)-(9). Differentiation of the left
hand-side term w.r.t. τ , after substitution of (10a) and integra-
tion by parts, reveals the ODE: µ̇0 = B̃

G̃0
(τ) [Note: The dot

operator hereafter refers to ∂/∂τ ]. Application of the same

procedure for the moments µi(τ) =
∫∞
0
`i(λ)f̃(τ, λ)dλ,

i = 1, 2, . . ., results with the following system of integro-
differential equations

µ̇0 =
B̃

G̃0

(τ), µ̇i = iµ̃i−1(τ), i = 1, 2, . . . (13a)

where we are forced to introduce the moments of the scaled
density function γ(`)f(t, `)

µ̃i(τ) :=
∫ ∞

0

`i(λ)γ̃(λ)f̃ (τ, λ) dλ, i = 1, 2, . . . , (14)

with γ̃(λ) := γ(ψ−1(λ)). A structural reduction and a better
insight into the process dynamics described by (13a) is
gained if, again, the moments µi and µ̃i are decomposed into
the moments arising from the nucleation and seed population:
µi = µi,n + µi,s, and µ̃i = µ̃i,n + µ̃i,s, i = 0, 1, 2, . . . , with

µi,n(τ) :=
∫ τ

0

`i(λ)
B̃

G̃0

(τ − λ)dλ, (15a)

µ̃i,n(τ) :=
∫ τ

0

`i(λ)γ̃(λ)
B̃

G̃0

(τ − λ)dλ, (15b)

µi,s(τ) :=
∫ ∞

0

`i(λ+ τ)f̃0(λ)dλ, (15c)

µ̃i,s(τ) :=
∫ ∞

0

`i(λ+ τ)γ̃(λ+ τ)f̃0(λ)dλ, (15d)

where, additionally, the transport equations (12) have been
substituted. It is hereof clear that the partial moments, µi,s
and µ̃i,s, arising from the initial density function are driven
by the “time” τ only, and, thus, can be integrated a priori,
independently on the process evolution.

From (4) and (5) it is clear that the driving term B̃/G̃0

in (15b) and (15b) is coupled to the 3rd physical moment
µ3 = µ3,s + µ3,n, in that [with a slight abuse of notation]

B̃

G̃0

=
B̃

G̃0

(u(τ), µ3(τ)) , (16)

where u = u(τ) may refer to the temperature T = T (τ)
or the supersaturation S = S(τ) as the input variable.
Moreover, the form of the net dynamics (13a) is inherited
by the moments µi,n and µ̃i,n, leading to a closed moment
model, involving an integro-differential equation

µ̇0,n =
B̃

G̃0

(u(τ), µ3,n(τ) + µ3,s(τ)) , (17a)

µ̇3,n = 3µ̃2,n(τ), (17b)

where µ3,n(0) = 0, and µ̃2,n = µ̃2,n(τ) and µ̃3,s = µ̃3,s(τ)
are given by the expressions (15b) and (15c), respectively.
Note that both equations are coupled by the terms B̃/G̃0 and
µ3,n, while the profile µ3,s(τ) is fixed by

µ3,s(τ) =
∫ ∞

0

`3(λ+ τ)f̃0(λ)dλ. (17c)

Note that all solutions can be back-transformed to the “real”
time t by including the equation

ṫ =
1
G̃0

(u(τ), µ3,n(τ) + µ3,s(τ)) , t(0) = 0. (17d)
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C. Internal moment model

Introduce the internal or eigenmoments νi(τ) of the den-
sity function f̃ = f̃(τ, λ) in the (τ, λ)-domain as

νi(τ) =
∫ ∞

0

λif̃(τ, λ)dλ, i = 0, 1, 2, . . . . (18)

Then, it can be easily verified that the latter form a closed
ODE structure in the τ−domain, which we will be referring
to as the internal model, given by

ν̇0 =
B̃

G̃0

(τ), ν̇i = iνi−1(τ), i = 1, 2, . . . (19)

