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Abstract— This paper focuses on the closed-loop stability
analysis of single-input-single-output (SISO) systems subject
to input (or output) delays in the presence of PID-controllers.
More precisely, using a geometric approach, we present a simple
and user-friendly method for the closed-loop stability analysis
as well as for the fragility of such PID controllers. The proposed
approach is illustrated on several examples encountered in the
control literature.

Index Terms— PID, Delay, SISO, Fragility, Geometry

I. INTRODUCTION

In this paper, inspired by the geometric ideas developed

by Gu et al. [5] we start by developing a simple method to

derive the stability regions in the gain parameters space of a

PID-controller for a SISO system subject to (constant) time-

delay. And next, we propose a simple algorithm to analyze

the fragility of a given PID-controller for any SISO system

subject to I/O delays. The method is based on the Implicit

Function Theorem [6] and related properties, and requires

three “ingredients”:

(i) the construction of the stability crossing boundaries

(surfaces) in the parameter-space defined by ”P” (pro-

portional), ”I” (integral) and ”D” (derivative) gains,

(ii) the explicit computation of the crossing direction (to-

wards stability or instability) when such a surface is

traversed,

(iii) finally, the explicit computation of the distance of some

point to the closest stability crossing boundaries.

In the procedure above, the first step sends back to the

D-decomposition method suggested by Neimark [13] in the

40s (see [9] for further comments) or to the parameter space

approach (see, for instance, [1], [3] or [15] and the references

therein). In the sequel, the stability crossing boundaries

(surfaces for PID, curves for PI or PD controllers) represent

the collection of all points for which the corresponding

characteristic equation of the closed-loop system has at least

one root on the imaginary axis. These boundaries define a

”partition” of the parameter-space in several regions, each
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region having a constant number of unstable roots for all

the parameters inside the region. Next, using an argument

based on implicit function theorem one derives if a region has

more or fewer unstable roots compared with its neighboring

regions. This allows to detect the regions with no unstable

roots which correspond to controller gains guaranteing the

stability of the closed-loop system. This methodology has

also advantages from the robustness point of view. Precisely,

choosing controller gains inside a stability region and far

from all the stability crossing boundaries that bound the

region, the stability of the closed-loop system is ensured even

for some small bounded variations of the controller gains.

II. THE FREQUENCY MODEL

For the sake of brevity, let us consider now the class of

strictly proper SISO open-loop systems with I/O delays given

by the transfer function:

G(s):=
P (s)

Q(s)
e−sτ = cT (sIn −A)

−1
be−sτ , (1)

where
(

A, b, cT
)

is a state-space representation of the open-

loop system. As mentioned in the Introduction, our aim is

two-fold. First, design a PID controller

C(s) = k

(

1 + Tds+
1

Tis

)

= kp + kds+
ki
s

(2)

that stabilizes the plant (1). Our second goal, is to derive

an appropriate PID controller (k∗p, k
∗
d, k

∗
i ) and the largest

positive value d such that the controller (2) stabilizes the

system (1) for any kp, kd and ki, as long as
√

(

kp − k∗p
)2

+ (kd − k∗d)
2
+ (ki − k∗i )

2
< d.

It is clear that the closed-loop dynamics is characterized by

the equation:

1 +G(s)C(s) = 0, (3)

which rewrites as:

f(s; kp, kd, ki) :=
1

G(s)
+

(

kp + kds+
ki
s

)

= 0. (4)

Our approach follows the lines presented in [8], [11]-

[12]. More precisely, we want to derive the stability

crossing boundaries T which is the set of parameters

(kp, kd, ki) ∈ R3
+ such that (4) has imaginary solutions.

As the parameters (kp, kd, ki) cross the stability crossing

boundaries, some characteristic roots cross the imaginary

axis.We also consider Ω = {ω ∈ R | ∃(kp, kd, ki) ∈
R3

+ such that f(jω; kp, kd, ki) = 0} the set of frequencies

where the number of unstable roots of (4) changes. The set

Ω will be called stability crossing set.
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III. STABILITY CROSSING CHARACTERIZATIONS

Considering that Ω is known, the stability crossing bound-

aries are simply characterized by:

Proposition 1: The stability crossing boundaries associ-

ated to (4) are described as follows:















kp = −ℜ

(

Q(jω)

P (jω)
ejωτ

)

ki = kdω
2 + ωℑ

(

Q(jω)

P (jω)
ejωτ

) , ∀ω ∈ Ω. (5)

Proof: From its definition, T is the set of parameters

(kp, kd, ki) ∈ R3, for which exists at least an ω ∈ Ω
such that f(jω, kp, kd, ki) = 0. Therefore, both the real

and the imaginary parts of f(jω; kp, kd, ki) have to be zero.

