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Abstract— This paper determines the maximum controller
conflict-resolution taskload associated with two intersecting
flows of aircraft. Based on aircraft arrival rates and the
allowed magnitude of resolution commands issued to aircraft,
optimal control strategies are presented for minimizing the
maximum rate of resolutions required to deconflict traffic at
the intersection.

I. INTRODUCTION

Air traffic demand in the United States is predicted to

increase significantly up through 2020 [1]. The increased

demand on the National Airspace System (NAS) requires

efficient use of the communal space. In Europe, similar

discussion of en route capacities leading to en route delays

is reported in [2]. Excluding weather, many of the en route

delays are attributed to staff shortages and lack of capacity

planning. The ability to predict capacity for a region of

airspace is an artform lacking complete technical support.

Currently, each sector defines its capacity according to a

‘monitor alert’ parameter, which is simply an aircraft count.

This number is typically based on historical flows and traffic

patterns, and hence is unique to each sector.

There is significant interest in determining the capacity

of an airspace through analytical means. This is particularly

important when one considers adjustments to traffic patterns

due to weather disruptions, and/or ground delays and holds.

Furthermore, as traffic patterns are dynamic throughout the

day, a single number does not adequately account for overall

changes in the structure of traffic.

Closely related to the capacity of an airspace, is complex-

ity and controller workload. Airspace complexity describes

the relative ease or difficulty of managing traffic. Early re-

search on complexity focused on providing analytical expres-

sions for estimating controller workload [3]. Some variables

associated with complexity are: aircraft counts, number of

aircraft changing altitude, sector and traffic geometry, char-

acteristics of traffic flows, separation requirements, aircraft

performance, and weather. For human-controlled airspaces,

which are ubiquitous in practice, workload limits define

capacity [4]. In fact, automated conflict-resolution algorithms

for en route airspace have been demonstrated to achieve

significantly higher traffic volumes than human-controlled

systems [5]. Indeed, this supports the suggestion that capacity

of an airspace, while in theory is a geometric problem,
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has a limiting constraint based on human performance for

managing aircraft, and monitoring and resolving potential

aircraft conflicts.

Nevertheless, the capacity of an airspace is heavily dic-

tated by controller workload, a portion of which corresponds

to conflict resolution. A controller’s taskload associated with

conflicts include identifying potential conflicts, assessing

their realization, generating resolution maneuvers, commu-

nicating commands to pilots, and finally monitoring imple-

mentation of the resolution commands. For potential conflicts

between two aircraft, one study estimates the average total

time required from controllers, excluding monitoring imple-

mentation, is 27.6 seconds [6]. Because of the significant

effort and time required by controllers to handle conflicts,

the authors of [5] propose ‘Reduced Controller Taskload’

conflict-resolution algorithms. While demonstrated to reduce

the number of required resolutions to deconflict traffic in a

sector, the authors did not formulate any provable statements

based on the conflict-resolution algorithm.

As it stands there is yet to be a unified provable theory

relating capacity/workload and the conflict-resolution pro-

cess. Previous works on complexity have ignored the role the

conflict-resolution process plays in controller workload. The

relationship between the two is particularly relevant because

there is evidence that controllers adjust their cognitive and

solution strategies to manage workload in response to system

demands [7]. Previous conflict-resolution algorithms have

limited concern for controller workload, and rarely provide

guaranteed feasible results. Example exceptions include [8],

[9], which propose conflict-resolution algorithms that strive

to reduce controller taskload (and indirectly workload), and

[10], which provides provably feasible results, however, no

studies have accomplished both tasks simultaneously.

There has been limited work using fundamental build-

ing blocks. Because most studies investigate large complex

airspaces and lack any provable results. The work presented

here focuses on a simple building unit: an intersection point

between two flows. We hypothesize that given a thorough

understanding of intersections, merge points, and splits, a

more complex airspace analysis is possible through synthesis

of the results.

The major contribution of this paper is establishing the

existence of conflict-resolution policies that minimize a

measure of controller taskload (i.e. the number of resolu-

tions required to manage traffic) under bounded resolution

commands. The paper also derives an upper bound on the

required taskload. The work thereby accomplishes two key

tasks: 1) Reduces controller taskload in a provable fashion.