This model is again inherited by the nucleation moments νi,n

ν̇0,n =
B̃

G̃0

(τ), ν̇i,n = iνi−1,n(τ), i = 1, 2, . . . (20)

and the seed moments νi,s, too

ν̇0,s = 0, ν̇i,s = iνi−1,s(τ), i = 1, 2, . . . (21)

where we use the decomposition νi = νi,n + νi,s with

νi,n(τ) =
∫ τ

0

λi
B̃

G̃0

(τ − λ)dλ, (22)

νi,s(τ) =
∫ ∞

0

(λ+ τ)if̃0(λ)dλ. (23)

From (21) it is easy to show that the evolution of the
moments νi,s = νi,s(τ) can be simply expressed by an ith

order polynomial in τ

νi,s(τ) =
∑i

k=0

(
i

k

)
νk,s(0) τ i−k, (24)

where νk,s(0) is the initial value of the moment νk,s. The
eigenmoments νi = νi(τ) can not be associated a particular
physical interpretation. However, as we now infer, they can
be conveninetly used for a series approximation of the
physical moments µi(τ) = µi,n(τ) + µi,s(τ) from (15a)
and (15c). Therefore, consider the expansion of `i(λ) in the
power series at λ = 0

`i(λ) =
∑∞

k=i
bkiλ

k, (25)

with coefficients bki being referred to as Bell coefficients,
and defined by

bki =
i!
k!
Bki

(
γ(0), Dγ(0), . . . , Dk−iγ(0)

)
. (26)

Here Bki stands for the multivariate Bell polynomial (see
[7]) in terms of the variables set by the operator D := γ d

d`
with D0 := 1 and Dj := D ·Dj−1, for j = 1, 2, . . ., where
Djγ(0) := Djγ(`)

∣∣
`=0

, j = 0, 1, . . . , k − i.
Substituting (25) in (15a) reveals the required expansion

of the moments µi,n in terms of the eigenmoments νk,n

µ0,n(τ) = ν0,n(τ), (27)

µi,n(τ) =
∑∞

k=i
bkiνk,n(τ), i = 1, 2, . . . . (28)

Using the Taylor polynomial representation, `i(λ) =∑p
k=i bkiλ

k +Rp(λ). Then, there exists a positive constant

Mp such that the remainder term is bounded, i.e. |Rp(λ)| ≤
Mpτ

p+1/(p+ 1)! for 0 < λ < τ . Therefore,

µi,n(τ) =
∑p

k=i
bkiνk,n(τ) +Op(τ), (29)

where |Op(τ)| < µ0,nMpτ
p+1/(p + 1)!, and Op(τ) → 0 as

p → ∞. Hence, the moment µi,n can be approximated at
any level of accuracy by the finite sum in (29).

By applying the same derivation lines an analogous expan-
sion to (29) can be derived for the moments µi,s in terms of
the eigenmoments νi,s. Indeed, using (24)

µip,s(τ) =
∑p

k=i
aki τ

k, (30)

where we introduce the parameters

aki =
∑p

j=max(k,i)
bji

(
j

k

)
νj−k,s(0), k = 0, 1, . . . , p. (31)

This leads us to an ODE system, which we refer to as the
internal model given by

ν̇0,n = B̃
G̃0

(u(τ), µ3p(τ)) (32a)

ν̇1,n = ν0,n(τ) (32b)
· · ·

ν̇p,n = pνp−1,n(τ) (32c)

where µ3p = µ3p,n + µ3p,s, that is

µ3p(τ) =
∑p

k=3
bk3νk,n(τ) +

∑p

k=0
ak3 τ

k. (32d)

For p < ∞, the internal model provides an approximate
ODE system that can be used for the computation of the
evolution of the moment µ3 = µ3(τ), and of the density
function f̃ = f̃(τ, λ) using (16) and (12). For p = ∞,
the solutions converge to the exact ones provided by the
convolution method of moments using (17a)-(17c).

