
Simultaneous global external and internal stabilization of linear time-invariant

discrete-time systems subject to actuator saturation

Xu Wang1 Ali Saberi1 Anton A. Stoorvogel2 Peddapullaiah Sannuti4

Abstract— Simultaneous external and internal stabilization in
global framework of linear time-invariant discrete-time systems
subject to actuator saturation is considered. Internal stabiliza-
tion is in the sense of Lyapunov while external stabilization is
in the sense of ℓp stability with different variations, e.g. with
or without finite gain, with fixed or arbitrary initial conditions,
with or without bias. Several simultaneous external and internal
stabilization problems all in global framework are studied in
depth, and appropriate adaptive low-and-high gain feedback
controllers that achieve the intended simultaneous external and
internal stabilization are constructed whenever such problems

are solvable.

I. INTRODUCTION

Most nonlinear systems encountered in practice consist

of linear systems and static nonlinear elements. One class of

such systems is the class of linear systems subject to actuator

saturation as depicted in Figure 1 along with a feedback

controller, where u denotes the control input and d is an

external input. Since saturation is an ubiquitous non-linearity,

during the last two decades, systems as depicted in Figure

1 received intense focus. Many control theoretic issues were

studied. Internal stabilization of such systems both in global

and semi-global sense was explored by many researchers,

and by now there exist several classical results (see [9]

and the references therein). Internal stabilization by itself

does not in general imply external stabilization. As such,

simultaneous external and internal stabilization was initiated

in [8] and is also explored in [1], [3], [2], [11]. The picture

that emerges in this regard is that, for the case when external

input is additive to the control input, all the issues associated

with simultaneous external and internal stabilization are more

or less resolved, but only for continuous-time systems.

Our focus in this paper is on discrete-time linear systems

subject to actuator saturation. For continuous-time systems,

a key result is given in [8]. This work, while pointing out

all the complexities involved in simultaneous global external

and global internal stabilization, resolves all such issues

and develops certain scheduled low-and-high gain design

methodologies to achieve the required simultaneous global-

global stabilization. Analogous results for discrete-time sys-
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Fig. 1. A linear system subject to actuator saturation

tems do not exist so far in the literature. Discrete-time has

its own peculiarities. High-gain cannot be as freely used as

in continuous-time, but also almost disturbance decoupling

is not possible in general for discrete-time case, while it is so

for continuous-time. For discrete-time case, we develop here

the sufficient conditions for simultaneous global external and

global internal stabilization, and furthermore develop also

the required design methodologies to accomplish such a

stabilization whenever it is feasible. The proofs of certain

results are very lengthy and hence are omitted. The full

version can be found at www.eecs.wsu.edu/˜xwang.

II. PRELIMINARY NOTATIONS AND PROBLEM

FORMULATION

For x ∈ R
n, ‖x‖ denotes its Euclidean norm and x′

denotes the transpose of x. For X ∈ R
n×m, ‖X‖ denotes

its induced 2-norm and X ′ denotes the transpose of X .

trace(X) denotes the trace of X . If X is symmetric, λminX
and λmaxX denote the smallest and largest eigenvalues of

X respectively. For a subset X ⊂ R
n, X c denotes the

complement of X . For k1, k2 ∈ Z such that k1 ≤ k2, k1, k2
denotes the integer set {k1, k1 + 1, . . . , k2}.

A continuous function φ(·) : [0,∞) → [0,∞) is said

to belong to class K if (1) φ(0) = 0 and (2) φ is strictly

increasing. The ℓp space with p ∈ [1,∞) consists of all

vector-valued discrete-time signals y(·) from Z
+ ∪ {0} to

R
n for which

∞
∑

k=0

‖y(k)‖p < ∞.

For a signal y ∈ ℓp, the ℓp norm of y is defined as

‖y‖p =

(

∞
∑

k=0

‖y(k)‖p
)

1
p

.
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The ℓ∞ space consists of all vector-valued discrete-time

signals y(·) from Z
+ ∪ {0} to R

n for which

sup
k≥0

‖y(k)‖ < ∞.