2) Establishes the required taskload to maintain separation
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Fig. 1. Two flows of aircrafts intersect within a region of space.

between all aircraft in the worst-case.

Section II, provides a detailed description of the problem

and framework for analysis. Sections III and IV introduce

two conflict-resolution policies that aim to minimize taskload

under bounded maneuvers. Based on a description of the

traffic, bounds on the required controller effort to manage

the airspace are also provided. Section V summarizes the

results, and Section VI provides conclusions.

II. PROBLEM DESCRIPTION

We consider the aircraft conflict-resolution problem at an

intersection. Utilizing a centralized avoidance algorithm we

seek to define bounds on the rate of resolution commands

required to deconflict aircraft and manage traffic, henceforth

referred to as taskload.

The conflict-resolution method presented here is a central-

ized algorithm that makes use of the global knowledge of

aircraft positions. Typically, air traffic controllers consider

the implications of secondary conflicts with aircraft inside

the airspace, and also aircraft entering the airspace in the

near-future. Furthermore, it can be demonstrated, that even

at an intersection, for a first-come first-serve (FCFS) policy

that only considers aircraft within a fixed control volume,

the percent of aircraft that require resolution commands can

approach 100%. This result can be extracted from the work

presented in [10]. Ultimately, a FCFS policy will quickly lead

to unmanageable taskloads as the traffic volume increases. It

is for this reason we consider a centralized approach.

Consider two aircraft flows arriving at an intersection, as

shown in Fig. 1. The intersection is defined by crossing angle

θ, and aircraft positions are located along the y1 and y2
coordinate axes. The initial trajectories are assumed to be

linear and intersecting at an angle of θ < 180o, with all

aircraft traveling at speed vn. The half-angle β = θ/2, is

defined relative to the bisector B of the initial trajectories.

The bisector engenders a projection that is used to identify

and resolve potential conflicts. For two uniform flows of

aircraft traveling at different speeds, an alternative projection

line is utilized based on the ratio of the aircraft speeds

[10]. Aircraft are defined according to their relative distance

to the intersection point along the coordinate axes y1 and

y2. Aircraft are required to maintain a minimum separation

distance of Ds at all times; for en route air traffic Ds =
5NM.

When referring to a generic flow and aircraft the index

i indicates the flow, and j indicates the aircraft. When

specifically considering flow 1 and flow 2, j will correspond

to the generic jth aircraft in flow 1, and k for the generic

kth aircraft in flow 2.

Our mathematical description and framework of the prob-

lem is based on a ‘signal’ perspective. The process for

constructing the framework is illustrated in Fig. 2. Let Ni

aircraft arrive into the ith flow in time T . Initially, aircraft are

located according to their distance to the intersection. The

position of jth aircraft in flow i is given by yi,j . Aircraft

arrive into the intersection area with a minimum separation

Di ≥ Ds. The inter-arrival distance, di,j+1 = yi,j+1 − yi,j
between the jth and (j + 1)th aircraft of flow i satisfies

di,j+1 ≥ Di, ∀ j ∈ {1, . . . , Ni}. The initial di,1 = yi,1
indicates the distance between the first aircraft and the inter-

section along axis yi. The inter-arrival distance is illustrated

at the top of Fig. 2.

With processes for flow 1 and flow 2 beginning at y1 = 0
and y2 = 0, the aircraft arrivals prior to any resolution

commands is described according to the impulse sequence

g1(y1) and g2(y2)

gi(yi) =

Ni
∑

j=1

gi,j(yi), (1)

where

gi,j(yi) =

{

δ if yi = yi,j

0 else.

The function gi,j(yi) is equal to an impulse if the jth aircraft

arrives at yi as shown in step 1 of Fig. 2.

The signal gi(yi) representing aircraft on flow 1 or flow

2, is projected onto the bisector of the intersection along

the coordinate axis z, as shown in step 2 of Fig. 2. The

projected flow signal, g
p
i (z), is given by the contraction

g
p
i (z) = gi(z/ cosβ). In the projected space, zi,j is the

location of the impulse corresponding to the jth aircraft from

flow i. That is, gpi,j(zi,j) = δ, where zi,j = yi,j cosβ.