III. OPTIMAL CONTROL

A. Optimization problem

Referring to the introductory notes on the problem formu-
lation in Section I-C, the optimization problem is restated
here in the τ -domain, as follows

minimize
u(τ)∈U, τ∈[0,τf ]

µ3,n(τf )subject to
τf = τf,c

t(τf ) = tf,c.
(33)

Note that the first equality constraint µ3,s(τf ) = µ3f,sc in (6)
is here substituted by τf = τf,c. With regard to (17c), this
is an equivalent constraint. Indeed, (17c) infers that given
µ3,s(τf ) = µ3f,sc, the final time instant τf is fixed at some
value τf,c, which can be obtained by solving numerically
µ3,s(τf ) = µ3f,sc in (17c) for τf .

We will find it convenient to select the inverse of the
growth rate as the input variable, namely, we use u(τ) ∧=
1/G̃0(τ), and set fixed bounds on this variable, that is

U =
[
( 1
G0

)
min

, ( 1
G0

)
max

]
. (34)

Moreover, we will allow ( 1
G0

)
max

to be chosen arbitrarily
large. Note that the limitation ( 1

G0
)
min

restricts the operation
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within the metastable region. Due to the second equation
in (4), the selection of 1/G̃0 as the input is an equivalent
reformulation of the supersaturation as input. Of course,
for a given trajectory u = u(τ), the corresponding optimal
profile of the cooling temperature T = T (τ) will be uniquely
determined by the evolution of the system dynamics, as well.
Moreover, it is easy to check that with this definition for u

B̃

G̃0

(u, µ3) = kb k
− b

g
g u−

b−g
g µ3. (35)

B. Idealized internal moment model

For convenience, introduce the extended system state x =
[x1, x2, . . . , xp+2]T , where

x1
∧=νp,n, x2

∧=νp−1,n, . . . , xp+1
∧=ν0,n, xp+2

∧=t.

The approximate internal model (32a-32c) including the time
equation (17d) reads

ẋ1 = px2 (36a)
ẋ2 = (p− 1)x3 (36b)
· · ·

ẋp = xp+1 (36c)

ẋp+1 = B̃
G̃0

(u(τ), µ3p,s(τ) + µ3p,n(τ)) (36d)

ẋp+2 = u(τ), (36e)

with u(τ) ∧= 1/G̃0(τ) as the control input. Now, we propose
a model simplification that will substantially alleviate the
solution to our optimal control problem. We will, namely,
negelect the feedback of µ3p,n(τ) =

∑p
k=3 bk3xp−k+1 (τ),

in the term B̃/G̃0 in (36d), that is, replace the latter by

ẋp+1 ≈ B̃

G̃0

(u(τ), µ3p,s(τ)) , (36f)

as well as its feedback in the mass-balance law (5), i.e.

mc(τ) ≈ m0 − ρkv(µ3p,s (τ)− µ3,0). (36g)

Effectively, the entire effect of µ3p,n into the crystallization
kinetics (4)-(5) is neglected. This is intuitively justified by
the fact that we expect to keep µ3p,n(τ) � µ3p,s(τ) for
all τ ∈ [0, τf ], as the task of the optimization scheme is
the very minimization of µ3p,f,n = µ3p,n(τf ). In the sequel,
we refer to this as the idealization condition, and to model
(36a)-(36g) as the idealized internal moment model. On the
other hand, the model (36a)-(36e), where the feedback of
µ3p,n in the process kinetics is retained, will be referred to
as the real internal moment model. Note that for p =∞, the
latter represents the exact model (17a)-(17d) given by the
convolution method of moments.

Remark: By neglecting the feedback of µ3p,n(τ) to the
term B̃/G̃0, (36a-36d) turns to a linear time-invariant system
with a redefinition of the input as u1 = u1−b/gµ3p,s. This is
a useful fact, as the existing rich set of the control tools for
linear systems can be applied here without further ado.