For a signal y ∈ ℓp, the ℓ∞ norm of y is defined as

‖y‖∞ = sup
k≥0

‖y(k)‖.

The following relationship holds for all ℓp spaces: for 1 <
p < q < ∞

ℓ1 ⊂ ℓp ⊂ ℓq ⊂ ℓ∞.

Moreover, for any y ∈ ℓp with p ∈ [1,∞), the following

properties hold:

1) ‖y‖∞ ≤ ‖y‖p;

2) y(k) → 0 as k → ∞.

Next we recall the definitions of external stability. Con-

sider a system

Σ :

{

x(k + 1) = f(x(k), d(k)), x(0) = x0

y(k) = g(x(k), d(k))

with x(k) ∈ R
n and d(k) ∈ R

m. The two classical ℓp
stabilities are defined as follows:

Definition 1: For any p ∈ [1,∞], the system Σ is said to

be ℓp stable with fixed initial condition and without finite

gain if for x(0) = 0 and any d ∈ ℓp, we have y ∈ ℓp.

Definition 2: For any p ∈ [1,∞], the system Σ is said to

be ℓp stable with fixed initial condition and with finite

gain if for x(0) = 0 and any d ∈ ℓp, we have y ∈ ℓp and

there exists a γp such that for any d ∈ ℓp,

‖y‖p ≤ γp‖d‖p.
The infimum over all γp with this property is called the ℓp
gain of the system Σ.

As observed in [10], the initial condition plays a dominant

role in whether achieving ℓp stability is possible or not.

Hence any definition of external stability must take into

account the effect of initial condition. The notion of external

stability with arbitrary initial condition was introduced in

[10]. We recall these definitions below:

Definition 3: For any p ∈ [1,∞], the system Σ is said to

be ℓp stable with arbitrary initial condition and without

finite gain if for any x0 ∈ R
n and any d ∈ ℓp, we have

y ∈ ℓp.

Definition 4: For any p ∈ [1,∞], the system Σ is said to

be ℓp stable with arbitrary initial condition with finite

gain and with bias if for any x0 ∈ R
n and any d ∈ ℓp, we

have y ∈ ℓp and there exists a γp and a class K function

φ(·) such that for any d ∈ ℓp

‖y‖p ≤ γp‖d‖p + φ(‖x0‖).
The infimum over all γp with this property is called the ℓp
gain of the system Σ.

Now we are ready to formulate the control problems

studied in this paper. Consider a linear discrete-time system

subject to actuator saturation,

x(k + 1) = Ax(k) +Bσ(u(k) + d(k)), (1)

where state x ∈ R
n, control input u ∈ R

m, and external

input d ∈ R
m. Here σ(·) denotes the standard saturation

function defined as

σ(u) = [σ1(u1), . . . , σ1(um)]

where σ1(s) = sgn(s)min {|s|,∆} for some ∆ > 0.

The simultaneous global external and internal stabilization

problems studied in this paper are formulated as follows:

Problem 1: For any p ∈ [1,∞], the system (1) is said to

be simultaneously globally ℓp stabilizable with fixed initial

condition and without finite gain and globally asymptotically

stabilizable via static time invariant state feedback, which

we refer to as (Gp/G), if there exists a static state feedback

controller u = f(x) such that the following properties hold:

1) the closed-loop system is ℓp stable with fixed initial

condition and without finite gain;

2) In the absence of external input d, the equilibrium x =
0 is globally asymptotically stable.

Problem 2: For any p ∈ [1,∞], the system (1) is said

to be simultaneously globally ℓp stabilizable with fixed

initial condition and with finite gain and globally asymp-

totically stabilizable via state feedback, which we refer to

as (Gp/G)fg, if there exists a static time invariant state

feedback controller u = f(x) such that the following

properties hold:

1) the closed-loop system is finite gain ℓp stable with

fixed initial condition with finite gain ;

2) In the absence of external input d, the equilibrium x =
0 is globally asymptotically stable.