Every aircraft is considered to have a circular safety

region of radius Ds/2 that no other aircraft can enter. When

projected onto the bisector B, the length of the safety region

is Ds. This result is shown in Fig. 3.

Mathematically, safety regions around each aircraft can be

incorporated into gpi (z) through the signal f
p
i (z),

f
p
i (z) = g

p
i (z) ∗ h

sq(z),

where the safety safety region around each aircraft is

hsq(z) = 1, ∀ z ∈ (−Ds/2, Ds/2].

Note that if aircraft are spaced closely along flow i, i.e.

there exists di,j < Ds/ cosβ, then
∑Ni

j=1 f
p
i (z) > 1 for some

z. However, this does not necessarily imply an intra-flow

conflict is present.

Finally, we define the projected presence function of

aircraft from flow i onto the bisector to be

F p
i (z) =

{

1 if
∑Ni

j=1 f
p
j (z) ≥ 1

0 else.

The projected presence function, F p
i (z), shown in step 3

of Fig. 2, defines a slot on the bisector B for which the
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Fig. 2. Two flows of aircrafts intersect within a region of space. Their arrival process can be modeled by signals.

projection of aircraft on flow i travels.

When the projected presence functions F p
1 (z) and F p

2 (z)
do not overlap, the two flows are conflict-free, and the

following separation constraint holds:

F p
1 (z) + F p

2 (z) ≤ 1. (2)

In Fig. 2 an example with two conflicting aircraft is illus-

trated. The conflict is indicated in by a solid bar where

F p
1 (z) + F p

2 (z) = 2 in step 4 of the figure.

Considering flow i, any resolution command issued to

aircraft j, whether it be a speed-change or lateral-shift, can

be abstracted to the phase-shift, ∆φi,j , in units of distance

(∆φi,j ∈ R). In fact, explicit equations relating ∆φi,j

to lateral and longitudinal shifts of aircraft (approximating

heading and speeds changes) can be derived. [11] provides

additional detail into how lateral and longitudinal maneuvers

are able to resolve conflicts. Ultimately, any resolution

command composed of lateral and longitudinal maneuvers

acts on the signal, gi,j(yi), by adding or removing phase to

the corresponding impulse of the aircraft. This adjustment

appears in the presence functions fi(yi), f
p
i (z), and F p

i (z).
The signal gi(yi) is adjusted according to each ∆φi,j so

gi(yi) =

Ni
∑

j=1

gi,j (yi −∆φi,j) .

The phase-shift ∆φi,j changes the projected position of the

aircraft. Let z+i,j be the projected position of aircraft j on

flow i after maneuver, given by z+i,j = zi,j + ∆zi,j , where

∆zi,j = ∆φi,j cosβ.

The method presented here provides a general mathe-

matical framework for which to interpret and manipulate

aircraft presence functions for conflict-resolution problems.

This framework extends the work in [10] in which [10],

aircraft project “shadows” onto the complimentary flow.

Our interpretation here allows for a reduction of resolution

commands into a single variable, and leads to a framework

that is better suited to many problems. For example, taskload

counts can be extracted by summing non-zero values of the

variable ∆φi,j for both flows and all aircraft.

The work presented here calculates the maximum rate

of resolution commands required to deconflict aircraft from

Flow 1

β

B

Ds

Fig. 3. Each aircraft is encircled by a safety region of radius D2/2. The
length of the projected safety region on to the bisector is Ds.

flow 1 and flow 2 over a time period T , as a function of

the minimum aircraft spacing in each flow, D1 and D2.

Specifically, if Nres(T ) is the number of resolutions required

to deconflict aircraft in time period [0, T ), then we seek to

minimize the resolution rate Rres(T ),

Rres(T ) = Nres(T )/T. (3)

Additionally, given an optimal conflict-resolution controller

policy to minimize Rres(T ), we present an upper-bound on

Rres(T ) for the worst-case scenario. This analysis allows us

to address the issue of short-term limits on capacity arising

from taskload constraints. Given a limit on the number of

resolution commands issued per unit time, it is possible to

find the set of D1 and D2 that ensure the controller taskload

constraints are satisfied. Defining the problem according

to the minimum spacing values, D1 and D2, allows the

minimum taskload problem to consider uncertainty through

a robust approach.