Straightforward computation shows that:

ℜf(jω; ·) = kp + ℜG(jω)−1,

which leads to the first relation stated in (5). On the other

hand,

ℑf(jω; ·) = ℑG(jω)−1 + kdω − ki/ω,

which allows us to deduce the second relation in (5).

Remark 1: For any fixed ω∗ ∈ Ω, one obtains a section of

a stability crossing surface which consists in a straight line

parallel to the (kd, ki) plane and passing through the point
(

−ℜ

(

Q(jω)

P (jω)
ejωτ

)

, 0, ωℑ

(

Q(jω)

P (jω)
ejωτ

))

. The slope of

this line in the (kd, ki) plane is always positive and is given

by ω2.

Remark 2: From the Proposition 1 it is clear that ki = 0
represents a boundary.

Remark 3: Let the relative degree of the system (1) be

ρ = 1. Then, the closed-loop system (1) becomes a system

of neutral-type (see, e.g., [7], [9]) and
(

kp,

∣

∣

∣

∣

qn
pn−1

∣

∣

∣

∣

, ki

)

and

(

kp,−

∣

∣

∣

∣

qn
pn−1

∣

∣

∣

∣

, ki

)

belong to the stability crossing surfaces. Here, pn−1 and qn
represent the leading coefficients of the polynomials P (s)
and Q(s), respectively.

A. Stability crossing sets

In the sequel, we present a practical methodology to derive

the stability crossing set. For the sake of brevity, we suppose

the following technical assumption is satisfied:

Assumption 1: There exist some bounds
(

k∗p, k
∗
p

)

,
(

k∗d, k
∗
d

)

and
(

k∗i , k
∗
i

)

of the controller gains.

These bounds can be arbitrarily fixed and, in principle,

they are chosen by the designer according to the physical

constraints of the model/controller. In this context, when

Assumption 1 holds, the section of the stability crossing

surface obtained for a fixed ω ∈ Ω reduces to a segment

(see Remark 1).

Proposition 2: Consider that Assumption 1 holds. Then

the stability crossing set Ω is a union of bounded intervals

consisting in all frequencies that simultaneously satisfy the

following conditions:















k∗p ≤ −ℜ

(

Q(jω)

P (jω)
ejωτ

)

≤ k∗p

∃ k∗d ≤kd≤ k∗d s.t. k∗i ≤ kdω
2+ ωℑ

(

Q(jω)

P (jω)
ejωτ

)

≤k∗i .

(6)

Proof: The characterization of the stability crossing set

Ω given by (6) follows straightforward from (5) and Assump-

tion 1. In order to prove the boundedness of the crossing set

Ω, we notice that due to the assumption that the transfer G(·)
is strictly proper, one has lim

ω→+∞

∣

∣G(jω)−1
∣

∣ = +∞. In other

words, this means that either lim
ω→+∞

∣

∣ℜG(jω)−1
∣

∣ = +∞ or

lim
ω→+∞

∣

∣ℑG(jω)−1
∣

∣ = +∞, which contradicts either the first

relation in (6) or the second one.

Remark 4: Propositions 1 and 2 lead to the following

algorithm to determine both the stability crossing set Ω and

the stability crossing boundaries T :

• Step 1: One solves the system k∗p ≤ −ℜ
1

G(jω)
≤ k∗p

getting a union of intervals.

• Step 2: For all ω derived at the previous step one

computes kp and derive the equation of the line (kd, ki)
given by the second equation in (5).

• Step 3: Finally, one keeps only those frequencies

ω for which the line (kd, ki) derived at

the previous step intersects the rectangle

[(k∗d, k
∗
i ); (k

∗
d , k

∗
i ); (k

∗
d , k

∗
i ); (k

∗
d, k

∗
i )].