Note that the notion of global ℓp stability with arbitrary

initial condition embeds in it the internal stability in some

sense. We also formulate below additional external stabiliza-

tion problems with arbitrary initial conditions.

Problem 3: For any p ∈ [1,∞], the system (1) is said to

be globally ℓp stabilizable with arbitrary initial condition and

without finite gain via static time invariant state feedback, if

there exists a static state feedback controller u = f(x) such

that the closed-loop system is ℓp stable with arbitrary initial

condition and without finite gain.

Problem 4: For any p ∈ [1,∞], the system (1) is said

to be globally ℓp stabilizable with arbitrary initial condition

with finite gain and with bias via state feedback, if there

exists a static time invariant state feedback controller u =
f(x) such that the closed-loop system is finite gain ℓp stable

with arbitrary initial condition with finite gain and with bias.

Without loss of generality, the following assumption is

made throughout the paper:

Assumption 1: The pair (A,B) is controllable, and the

matrix A has all its eigenvalues on the unit circle.

III. CONTROLLER DESIGN

The controller design in this paper is based on the classical

low-gain and low-and-high-gain feedback design method-

ologies. The low-gain feedback can be constructed using

different approaches such as direct eigenstructure assignment

[4], H2 and H∞ algebraic Riccati equation based methods

[7], [12] and parametric Lyapunov equation based method
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[13], [14]. In this paper, we choose parametric Lyapunov

equation method to build the low-gain feedback because

of its special properties; as will become clear later on, it

greatly simplifies the expressions for our controllers and the

subsequent analysis.

Since the low-gain feedback, as indicated by its name,

does not allow complete utilization of control capacities,

the low-and-high-gain feedback was developed to rectify this

drawback and was intended to achieve control objectives be-

yond stability, such as performance enhancement, robustness

and disturbances rejection. The low-and-high gain feedback

is composed of a low-gain and a high-gain feedback. As

shown in [2], the solvability of simultaneous global external

and internal stabilization problem critically relies on a proper

choice of high-gain. In this section, we shall first recall

the low-gain feedback design and propose a new high-gain

design methodology.

A. Low gain state feedback

In this subsection, we review the low-gain feedback design

methodology recently introduced in [13], [14] which is based

on the solution of a parametric Lyapunov equation. The

following lemma is adapted from [14]:

Lemma 1: Assume that (A,B) is controllable and A has

all its eigenvalues on the unit circle. For any ε ∈ (0, 1), the

Parametric Algebraic Riccati Equation,

(1−ε)Pε=A
′

PεA−A
′

PεB(I+B
′

PεB)−1
B

′

PεA, (2)

has a unique positive definite solution Pε = W−1
ε where Wε

is the solution of

Wε −
1

1− ε
AWεA

′ = −BB′.

Moreover, the following properties hold:

1) Ac(ε) = A−B(I +B′PεB)−1B′PεA is Schur stable

for any ε ∈ (0, 1);
2) dPε

dε > 0 for any ε ∈ (0, 1);
3) limε→0+ Pε = 0;

4) There exists an ε∗ such that for any ε ∈ (0, ε∗],

‖[P
1
2
ε AP

−
1
2

ε ‖ ≤
√
2;

5) Let ε∗ be given by property 4. There exists a Mε∗ such

that ‖Pε

ε ‖ ≤ Mε∗ for all ε ∈ (0, ε∗].

We define the low-gain state feedback which is a family

of parameterized state feedback laws given by

uL(x) = FLx = −(B′PεB + I)−1B′PεAx, (3)

where Pε is the solution of (2). Here, as usual, ε is called the

low-gain parameter. From the properties given by Lemma 1,

it can be seen that the magnitude of the control input can

be made arbitrarily small by choosing ε sufficiently small so

that the input never saturates for any, a priori given, set of

initial conditions.