In [12] it was proven that there exists a conflict-resolution

program (CRP-F) with bounded resolution commands that

minimizes taskload when aircraft are spaced according to

D1, D2 ≥ 2Ds/ cosβ. Furthermore, the maximum required

resolution rate for CRP-F is established for the time period

[0, T ). Bounding the magnitude of resolution commands

ensures physically realizable maneuvers. When necessary

spacing conditions do not hold, a mode change in the

controller policy is required. For example, consider the case

in Fig. 4, where there are an infinite number of closely

spaced aircraft in flow 2. Without considering magnitude

constraints, a minimum-taskload controller issues an unre-

alizable resolution command to the aircraft in flow 1. To

overcome problems associated with closely-spaced aircraft,

new modes of conflict resolution are required. This work ex-

tends [12] to consider the cases when one or both conditions

D1, ≥ 2Ds/ cosβ and D2 ≥ 2Ds/ cosβ do not hold.
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Fig. 4. Minimum taskload controllers must be designed to handle the
traffic cases with closely spaced aircraft, while ensuring bounded resolution
maneuvers. For the case presented, a naive approach towards the minimum
taskload problem may result in an unrealizable command for the aircraft in
flow 1.
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Fig. 5. In the semi-packed case when D1 ≥ 2Ds/ cosβ, there is sufficient
spacing to ensure existence of a resolution maneuver for aircraft in flow 2.

III. SEMI-PACKED FLOWS

This section considers the case when only one of the flows

satisfies the spacing condition required by CRP-F to produce

bounded resolutions. A new conflict-resolution controller

policy CRP-F1 is proposed for the case when dense spacing

is present in a single flow, that is, D1 ≥ 2Ds/ cosβ and

D2 < 2Ds/ cosβ. Unlike CRP-F, the controller CRP-F1

restricts resolution commands to aircraft in densely spaced

flow. A bound on the maximum required rate of resolution

is provided for CRP-F1.

The following lemmas demonstrate that the minimum

spacing between aircraft in flow 1 provides sufficient spac-

ing for aircraft from flow 2 to find a bounded resolution

command satisfying the separation condition (2).

Lemma 3.1: If D1 ≥ 2Ds/ cosβ, then there exists a z in

the projected space, such that z+2,k = z satisfies the separation

condition (2).

Proof: Consider two consecutive aircraft, j and (j+1)
in flow 1. Following previous notation, the spacing between

them, d1,j+1, is at least 2Ds/ cosβ as depicted in Fig. 5.

The distance between the corresponding impulses, given by

gp1,j(z) and gp1,j+1(z), in the projection space is given by

z1,j+1 − z1,j = d1,j+1 cosβ. (4)

Furthermore, the distance between the corresponding non-

zero values of fp
1,j(z) and fp

1,j+1(z), denoted W b, is

W b = d1,j+1 cosβ −Ds, (5)

as illustrated in Fig. 5. Substituting the spacing condition,

D1 ≥ 2Ds/ cosβ, into the equation for W b yields the in-

equality W b ≥ Ds. Because W b ≥ Ds, if any aircraft k in

flow 2 is issued a maneuver ∆φ2,k such that

z+2,k = z2,k +∆φ2,k cosβ = (z1,j + z1,j+1)/2, (6)

then,

F p
1 (z) + fp

2,k(z2,k) ≤ 1. (7)

The conflict-resolution problem is solved when (7) is sat-

isfied for all aircraft k in flow 2, which implies the global

separation condition (2) also holds.