C. Optimal control solutions

Following the model reduction by the idealized internal
model in the previous section, the optimal control problem
(33) must be slightly reformulated as

minimize
u(τ)∈U, τ∈[0,τf ]

µ3p,n(τf ) subject to
τf = τp,f,c

t(τf ) = tf,c.
(37)

where the constraint constant τp,f,c is computed by solving
µ3p,s(τf ) = µ3f,sc for τf using (30).

1) Minimum principle: Next, we consider the necessary
conditions for an optimal trajectory. With reference to (29)
our cost function is given by

φ (x (τf ) , τf ) =
∑p

k=3
bk3xp−k+1 (τf ) , (38)

leading to the Hamiltonian H (x, u,ψ, τ) = ψT ẋ

H(x, u,ψ, τ) =
= pψ1x2 + (p− 1)ψ2x3 + . . .+ ψpxp+1 (39)

+ ψp+1
B̃
G̃0

(u, µ3p,s (τ)) + ψp+2u,

where ψT = [ψ1, . . . , ψp+2] includes the adjoint state of x,
defined by ψ̇ = −∂H/∂x, i.e.

ψ̇1 = 0, (40a)

ψ̇2 = −pψ1, ψ̇3 = −(p− 1)ψ2, . . . , ψ̇p+1 = −ψp, (40b)

ψ̇p+2 = 0. (40c)

The initial boundary conditions for the states are x (0) = 0,
while the final states x(τf ) are required to lie on the surface
m(x(τ)) := xp+2(τ) − tf,c = 0, and the final “time” τf is
fixed. The boundary conditions for ψ∗(τf ) read, see [8]

∂φ

∂x
(x∗(τf ))−ψ∗(τf ) = C

∂m

∂x
(x∗(τf )) (41)

where C ∈ R is an unknown constant. Then the following
terminal conditions for the adjoint states result

ψk (τf ) = bp−k+1,3, k = 1, 2, . . . , p− 2, (42a)

and
ψp−1 (τf ) = ψp (τf ) = ψp+1 (τf ) = 0, (42b)

since xp+1
∧= ν0,n, xp

∧= ν1,n and xp−1
∧= ν2,n are neither

part of the cost function nor of the constraints. Using the
latter conditions, the evolution of all adjoint states ψk =
ψk(τ) for k = 1, 2, . . . , p+ 1 from (40a-40b) can be readily
computed in the analytic form

ψk(τ) =
∑k

j=1
bp−j+1,3

(
p− j + 1
k − j

)
(τf − τ)k−j . (43)

Hereby, one has to pay attention that for the parameters b0,3,
b1,3 and b2,3 which enter the expression (43) for the costates
ψp−1, ψp, and ψp+1, the condition b0,3 = b1,3 = b2,3 = 0
applies. Moreover, using (25), it can be directly shown that
the following useful fact holds

lim
p→∞

ψp+1(τ) = `3(τf − τ). (44)
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To summarize, the only unknown variable remains the costate
ψp+2, which is constant [see (40c)], ψp+2(τ) = const.

According to the minimum principle, the optimal control
input ǔ∗p must satisfy

ǔ∗p = argmin
u∈U

H (x, u,ψ, τ)

= argmin
u∈U

(
ψp+1

B̃
G̃0

(u, µ3p,s) + ψp+2u
)

= argmin
u∈U

(
ψp+1kbk

− b
g

g u−
b−g

g µ3p,s + ψp+2u

)
, (45)

where U is the compact set of the allowed input values (34).
[Note: The accent ’̌ ’ in ǔ∗p is used to discriminate it from the
optimal solution u∗p, associated with the real internal moment
model, see Section IV!] A candidate for the minimizing
solution, which we denote by ǔop, is obtained by solving
∂H/∂u = 0 for u

ǔop (τ) =
1
kg

(
ψp+1 (τ)
ψp+2

b− g
g

kbµ3p,s (τ)
) g

b

. (46)