Consider now, that either kd or ki is fixed. Let us also denote

by Th, h ∈ {i, d} the crossing curve when d or i is fixed and

consider the following decomposition into real and imaginary

parts:

R0 + jI0 = j
∂f(s; kp, kh)

∂s

∣

∣

∣

∣

s=jω

, (7)

R1 + jI1 = −
∂f(s; kp, kh)

∂kh

∣

∣

∣

∣

s=jω

, (8)

R2 + jI2 = −
∂f(s; kp, kh)

∂kp

∣

∣

∣

∣

s=jω

. (9)

Then, since f(s; kp, kh) is an analytic function of s, kp and

kh, the implicit function theorem indicates that the tangent

of Th can be expressed as









dkp
dω

dkh
dω









=

(

R2 R1

I2 I1

)−1(
R0

I0

)

=
1

R1I2 −R2I1

(

R1I0 −R0I1

R0I2 −R2I0

)

,(10)

provided that

R1I2 −R2I1 6= 0. (11)
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It follows that Th is smooth everywhere except possibly at

the points where either (11) is not satisfied, or when

dkp
dω

=
dkh
dω

= 0. (12)

Remark 5: If (12) is satisfied, then straightforward com-

putations show us that R0 = I0 = 0. In other words, s = jω
is a multiple solution of (15).

B. Classification of the stability crossing boundaries

It is worth noting here that kp, kd and ki continuously

depend on ω. Therefore, in order to classify the stabil-

ity crossing boundaries we will first classify the intervals

belonging to the stability crossing set. Precisely, a deeper

analysis of Proposition 2 allows us to say that ω∗ is an end of

an interval belonging to Ω if and only if one of the following

condition is satisfied:

• Type 1: −ℜ
1

G(jω∗)
= k∗p , where k∗p is either k∗p = k∗p

or k∗p = k∗p . In this case, ω∗ ∈ Ω and the stability

crossing surface approach a segment parallel to the

(kd, ki) plane given by kp = k∗p and

ki = kd · (ω
∗)2 + ω∗ℑ

1

G(jω∗)
,

k∗d ≤ kd ≤ k∗d, k∗i ≤ ki ≤ k∗i

• Type 2: −
1

ω∗
ℑ

1

G(jω∗)
= k∗d . In this case ω∗ ∈

Ω and the stability crossing surface ends in the

point

(

−ℜ
1

G(jω∗)
,−

1

ω∗
ℑ

1

G(jω∗)
, 0

)

, included in

the (kp, kd) plane.

• Type 3: ω∗ℑ
1

G(jω∗)
= k∗i . In this case ω∗ ∈

Ω and the stability crossing surface ends in the

point

(

−ℜ
1

G(jω∗)
, 0, ω∗ℑ

1

G(jω∗)

)

, included in the

(kp, ki) plane.

Similarly to [5], we classify the stability crossing bound-

aries in 8 types in function of the kind of the left and

right ends of the corresponding frequency crossing interval.

Precisely, we say that a crossing surface is of type ab, a, b ∈
{1, 2, 3} if it corresponds to a crossing interval (ωl, ωr) with

ωl of type a and ωr of type b. Let us notice that generally

the intervals (ωl, ωr) are closed.

C. Crossing direction

As explained in [4], [17], a pair of imaginary zeros (s̄, s)
of the characteristic equation f(s; kp, kd, ki) = 0 cross the

imaginary axis through the gates −jω , jω respectively, as

(kp, kd, ki) moves from one side of a stability crossing sur-

face to the other side. The direction of crossing may be cal-

culated using implicit function theorem as described in [5],

[10]. Precisely, the characteristic equation f(s; kp, kd, ki) =
0 defines an implicit function s of variables kp, kd and ki.
The definition of f(s; kp, kd, ki) given by (4) allows us to

compute the following partial derivatives:

∂s

∂kp
=

s2G2(s)

kiG2(s)− kds2G2(s) + s2G′(s)
,

∂s

∂kd
=

s3G2(s)

kiG2(s)− kds2G2(s) + s2G′(s)
, (13)

∂s

∂ki
=

sG2(s)

kiG2(s)− kds2G2(s) + s2G′(s)
.

Let (k̄p, k̄d, k̄i) a point belonging to a stability crossing

surface and let s = jω̄, ω̄ > 0 be the corresponding

imaginary zero of the characteristic equation. Let x =
(xp, xd, xi) be a unit vector that is not tangent to the surface.

Let us also use the following notation
−→
k = (kp, kd, ki) and

−→
k ∗ = (k̄p, k̄d, k̄i).