B. Low-and-high-gain feedback

The low-and-high-gain state feedback is composed of a

low-gain state feedback and a high-gain state feedback as

uLH(x) = FLHx = FLx+ FHx (4)

where FLx is given by (3). The high-gain feedback is of

the form, FHx = ρFLx where ρ is called the high-gain

parameter.

For continuous-time systems, the high gain parameter ρ
can be any positive real number. However, this is not the

case for discrete-time systems. In order to preserve local

asymptotic stability, this high gain has to be bounded at

least near the origin. The existing results in literature on

the choice of high-gain parameter for discrete-time system

are really sparse. To the best of our knowledge, the only

available result is in [5], [6] where the high-gain parameter

is a nonlinear function of x. To solve the global external and

internal stabilization problem, we need to schedule the high-

gain parameter with respect to x. However, this nonlinear

high-gain parameter is not suitable for adaptation since it

will make the analysis extremely complicated. Instead, we

need a constant high-gain parameter so that the controller

(4) remains linear. A suitable choice of such a high-gain

parameter satisfies

ρ ∈ [0, 2
‖B′PεB‖ ] (5)

where Pε is the solution of parametric Lyapunov equation

(2). To justify this, we consider the local stabilization of

system (1) over a set X . Suppose Assumption 1 holds. Let

Pε be the solution of (2). The low-and-high-gain feedback

is given by

uLH = −(1 + ρ)(I +B′PεB)−1B′PεAx

with ρ satisfying (5). Define uL = −(I+B′PεB)−1B′PεAx.
Let c be such that

c = sup
ε∈(0,ε∗ ]

x∈X

x′Pεx.

Define a Lyapunov function V (x) = x′Pεx and a level set

V(c) = {x | V (x) ≤ c}. We have X ⊂ Vc. From Lemma

1, there exists an ε1 such that for any ε ∈ (0, ε1] and x ∈ Vc,

‖(I +B′PεB)−1B′PεAx‖ ≤ ∆.

Define µ = ‖B′PεB‖. We evaluate V (k+1)−V (k) along

the trajectories as

V (k + 1)− V (k)

=− εV (k)− σ(uLH(k))′σ(uLH(k))

+ [σ(uLH(k))− uL(k)]
′(I +B′PB)

[σ(uLH(k))− uL(k)]

≤− εV (k)− σ(uLH(k))′σ(uLH(k))

+ (1 + µ)‖ σ(uLH(k))− uL(k) ‖2

=− εV (k)− 1+µ
µ ‖uL(k)‖2

+ µ‖σ(uLH(k))− 1+µ
µ uL(k)‖2.
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Since ‖uL(k)‖ ≤ ∆ and ρ satisfies (5), we have

‖uL(k)‖ ≤ ‖σ(uLH(k))‖ ≤ (1 + 2
µ )‖uL(k)‖.

This implies that

‖σ(uLH(k))− 1+µ
µ uL(k)‖ ≤ 1

µ‖uL(k)‖.
and thus,

µ‖σ(uLH(k))− 1+µ
µ uL(k)‖2 − 1

µ‖uL(k)‖2 ≤ 0.

Finally, we get for any x(k) ∈ V(c),
V (k + 1)− V (k) ≤ −εV (k).

We conclude local asymptotic stability of the origin with a

domain of attraction containing X .

C. Scheduling of low-gain parameter

In the semi-global framework, with controller (3), the

domain of attraction of the closed-loop system is determined

by the low-gain parameter ε. In order to solve the global

stabilization problem, this ε can be scheduled with respect

to the state. This has been done in the literature, see for

instance [2].

We are looking for an associated scheduled parameter

satisfying the following properties:

1) ε(x) : Rn → (0, ε∗] is continuous and piecewise con-

tinuously differentiable where ε∗ is a design parameter.

2) There exists an open neighborhood O of the origin

such that ε(x) = ε∗ for all x ∈ O.