2) Optimal solution, p < ∞: Consider the predominant
case in practice with b > g. Due to ψp+1(τ) > 0 for
all τ ∈ [0, τf ) (refer to (44)), the first summand in (45)
possesses a hyperbolic shape, taking the maximum value at
umin = ( 1

G0
)
min

, and the minimum at umax = ( 1
G0

)
max

. The
situation ψp+2 ≤ 0 would obviously lead to the conclusion
ǔ∗p = umax. However, a sufficiently large umax could be
always defined, such that xp+2(τf ) = tf > tf,c, inferring
that the time-constraint is violated. Hence, ψp+2 > 0 must
hold. [In addition, this confirms, that the equality constraint
t(τf ) = tf,c must be active, as remarked in the introduction
in Section I-C.] The term inside the parentheses in (46) is
then positive, and the Hamiltonian function in (39) strictly
convex. As time progresses the nonlinear term in (45)
diminishes, and, eventually, at τ = τf it becomes zero since
according to (42b), ψp+1(τf ) = 0. Hence, a “time” instant
τc ∈ (0, τf ) must exist, such that ǔop(τ c) = umin, and
ǔop (τ) < umin for τ ∈ (τ c, τf ], see Fig 2. In other words,
the optimal solution ǔ∗p reads

ǔ∗p =
{

max(ǔop, umin), 0 ≤ τ < τ c

umin, τ c ≤ τ ≤ τf . (47)

[Note: As indicated in Fig. 2 by dashed lines, and re-
ferring to (46), the behavior of the function ǔop (τ) can
take different shapes for τ ∈ [0, τ c], depending on the
product ψp+1(τ)µ3p,s(τ), whereby the first term is strictly
decreasing, and the second one strictly increasing in τ . Of
course, for some τ in this interval, ǔop (τ) < umin may
happen. Hence, we need the max operator in (47).]

3) Optimal solution for p → ∞: Due to the approxima-
tion by the finite dimensional model (36a-36d), the obtained
solution ǔ∗p is itself an approximation of the optimal solution
ǔ∗∞, which refers to the infinite dimensional system with
p =∞. The latter follows directly from (47)

ǔ∗∞ =
{

max(ǔo∞, umin), 0 ≤ τ < τ c

umin, τ c ≤ τ ≤ τf . (48)

ττfτc

u

( 1
G0

)min

ǔ∗p(τ)

ǔop(τ) Area = ť∗f

0

Fig. 2. The optimal solution profile.

where, ǔo∞ = limp→∞ ǔop with regard to (44), reads

ǔo∞ (τ) =
1
kg

(
kb
ψp+2

b− g
g

`3(τf − τ)µ3,s (τ)
) g

b

. (49)

4) Convolution method: Consider the convolution integral
(15a) used for the computation of µ3,n = µ3,n (τ). Introduce
a modified convolution integral

µ̄3,n(τ) =
∫ τ

0

`3(τf − λ)
B̃

G̃0

(λ)dλ, (50)

and, observe by comparing to (15a), that µ̄3,n(τf ) =
µ3,n(τf ). Given the idealization condition, we can obviously
dispense with the exact evolution of the variable µ3,n(τ) for
τ ∈ [0, τf ], and keep track of its final value only instead.
Introduce now the states x1

∧= µ̄3,n and x2
∧= t, and consider

the ODE model

ẋ1 = `3(τf − τ)
B̃

G̃0

(u(τ), µ3,s(τ)) , ẋ2 = u(τ), (51)

where we again use the idealization condition (36f). Re-
ferring to our original optimal control problem (33), the
Hamiltonian reads

H = ψ1`
3(τf − τ)kbk

− b
g

g u−
b−g

g µ3,s(τ) + ψ2u, (52)

with ψ̇1 = −∂H/∂x1 and ψ̇2 = −∂H/∂x2. This reveals
the fact that both adjoint states are constant ψ1 = const and
ψ2 = const. From (41) it follows ψ1 = 1, since φ = x1(τf ).
Then, the unconstrained minimizing solution, obtained by
solving ∂H/∂u = 0 for u, reads

ˇ̄uo (τ) =
1
kg

(
kb
ψ2

b− g
g

`3(τf − τ)µ3,s (τ)
) g

b

. (53)

Hence, we derive exactly the same optimal solution as for
p =∞.