More formally, define the set zaj to be a conflict-free area

between any two projected impulses from aircraft j and j+1
from flow 1 as follows,

zaj = {z|z1,j −Ds ≤ z ≤ z1,j+1 +Ds}. (8)

The set definition for zaj is augmented for j = 0 and

j = N1 + 1, which corresponds to conflict-free areas before

the first aircraft and after the last aircraft in flow 1 to include

za0 = {z|z ≤ z1,0 −Ds}

zaN1+1 = {z|z ≥ z1,N1+1 +Ds}.
(9)

For any j ∈ [0, . . . , N1+1], the set zaj is non-empty. Hence,

before or after any aircraft from flow 1, there is a free slot

that aircraft from flow 2 can claim.

In the next lemma a bound on the resolution command found

in lemma 3.1 is established.

Lemma 3.2: If D1 ≥ 2Ds/ cosβ, and D2 < 2Ds/ cosβ,

the conflict-resolution algorithm, CRP-F1, such that aircraft

from flow 2 are given resolution commands, results in

bounded maneuvers △φ2,k.

Proof: The set of projected positions, zcj , such that an

aircraft k in flow 2 is in conflict with aircraft j in flow 1 is

expressed by

zcj = {z|z1,j −Ds ≤ z ≤ z1,j +Ds} j ∈ flow 1. (10)

In the case when D1 ≥ 2Ds/ cosβ, the sets zcj1 and zaj2 for

any different j1 and j2 are mutually exclusive.

The minimum distance between any adjacent sets zaj1
and zcj2 , (i.e., |j1 − j2| = 1) is bounded below by Ds. As

such, for any aircraft k in flow 2 with project position z2,k,

the maximum required ∆z2,k to resolve a conflict is Ds.

In the unprojected space, this corresponds to a maneuver

∆φ2,k = ∆z2,k/ cosβ ≤ Ds/ cosβ.

For the aircraft spacing D1 ≥ 2Ds/ cosβ and D2 <
2Ds/ cosβ, there exists a conflict-free area within a bounded

resolution maneuver implementable by CRP-F1.

It is worth noting that although △φ2,k appears to grow

unbounded as β → π/2, there exist tactical resolution com-

mands that include lateral deviations that remain bounded.

Next, the resolution taskload is derived for CRP-F1.

Lemma 3.3: For any aircraft i in flow 1, at most Qm

aircraft from flow 2 will be issued maneuver commands by

CRP-F1, where Qm = ⌈2Ds/(D2 cosβ)⌉.

Proof: The set zcj , as defined in (10), corresponds to

the area for which all aircraft k in flow 2 with z2,k ∈ zcj
require resolution commands. The set zcj projected back to

the y2 axis yields the set

ycj = {y|(y1,j −Ds/ cosβ) ≤ y ≤ (y1,j +Ds/ cosβ)}.

The length of the interval associated with set ycj is

2Ds/ cosβ. For the minimum spacing D2, the maximum

number of new aircraft arrivals from flow 2 that can be

present in the interval ycj with length 2Ds/ cosβ is

Qm = ⌈2Ds/(D2 cosβ)⌉. (11)
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Lemma 3.4: If D1 ≥ 2Ds/ cosβ and D2 < 2Ds/ cosβ,

then the maximum resolution rate for CRP-F1, Rres(T ), for

[0, T ) is Rres(T ) = ⌈vnT/D1⌉ (⌈2Ds/(D2 cosβ)⌉)/T .

Proof: Over a time period [0, T ), for minimum spacing

D1, the maximum number of aircraft arrivals from flow

1 into an empty control area is Nmax
1 (T ) = ⌈vnT/D1⌉.

In the worst-case, all aircraft from flow 1 are not issued

maneuvers, and the aircraft from flow 2 are in conflict and

require resolution commands. Then, Nres
2 (T ), the maximum

number of aircraft requiring resolutions from flow 2, is given

by Nres
2 (T ) = N1(T )Q

m. According to (3), the maximum

rate of resolutions immediately follows.

Corollary 1: As T → ∞, the maximum resolution rate

for CRP-F1 with guaranteed bounded resolution commands

is limT→∞ Rres(T ) = (vn/D1)⌈2Ds/(D2 cosβ)⌉.