Proposition 3: A pair of zeros of (4) moves from the left

half complex plane (LHP) to the right half complex plane

(RHP) as (kp, kd, ki) moves from one side of a stability

crossing surface to the other side through (k̄p, k̄d, k̄i) in the

direction of x if

ℜ

(

∂s

∂kp
xp +

∂s

∂kd
xd +

∂s

∂ki
xi

)∣

∣

∣

∣

s=jω,
−→
k =

−→
k ∗

> 0. (14)

The crossing is from the RHP to the LHP if the inequality

(14) is reversed.

Proof: The proof follows directly from the fact that the

derivative of the implicit function s along the direction given

by x in the point (k̄p, k̄d, k̄i) is

ds

dx

∣

∣

∣

∣

(k̄p,k̄d,k̄i)

=

(

∂s

∂kp
xp +

∂s

∂kd
xd +

∂s

∂ki
xi

)

(k̄p,k̄d,k̄i)

Thus the real part of the previous directional derivative is

computed as the right part of (14)

IV. FRAGILITY ANALYSIS OF PID CONTROLLERS

Consider now the PID fragility problem, that is the

problem of computing the maximum controller parameters

deviation without loosing the closed-loop stability. In other

words, given the parameters (k∗p, k
∗
d, k

∗
i ) such that the roots

of the closed-loop characteristic equation:

Q(s) + P (s)
(

k∗p + k∗ds+
k∗i
s

)

e−sτ = 0, (15)

are located in C− (that is the closed-loop system is asymptot-

ically stable), find the maximum parameter deviation d ∈ R+

such that the roots of (3) stay located in C− for all controllers

(kp, kd, ki) satisfying:
√

(kp − k∗p)
2 + (kd − k∗d)

2 + (ki − k∗i )
2 < d.

This problem can be more generally reformulated as: find

the maximum parameter deviation d such that the number of

unstable roots of (3) remains unchanged.

First, let us introduce some notation:

T =
N
⋃

l=1

Tl, Tl =
{

(kp, kd, ki)
∣

∣ω ∈ Ωl

}

,

−−→
k(ω) = (kp(ω), kd(ω), ki(ω))

T
,

−→
k∗ =

(

k∗p, k
∗
d, k

∗
i

)T
,

−→
kab(ω) = (ka(ω), kb(ω))

T
,

−→
k∗ab = (k∗a, k

∗
b )

T
,
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where a, b ∈ {p, i, d}. Let us also denote dT = min
l∈{1,...,N}

dl,

where

dl= min
(kp,kd,ki)∈Tl

{√

(kp − k∗p)
2+(kd − k∗d)

2+(ki − k∗i )
2
}

.

A. PI-PD Controller Fragility

Let kd = k∗d ∈ R or ki = k∗i ∈ R be fixed, we have the

following result:

Proposition 4: The maximum parameter deviation, with-

out changing the number of unstable roots of the closed-loop

equation (3) can be expressed as:

PI-Controller: Let kd = k∗d be fixed,

d∗pi = min

{

|k∗i |, min
ω∈Ωfpi

{∥

∥

∥

−→
kpi(ω)−

−→
k∗pi

∥

∥

∥

}

}

.

(16)

PD-Controller: Let ki = k∗i be fixed, then d∗pd =

d∗pd=min

{

kd∞,
∣

∣k∗p − kp(0)
∣

∣, min
ω∈Ωfpd

{∥

∥

∥

−→
kpd(ω)−

−→
k∗pd

∥

∥

∥

}

}

,

(17)

with,

kd∞=

{

min
{∣

∣

∣
k∗d −

∣

∣

∣

qn
pm

∣

∣

∣

∣

∣

∣
,
∣

∣

∣
k∗d +

∣

∣

∣

qn
pm

∣

∣

∣

∣

∣

∣

}

if m = n− 1

∅ if m < n− 1

and Ωfab
, a, b ∈ {p, i, d} is the set of roots of the function

fab : R+ 7→ R,

fab (ω) ,

〈

(−→
kab (ω)−

−→
k∗ab

)

,
d
−→
kab (ω)

dω

〉

, (18)

where ” 〈·, ·〉” means the inner product.