5) Uniqueness of the optimal solution: Since the profile
of the product ψp+1 (τ)µ3p,s (τ) in (46) is fixed in τ , ψp+2

is the only “tuning” parameter influencing the process length

ť∗f =
∫ τf

0

ǔ∗p(τ) dτ (54)

by scaling the unconstrained optimal solution ǔop(τ), as
indicated in Fig. 2. From (46) it is clear that ǔop(τ) is a
strictly decreasing function in ψp+2, and a value Ψ must
exist, such that for ψp+2 > Ψ, max(ǔop(τ)) ≤ umin. This
interval is, however, not of interest, as it is dropped by
the condition tf,c > uminτf , which is mandatory, otherwise
the optimal problem (33) would have been infeasible. As
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u∗p (τ)
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3p,n (τ)

µ̂3p,n (τ)

ť∗p (τ)

t∗p (τ)

t̂p (τ) = ť∗p (τ)

Fig. 3. Error analysis due to the idealization condition: a) Idealized model,
controlled by ǔ∗p; b) Real model excited by (the same input) ǔ∗; c) Real
model under optimal control ǔ∗p. [Abbr., CMOM: Convolution method of
moments (Section II-B), and IMM: Internal moment model (Section II-C).]

a consequence, in the interval of interest, 0 < ψp+2 < Ψ,
the process duration is itself strictly decreasing in ψp+2, as
well. The value at ψ̌∗p+2 has to be selected such that the
time constraint in (33) and (37) is satisfied. Such a solution
is then unique, and as a consequence, the optimal solution
constructed by (47) and (48) is itself unique.

IV. SUB-OPTIMALITY BOUNDS

The solution of the optimal control problem yields not only
ǔ∗p (τ), where p <∞ or p =∞, but also the state trajectory
x̌∗ (τ) and, amongst others, the supersaturation Š∗p (τ). For
realization of the profile ǔ∗p (τ) by manipulating Ť ∗p (t) in
the “real” time t, two further steps need to be accomplished:

(i) Compute Ť ∗p (τ) by solving the algebraic equation
csat(Ť ∗p (τ)) = č∗p (τ) /Š∗p (τ) for Ť ∗p (τ) in τ ∈
[0, τf ], where č∗p (τ) = m̌∗c,p (τ) /(mW +m̌∗c,p (τ)), and
m̌∗c,p (τ) is computed using the simplified mass balance
equation (36g), (see Section I-B);

(ii) Convert Ť ∗p (τ) to Ť ∗p (t) using the trajectory ť∗p (τ) =
x̌∗p+2 (τ).

The computed temperature profile Ť ∗p (t) [again, p may be
finite or∞], which is optimal for the idealized internal model
(36a)-(36f) is not optimal w.r.t. a model corresponding to a
different value of p, or a model which retains the feedback
of µ3p,n (t) in the crystallization kinetics (4)-(5) (the real
internal moment model). The optimality of the profile Ť ∗p (t)
is then lost for two reasons: either the cost function is not
minimal, while the constraints are held when the input profile
Ť ∗p (t), t ∈ [0, tf ] is applied, or, more likely, some or all
constraints are violated. In the latter case, comparing the
costs does not make sense.

In this section, we discuss the errors in the solution of
the optimal control problem resulting from the use of the
idealization conditions (36f)-(36g). Thereby, at our focus are
the idealized and the real internal moment models with a
fixed order p, where p ≤ ∞. Ultimately, we will construct

a feasible sub-optimal temperature profile in the “real” time,
T̂ (t), which guarantees the constraints, and provides an upper
bound for the minimal possible cost.