Proof: Removing the ceiling function for Nmax
1 (T ), a

lower-bound on the resolution rate is

vn/D1 (⌈2Ds/(D2 cosβ)⌉+ 1) ≤ Rres(T ) (12)

And an upper-bound on Rres(T ) is

Rres(T ) ≤ (Tvn/(D1 + 1)) (⌈2Ds/(D2 cosβ)⌉+ 1)/T
(13)

Taking the limit of both sides as T → ∞ yield the result.

IV. PACKED FLOWS

We will now consider the case D1 ≤ 2Ds/ cosβ and

D2 ≤ 2Ds/ cosβ, in which inadequate spacing prevents use

of the two previous conflict-resolution algorithms CRP-F

and CRP-F1. In fact, the traffic volume is so great that if

no resolutions maneuvers are issued, then at worst-case all

aircraft will be in conflict. To address these situations, a

new resolution algorithm CRP-O is developed. CRP-O is

an open-loop controller that defines an upper-bound on the

maximum rate of resolution commands required to resolve

conflicts. The policy is explicitly defined by desired projected

presence functions, F pd
1 (z) and F pd

2 (z).

Starting from the original projected presence function,

F p
1 (z) and F p

2 (z), the desired projected presence functions,

F pd
1 (z) and F pd

2 (z) define allowable presence regions after

resolution commands are applied to aircraft in the flows.

Example desired presence functions are illustrated by the

signals shown in Fig. 6. Formally, F pd
1 (z) and F pd

2 (z)
are defined by the pulse-widths associated with the sets

{(uu
q , u

d
q)} and {(vuq , v

d
q )} for q = 1, 2, 3, . . .∞. The length

of the intervals associated with uu
q and ud

q are denoted L(uu
q )

and L(ud
q), and for vuq and vdq the length of the interval are

denoted L(vuq ) and L(vdq ). The length of a generic continuous

interval set S over R is defined as L(S) = sup(S)−inf(S).

For each set uu
q and vuq , we introduce the super-set

Uu
q and V u

q that define regions where aircraft from the

complementary flow cannot be present. The super-sets are

Uu
q = {z : ∃zs ∈ uu

q where |z − zs| ≤ Ds/2}

V u
q = {z : ∃zs ∈ vuq where |z − zs| ≤ Ds/2}

(14)

F
pd
2 (z) vu4 vu3 vu2 vu1

vd4 vd3 vd2 vd1

F
pd
1 (z) uu

4 uu
3 uu

2 uu
1uu

5

ud
5 ud

4 ud
3 ud

2 ud
1 z = 0

Fig. 6. The desired projection signal of both flows, F pd
1

(z) and F pd
2

(z),
defined by intervals uu

q , ud
q and vuq , vdq ensure aircraft are conflict-free.

The sets Uu
q and V u

q are interpreted to be uu
q and vuq

with an additional buffer region accounting for the required

area around any aircraft. Any aircraft k from flow 2, with

projected position z2,k ∈ Uu
q requires a resolution command.

Similarly for flow 1, an aircraft j with z1,j ∈ V u
q requires a

resolution command. However, if aircraft j is located within

an interval uu
q , no resolution is required.

In the remainder of the section, an optimal controller

policy is generated based on a series of lemmas related to

a taskload counting process. First, necessary conditions on

F pd
1 (z) and F pd

2 (z) are established. It will be shown that

F pd
1 (z) and F pd

2 (z) must be complementary signals.

Lemma 4.1: For F pd
1 (z) with uu

q , the maximum number

of aircraft requiring resolution commands from flow 2 within

the region is given by Om
q = ⌈L(Uu

q )/(D2 cosβ)⌉.

Proof: The length of interval for the set uu
q is L(uu

q ).
The length of the interval for the super-set Uu

q is L(Uu
q ) =

L(uu
q ) + Ds. When projected onto the y2 axis, the corre-

sponding length is Lu2
q = (L(Uu

q ))/ cosβ.

Om
q , the number of aircraft from flow 2 that can arrive in

Lu2
q for minimum spacing D2 is

Om
q = ⌈Lu2

q /D2⌉ = ⌈(L(uu
q ) +Ds)/(D2 cosβ)⌉ (15)

Similarly, extending Lemma 4.1 to vuq of F pd
2 (z), the max-

imum number of aircraft in flow 1 that require resolutions

because z1,j ∈ V u
q is Pm

q = ⌈Lu1
q /D1⌉.