Proof: We consider that the pair (k∗a, k
∗
b ) belongs to a

region generated by the crossing curves. Since the number

of unstable roots changes only when (ka, kb) get out of this

region, our objective is to compute the distance between

(k∗a, k
∗
b ) and the boundary of the region. Furthermore, the

boundary of such a region consist of pieces of crossing

curves and possibly one segment of the kp axis (in the case of

PI−fragility) or a segment of the shifted axis ki+kp(0) (in

the case of PD−fragility). In order to compute the minimal

distance between (k∗a, k
∗
b ) and a crossing curve we only need

to identify the points where the vector (ka−k∗a, kb−k∗b ) and

the tangent to the curve are orthogonal. In other words we

have to find the solutions of

fab(ω) = 0,

where fab is defined by (18). Taking into account the relation

(10) we may write (18) as

(ka − k∗a)(R1I0 −R0I1) + (kb − k∗b )(R0I2 −R2I0).

It is worth to mention that the stability region is defined

in (ω, ω) and, therefore, (18) will have a finite number of

roots. Let us consider {ω1, . . . , ωM} the set of all the roots of

fab(ω) when we take into account all the pieces of crossing

curves belonging to the region around (k∗a, k
∗
b ). Since the

distance from (k∗a, k
∗
b ) to the kp(ω) axis is given by |k∗b |

(for the PI−fragility) and the distance from (k∗a, k
∗
b ) to the

shifted axis ki + kp(0) is given by |k∗p − kp(0)| (for the

PD−fragility), one obtains that

d∗pi = min

{

|k∗i |, min
ℓ={1,...,M}

{∥

∥

∥

−→
kpi(ωℓ)−

−→
k∗pi

∥

∥

∥

}

}

,

in the case of PI−fragility, or

d∗pd = min

{

∣

∣k∗p − kp(0)
∣

∣, min
ℓ={1,...,M}

{∥

∥

∥

−→
kpd(ωℓ)−

−→
k∗pd

∥

∥

∥

}

}

,

in the case of PD−fragility, which are just another way to

express (16)-(17).

B. DI Projection

Let kp = k∗p ∈ R be fixed, we have the following result:

Proposition 5: The maximum parameter deviation from

(k∗d, k
∗
i ), without changing the number of unstable roots of

the closed-loop equation (3) can be expressed as:

d∗di=min







|k∗i |, min
ωℓ∈Ωk∗

p







∣

∣

∣

∣

∣

∣

ω2
ℓk

∗
d−k∗i +ωℓℑ

{

Q(jωℓ)
P (jωℓ)

ejωℓτ
}

√

(ωℓ)4 + 1

∣

∣

∣

∣

∣

∣













,

(19)

where Ωk∗

p
is the set of roots of the function fk∗

p
: R×R+ 7→

R,

fk∗

p

(

k∗p, ω
)

, k∗p + ℜ

{

Q(jω)

P (jω)
ejωτ

}

. (20)

Proof: The proof follows similar geometric arguments

as those used to prove Proposition 4, and for the sake of

brevity will be omitted.

Remark 6: Observe that (20) has an uncountable number

of solutions, however in Proposition 5 we have considered

the set including the corresponding (k∗d, k
∗
i ) points.

C. PID Fragility Algorithm

In order to obtain the obtain the PID fragility we present

the following algorithm:

• Step 1: Let k∗pid ∈ R
3 be fixed. Then, set d =

min
{

d∗pi, d
∗
pd, d

∗
di

}

.

• Step 2: Sweep over all θ ∈
[

−π
2 ,

π
2

]

and compute

k∗pθ = k∗p + d sin θ.

• Step 3: Solve fk∗

p

(

k∗pθ, ω
)

= 0 and denote by Ωθ the

set of solutions.

• Step 4: Compute,

d∗θ = min
ωℓ∈Ωθ







∣

∣

∣

∣

∣

∣

(ωℓ)
2k∗d − k∗i + ωℓℑ

{

Q(jωℓ)
P (jωℓ)

ejωℓτ
}

√

(ωℓ)4 + 1

∣

∣

∣

∣

∣

∣







.

• Step 5: If d∗θ < d cos θ then set d = d∗θ/ cos θ and go

to step 2. Otherwise continue to step 2.

• Step 6: If θ = π
2 , the procedure is finish and d is the

PID fragility for the controller
(

k∗p, k
∗
d, k

∗
i

)

.