Therefore, consider Fig. 3, with three scenarios of interest
depicted schematically. All contain a dotted block for the
computation of the respective temperature profiles according
to the method explained under the item (i). Note that, thereby,
for the schemes in Figs. 3b) and 3c), in (i), the mass balance
law (5) in the τ -domain with µ3p (τ) = µ3p,s(τ) + µ3p,n(τ)
is to be used instead of (36g). Fig. 3a) refers to the idealized
internal moment model (36a)-(36f): notice that the feedback
from µ̌∗3p,n is missing, while in the real moment model in
Figs. 3b) and 3c) the feedback is present. The scenarios in
Figs. 3b) and 3c) differ, in that the scheme in Fig. 3b) is
driven by the idealized optimal control ǔ∗p, while the one in
Fig. 3c) is controlled by the correct [yet unknown!] optimal
solution u∗p.

From (35) it follows that for µ3p,n ≥ 0 and any u

B̃
G̃0

(u∗p, µ3p,s + µ3p,n) ≥ B̃
G̃0

(u∗p, µ3p,s).

Note also that (B̃/G̃0)′(τ) ≥ (B̃/G̃0)′′(τ) for 0 ≤ τ ≤
τf , implies µ′3p,n (τ) ≥ µ′′3p,n (τ) [since (36a)-(36d) is a
chain of integrators], where µ′3p,n (τ) and µ′′3p,n (τ) represent
the responses corresponding to the inputs (B̃/G̃0)′(τ) and
(B̃/G̃0)′′(τ), respectively. As a consequence, for any fixed
input u (τ) applied to both schemes in Figs. 3a) and 3c),
the resulting µ3p,n (τ) in Fig. 3c) will be larger than that in
Fig. 3a) for all 0 ≤ τ ≤ τf . In particular, the cost µ3p,n(τf )
in Fig. 3c) is not lower than that in Fig. 3a). Therefore, if
u (τ) = u∗p (τ) would be applied to the idealized model in
Fig. 3a), the resulting cost µ̄3p,n(τf ) would be lower or equal
to µ∗3p,n(τf ), while the final time t̄f would be equal to t∗f ,
indicating that the time constraint in the optimal problem (37)
is held. Moreover, as µ̌∗3p,n(τf ) ≤ µ̄3p,n(τf ), we conclude
µ̌∗3p,n (τf ) ≤ µ∗3,n (τf ).

Next, we apply the idealized optimal control ǔ∗p (τ) as
the input to the real model in Fig. 3b). [Note: The resulting
system variables in this scenario are denoted by the hat ’̂ ’
attribute, for instance, T̂p (τ), t̂p (τ), µ̂3p,n (τ).] Again, the
time constraint is held, that is, t̂p,f = ť∗p,f = tf,c. However,
as ǔ∗p (τ) is not the optimal solution for the underlying
model, µ∗3p,n (τf ) ≤ µ̂3p,n (τf ). Hence, we reach to the
conclusion

µ̌∗3p,n (τf ) ≤ µ∗3p,n (τf ) ≤ µ̂3p,n (τf ) . (55)

Finally, for realization of ǔ∗p (τ) in Fig. 3b), the resulting
profile T̂p (τ) has to be transformed to T̂p(t) in the “real”
time by making use of t̂p(τ), which, as indicated in the
figure, coincides with the ť∗p (τ) in the item (ii).

To summarize, we suggest the input profile T̂p = T̂p(t),
t ∈ [0, tf,c], as a convenient sub-optimal solution to the
optimal control problem (37) for the real internal moment
model (36a)-(36e) [the feedback of µ3p,n in the process
kinetics is present!]. Note that this is a feasible solution, in
that it guarantees both constraints, tf = tf,c, and τf = τf,c
(i.e. , µ3,s(tf ) = µ3f,sc). Additionally, according to (55),
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the upper and lower bounds for the minimal possible cost
µ∗3p,n (τf ) are available, too. In particular, for the exact model
given by (17a)-(17d), or the infinite dimensional real internal
moment model, use T̂∞ as the near-optimal solution.