The number of resolutions needed because of an inade-

quately sized uu
q follows. If L(uu

q ) < Ds, then the non-zero

region of the projected presence function fp
1 (z) cannot be

be contained within uu
q .

Lemma 4.2: For a nonzero-valued region of F pd
1 (z) with

interval uu
q such that L(uu

q ) < Ds, the maximum number of

aircraft requiring resolution commands from flow 1 within

is ⌈L(uu
q )/(D1 cosβ)⌉.

Proof: The projected presence function for a single

aircraft j in flow 1, is given by fp
1,j(z) about z1,j . Let c1,j

be the set where fp
1,j(z) = 1, it follows that

c1,j = {z : fp
1,j(z) = 1} = {z : |z1,j − z| ≤ Ds/2}. (16)

An aircraft within flow 1 does not require a resolution

command if there exists a q such that c1,j ∩ uu
q = c1,j .

If L(c1,j) > L(uu
q ), then the projected presence function of

aircraft i cannot fit within the interval uu
q , thus any aircraft

with z1,j ∈ uu
q requires a resolution maneuver.

Let uup
q be the interval associated with the projection

of uu
q onto the y1 axis. The length of uup

q is L(uup
q ) =

L(uu
q )/ cosβ. For minimum spacing D1, the maximum

number of aircraft that can arrive in flow 1 during the

2749



interval uup
q , Nres, thereby requiring a resolution command

of Nres = ⌈L(uup
q )/D1⌉.

Selecting L(uu
q ) < Ds is an unwise choice and suboptimal

for the taskload problem. Aircraft from both flows are

required to be issued resolutions if their presence functions

overlap with the regions uu
q where L(uu

q ) < Ds. No aircraft

from flow 1 can move into the slot, while aircraft from

flow 2 must avoid it. Furthermore, any regions in which

F pd
1 (z) = 0 and F pd

2 (z) = 0 are under-utilized, as aircraft

from neither flow are able to utilize them. As a result,

establishing L(uu
q ) ≥ Ds, L(vuq ) ≥ Ds, for all q, and

F pd
1 (z) + F pd

2 (z) = 1 are necessary conditions to ensure

the minimum number of resolution commands are issued,

otherwise available solution spaces are under-utilized. For the

reminder of the paper it will be assumed that L(uu
q ) ≥ Ds,

L(vuk ) ≥ Ds, and F pd
1 (z) + F pd

2 (z) = 1.

Corollary 2: Lemmas 4.1 and 4.2 imply F pd
1 (z) and

F pd
2 (z) are complementary, and L(uu

q ), L(v
u
k ) ≥ Ds. Fur-

thermore, uu
q = vdq and vuq = ud

q . Else, the number of

resolutions required in [0, T ) is suboptimal. �

By means of Corollary 2, the signal F pd
1 (z) and F pd

2 (z)
are sufficiently defined according to the sets ud

q and uu
q .

The rate of resolutions is now discussed. Following the

previous results the signals F pd
1 (z) and F pd

2 (z) are assumed

to have on/off cycles containing the sets ud
q and uu

q .

Lemma 4.3: For some finite period [0, T ) with kc com-

plete on/off cycles, let the signals F pd
1 (z) and F pd

2 (z) be

defined such that each L(uu
q ) ≥ Ds and L(ud

k) ≥ Ds for

all kc on/off cycles. The upper-bound on the resolution rate,

Rres(T ), over time period [0, T ) is

Rres(T ) =

(

kc

∑

q=1

Om
q +

kc

∑

q=1

Pm
q

)

/T (17)

Proof: From lemma (4.1), the number of resolutions

required for any uu
q or vuq is Om

q and Pm
q . The upper bound

on the number of resolution from [0, T ) for the desired

presence functions F pd
1 (z) and F pd

2 (z) is

Nres(T ) =

kc

∑

q=1

Om
q +

kc

∑

q=1

Pm
q . (18)

The upper bound on resolution rate follows from (3).