V. ILLUSTRATIVE EXAMPLES

In order to motivate the previous results, we consider in

the sequel some numerical examples.
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A. Stability crossing boundaries classification

Example 1: Finally, lets consider the SISO plant [2],

G(s) =
−s4 − 7s3 − 2s+ 1

(s+ 1) (s+ 2) (s+ 3) (s+ 4) (s2 + s+ 1)
e−

1
20 s.

(21)

By choosing the rectangle: 0 ≤ kp ≤ 5, −12 ≤ ki ≤ 5,

0 ≤ kd ≤ 10, we obtain the following cases: Based in these

Fig. 1. Boundary classification Type 1 for the system (21).

Fig. 2. Stability crossing boundaries classification for the system (21).
(Upper) Type 2. (Lower) Type 3.

results, the table I classifies the cases cited above.

TABLE I

CLASSIFICATION INTERVALS TYPE FOR THE SYSTEMS (21).

Interval Classification

[0.37823, 3.16356] Type 11

[0.37823, 0.89290] Type 12

[0.37823, 0.41294] Type 13

[0.89290, 3.16356] Type 21

[0.41294, 3.16356] Type 31

[0.41294, 0.89290] Type 32

B. PID fragility analysis

Example 2: Consider the following system [14]:

G(s) =
s3 − 4s2 + s+ 2

s5 + 8s4 + 32s3 + 46s2 + 46s+ 17
e−s. (22)

By choosing k∗p ∈
[

0, 92
]

, we obtain the stability region

depicted in Fig.3. Next, in order to illustrate the proposed

Fig. 3. The PID stability region for kp ∈

[

0, 9

2

]

.

PID fragility-algorithm, consider
(

k∗p, k
∗
d, k

∗
i

)

= (2, 3, 3),
leading to the values in Table II and depicted in Fig.4.

TABLE II

PID FRAGILITY FOR THE EXAMPLE (22).

Controller Fragility Initial PID-Fragility
(

k∗p, k
∗

d
, k∗i

)

(PI, PD,DI) PID-Fragility min
{

d∗, d∗
θ

}

d∗pi = 1.68051

(2, 3, 3) d∗
pd

= 1.33313 d∗ = 1.27520 d∗
θ
= 1.26295

d∗
di

= 1.27520

Example 3 (unstable, non-minimal phase system):

Consider the following plant [8],

G(s) =
s− 2

s2 − 1
2s+

13
4

e−
1

2
s. (23)

The interest in the analysis of this system, remains in the

fact that the closed-loop plant becomes a system of Neutral-

Type. Now, applying the same procedure as before, and

considering k∗p ∈ (0.32595, 1.625) we obtain the following

stability region.
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Fig. 4. PID-fragility for the controller
(

k∗p , k
∗

d
, k∗i

)

= (2, 3, 3).
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Fig. 5. The PID stability region of Neutral-Type .

For the fragility analysis, lets consider the controller
(

k∗p, k
∗
d, k

∗
i

)

=
(

5
8 ,−

1
10 ,−

2
5

)

, leading to the results sum-

marized in Table III. Figure 6 illustrate such a results.

TABLE III

PID FRAGILITY FOR THE EXAMPLE (23).

Controller Fragility Initial PID-Fragility
(

k∗p, k
∗

d
, k∗i

)

(PI, PD,DI) PID-Fragility min
{

d∗, d∗
θ

}

d∗pi = 0.29314
(

5

8
, −1

10
, −2

5

)

d∗
pd

= 0.16758 d∗ = 0.16758 d∗
θ
= 0.16453

d∗
di

= 0.16782

VI. CONCLUSIONS

In this paper, we focused on stabilizing a class of SISO

linear systems with constant delay in the input or output by

using PID controllers. First, by exploiting the system proper-

ties we have characterized the stability crossing boundaries

in the parameter-set defined by the controller’s parameters.

Second, we have developed a simple geometrical method

to construct the PID stability region, that characterize the

set of all stabilizing controller parameter. Finally, a simple

geometric-based algorithm is derived for computing the

fragility of PID-controllers. To prove the efficiency of the

Fig. 6. PID-fragility for the controller
(

k∗p, k
∗

d
, k∗i

)

=
(

5

8
,− 1

10
,− 2

5

)

.

proposed methods, several illustrative examples have been

considered. It is important to note that such an idea can be

easily extended to proper SISO systems with I/O delays.
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