3) For any x ∈ R
n, we have ‖Fε(x)x‖ ≤ δ.

4) ε(x) → 0 as ‖x‖ → ∞.

5) { x ∈ R
n | x′Pε(x)x ≤ c } is a bounded set for all

c > 0.

A particular choice of scheduling satisfying the above

conditions is given in [2],

ε(x)=max{r∈ (0, ε∗] |(x′Prx) trace(Pr) ≤ ∆2

b } (6)

where ε∗ ∈ (0, 1) is any a priori given constant and

b = 2 trace(BB′) while Pr is the unique positive definite

solution of Lyapunov equation (2) with ε = r.

A family of scheduled low-gain feedback controllers for

global stabilization is given by

uL(x)=Fε(x)x=−(B′Pε(x)B + I)−1B′Pε(x)Ax. (7)

HerePε(x) is the solution of (2) with ε replaced by ε(x).
Note that the scheduled low-gain controller (7) with (6)

satisfies

‖(B′Pε(x)B + I)−1B′Pε(x)Ax‖ ≤ ∆.

To see this, observe that

‖(B′Pε(x)B + I)−1B′Pε(x)Ax‖2

≤‖B′Pε(x)Ax‖2

≤‖B′‖2‖P
1
2
ε(x)‖

2‖P
1
2
ε(x)AP

−
1
2

ε(x)‖
2‖P

1
2
ε(x)x‖

2

≤2‖BB′‖‖Pε(x)‖x′Pε(x)x

(where we use property 4 of Lemma 1)

≤2 trace(BB′) trace(Pε(x))x
′Pε(x)x ≤ ∆2.

D. Scheduling of high-gain parameter

As emphasized earlier, the high gain parameter plays

a crucial role in dealing with external inputs/disturbances.

In order to solve the simultaneous external and internal

stabilization problems for continuous-time systems, different

schedulings of high-gain parameter have been developed in

the literature [2], [3], [8]. Unfortunately, none of them carry

over to discrete-time case because the high gain has to be

restricted near the origin. In this subsection, we introduce

a new scheduling of the high-gain parameter with which

we shall solve the (Gp/G) and (Gp/G)fg problems as

formulated in Section II.

Our scheduling depends on the specific control objective.

If one is not interested in finite gain, the following scheduled

high gain suffices to solve (Gp/G) problem,

ρ0(x) =
1

‖B′Pε(x)B‖ . (8)

Clearly, this high gain satisfies the constraints that ρ0(x) ≤
2

‖B′Pε(x)B‖ .

We observe that this high-gain parameter is radially

unbounded. However, if we further pursue finite gain ℓp
stabilization, the rate of growth of ρ(x) with respect to

‖x‖ as given in (8) is not sufficient for us. The scheduled

high-gain parameter must rise quickly enough to overwhelm

any disturbances in ℓp space before the state is steered so

large that it actually prevents finite gain. Therefore, we shall

introduce a different scheduling of high-gain parameter. In

order to do so, we need the following lemma:

Lemma 2: Assume that p ≥ 1
2 . For any η > 1 there exists

a β > 0 such that (u+v)p ≤ up+ηup+βvp for all u, v ≥ 0.

Let ε∗ and Mε∗ be given by Lemma 1 and let P ∗ be

the solution of (2) with ε = ε∗. The scheduled high gain

parameter is given by:

ρf (x) =

{

ρ0(x) =
1

‖B′Pε(x)B‖ , x′Pε(x)x ≤ c
8ρ1(x)

ε(x)λminPε(x)
, otherwise

(9)

with

ρ1(x) =























λmaxPε(x)

λminPε1(x)
, p = ∞
ρpβ(ε(x))λmaxPε(x)

λminPε1(x)

[

1−

(

1−
ε1(x)

4(1+Lε1(x))

)p/2
]2/p + 1,

p ∈ [1,∞)