V. NUMERICAL EXAMPLE

Figs. 4 and 6 show the optimal control solutions for the
idealized internal moment model for p = 8 (ǔ∗p, Ť ∗p ), and p =
∞ (ǔ∗∞, Ť ∗∞), as well as the corresponding sub-optimal ones
for the real internal moment model (T̂p and T̂∞), computed
using our approach, in the τ - and t-domain, respectively. The
computed optimal trajectories exhibit the common steep drop
in the temperature at the end, corresponding to a [not shown]
surge in the supersaturation profile. In addition, the constant
tails, ǔ∗p = ( 1

G0
)
min

and ǔ∗∞ = ( 1
G0

)
min

, at the process end,
are clearly visible, as predicted in Section III-C, refer to
Fig. 2.

In Fig. 5 we plot the resulting evolution of the third
moments: µ3,n and µ3,s. A large zooming shows a tight
match of all cost function values µ̌∗3p,n, µ̌∗3∞,n, µ̂3p,n and
µ̂3∞,n at t = tf,c = 100[min], which confirms the near-
optimality of our sub-optimal solutions T̂p(t) and T̂∞(t).
Towards the end, the effect of µ3p,n and µ3∞,n via the mass-
balance law (5) in the process kinetics, becomes substantial,
leading to a noticable correction in the profiles of T̂p and
T̂∞, see Figs. 4 and 6.

Note that the parameters and initial conditions for the
case study are adopted from [6], and are listed in Table I.

Process parameters:

kb = 3.4177 · 107 1
m3 s

; b = 2.3463; kg = 1.3718 · 10−5 m
s ; g = 0.7253

a0 = 0.0257; a1 = 1.2 · 10−3 1◦C ; a2 = 3.442 · 10−5 1
◦C2 ; ρ = 1250

kg

m3 ; kv = 0.0288

Linear C-R model: γ(ℓ) = 1 + αℓ ; α = 400 1
m ;

Initial conditions:

f0(ℓ) = 1
η0
· N(ℓ); N(ℓ) = N (ℓ; µ̄1, σ

2
1 ) +N (ℓ; µ̄2, σ

2
2 ));N → normal distribution

µ̄1 = 8 · 10−4; σ1 = 1.7 · 10−4; µ̄2 = 16 · 10−4; σ2 = 2.5 · 10−4; η0 = ms
ρkv

∫ ∞
0 ℓ3N(ℓ)dℓ

ms = 2.5 · 10−3kg; mw = 0.8017 kg; m0 = 0.09915 kg

TABLE I
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Ť∗∞
T̂p

T̂∞

Fig. 6. Control in t-domain.

Moreover, tf,c = 100 [min], ( 1
G0

)
min

= 5 [min/mm], and
µ3f,sc = 1100 [cm3] are used. As a case study, the linear
model with γ(`) = 1 + α` has been utilized.

VI. CONCLUSION

We have presented a systematic method for the solution to
the optimal control problem for a batch crystallizer with size-
dependent growth kinetics. The method is based on a trans-
formation of the independent time and size variables of the
underlying population balance equation that eventually leads
to a closed infinite dimensional moment model and its finite
order approximation. The goal of the posed optimization
problem consists in minimizing the nucleation mass, while
producing a specified amount of the mass of grown crystal
seeds, within some given time scope. The optimal control
problem is solved using the minimum principle for both,
a finite and an infinite dimensional idealized model, where
the entire feedback of the nucleation mass into the process
kinetics is neglected. A sub-optimal cooling temperature
profile which guarantees the constraints is suggested as a
simple and feasible near-optimal solution for the optimiza-
tion problem involving the exact model. An upper and a
lower bound for the cost are provided, as well. It has been
argued and illustrated by a numerical example, that the error
is sufficiently small when the goal consists in suppressing
the nucleation.
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