(10)

where ρp is a positive constant to be determined later and c,
ε1(x) and Ls are given by

c = ∆2 max{4Mε∗b, 4(1 + ‖B′P ∗B‖)},
ε1(x) = max{r ∈ (0, ε∗] | 2x′Prx trace(Pr) ≤ ∆2

b },
Ls =

trace(P∗)
λminPs

,

and β(ε) > 1 is such that Lemma 2 holds with η = η(ε)
satisfying,

[

1− ε
4(1+Lε)

]p/2

≤ (1 + η(ε))
[

1− ε
2(1+Lε)

]p/2

< 1.
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IV. MAIN RESULTS

In this section, we shall solve the simultaneous external

and internal stabilization problems as formulated in Section

II using the proposed low-and-high-gain controller in Section

III.

The first theorem solves the global ℓp stabilization with ar-

bitrary initial condition and without finite gain as formulated

in Problem 3.

Theorem 1: Consider the system (1) satisfying Assump-

tion 1. For any p ∈ [1,∞], the ℓp stabilization with arbitrary

initial conditions and without finite gain as formulated in

Problem 3 can be solved by the adaptive-low-gain and high-

gain controller,

u = −(1 + ρ0(x))(I +B′Pε(x)B)−1B′Pε(x)Ax, (11)

where Pε(x) is the solution of (2), ε(x) is determined

adaptively by the scheduling (6) and ρ0(x) is determined

by (8).

An immediate consequence of Theorem 1 is:

Theorem 2: Consider the system (1) satisfying Assump-

tion 1. For any p ∈ [1,∞], the (GP /G) as formulated in

Problem 1 can be solved by the same adaptive-low-gain and

high-gain controller (11).

In order to pursue the finite gain ℓp stabilization, it

is necessary to modify the high gain parameter. We first

consider the case p = ∞.

Theorem 3: Consider the system (1) satisfying Assump-

tion 1. For p = ∞, ℓp stabilization with arbitrary initial

condition with finite gain and with bias, as formulated in

Problem 4, can be achieved by the adaptive-low-gain and

high-gain controller,

u = −(1 + ρf (x))(I +B′Pε(x)B)−1B′Pε(x)Ax, (12)

where Pε(x) is the solution of (2) with ε = ε(x), ε(x) is

determined adaptively by (6) and ρf (x) is determined by (9)

and (10).

Theorem 3 readily yields the following result:

Theorem 4: Consider the system (1) satisfying Assump-

tion 1. For p = ∞, the (Gp/G)fg as formulated in Problem

2 can be solved by the same adaptive-low-gain and high-gain

controller as (12).

Theorem 5: Consider the system (1) satisfying Assump-

tion 1. For any p ∈ [1,∞), the ℓp stabilization with

arbitrary initial condition with finite gain with bias problem

as formulated in Problem 4 can be solved by the adaptive-

low-gain and high-gain controller,

u = −(1 + ρf (x))(I +B′Pε(x)B)−1B′Pε(x)Ax, (13)

where Pε(x) is the solution of (2) with ε = ε(x), ε(x) is

determined adaptively by (6) and ρf (x) is determined by

(9), (10) with ρp sufficiently large.

Theorem 5 also produces as a special case the solution to

(Gp/G)fg . This is stated in the following theorem.

Theorem 6: Consider the system (1) satisfying Assump-

tion 1. For any p ∈ [1,∞), the (Gp/G)fg as formulated

in Problem 2 can be solved by the adaptive-low-gain and

high-gain controller (13).

V. CONCLUSIONS

It is shown in this paper that (Gp/G) and (Gp/G)fg
problems for discrete-time linear systems subject to actuator

saturation are solvable if the given linear system is control-

lable and it has all its poles on the unit disc. We also develop

here an adaptive-low-gain and high-gain controller design

methodology by using a parametric Lyapunov equation.

By utilizing the developed methodology, one can explicitly

construct the required state feedback controllers that solve

the (Gp/G) and (Gp/G)fg problems whenever they are

solvable.
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