If aircraft have bounded resolutions △φ̄1 and △φ̄2 for

flows 1 and 2, then special attention must be made for the

selection of the intervals uu
q and vuq . Maximum resolution

bounds establish allowable lengths on the intervals, L(uu
q )

and L(vuq ).
Theorem 4.4: If aircraft resolutions in each flow are

bounded by △φ̄1 and △φ̄2, such that all resolutions

φ1,j and φ2,k satisfy |△φ1,j | ≤ △φ̄1 and |△φ2,k| ≤
△φ̄2, then it is required that L(Uu

q ) ≤ 2△φ̄2 cosβ and

L(V u
q ) ≤ 2△φ̄1 cosβ.

Proof: In (14), the set Uu
q is defined for the region

for which Flow 2 cannot have an aircraft. The length of Uu
q

is given by L(Uu
q ) = L(uu

q ) + Ds. An aircraft from flow

2 with z2,k ∈ Uu
q requires a resolution command such that

z+2,k 6∈ Uu
q for all q. Because adjacent to any region uu

q are

regions vuq and vuq−1, the maximum ∆z2,k required such that

z+2,k 6∈ Uu
q is given by L(Uu

q )/2. Hence, the upper bound

on ∆z2,k, is ∆̄z2,k = L(Uu
q )/2 = (L(uu

q ) + Ds)/2, which

implies the associated bound on the resolution command is

given by △φ̄2,k = (L(uu
q ) +Ds)/(2 cosβ).

Thus, for maximum maneuver bounds of △φ̄1 and △φ̄2,

L(vuq ) ≤ 2△φ̄1 cosβ −Ds

L(uu
q ) ≤ 2△φ̄2 cosβ −Ds

(19)

Next a series of intermediate steps is included to demonstrate

that there exist classes of periodic functions for F pd
1 (z) and

F pd
2 (z) that are globally optimal to minimize (17).

Lemma 4.5: Given, some c, d ∈ X ⊆ R
+/0, the optimal

solution (A∗, B∗) to the following optimization problem

min
A,B

[(A+ c)/(B + d)] , s.t. A,B ∈ X (20)

is given by

(A†, B†) = argmin
A,B

(A/B), s.t. A,B ∈ X . (21)

Proof: If A†, B† is the optimal pair to the problem in

(21) then A†/B† ≤ c/d ⇒ A†d/B† ≤ c. It follows that

A† + c

B† + d
≥

A† +A†d/B†

B† + d
≥

A†
(

1 + d/B†
)

B† (1 + d/B†)
≥

A†

B†
(22)

The inequality (22) is tight when c/d = A†/B†. This implies

(A†, B†) is an optimal solution to (20).

Corollary 3: If (A†, B†) is the solution to (21), then A∗ =
A†, B∗ = B†, c = A†, and d = B† is an optimal solution

to the problem

min
A,B,c,d

A+ c

B + d
, s.t. A,B, c, d ∈ X (23)

with the cost Z = A†/B†. �

The values of A and B can be thought of as an additional

cycle to the already existing function parameterized by (c, d).
This result permits the existence of a periodic function

defined by a repeating sequence of A and B to be optimal

as well.

Now we will formulate an optimization problem to deter-

mine optimal definitions for F pd
1 (z) and F pd

2 (z) based on the

results of Lemma 4.5. Let (L(uu
1 )

∗, L(vu1 )
∗) be the optimal

solution to the following problem

Z = minL(uu

1
),L(vu

1
)
A
B

s.t. L(uu
1 ) ≤ 2∆φ̄2 cosβ −Ds

L(vu1 ) ≤ 2∆φ̄1 cosβ −Ds

L(uu
1 ) ≥ Ds, L(vu1 ) ≥ Ds

Om
1 =

⌈

L(uu

1
)+Ds

D2 cos β

⌉

, Pm
1 =

⌈

L(vu

1
)+Ds

D1 cos β

⌉

B =
L(uu

1
)+L(vu

1
)

vn cos β , A = Om
1 + Pm

1

(24)

The free-time optimization problem formulated in (24) min-

imizes the taskload over one cycle (uu
1 and vu1 ), by minimiz-

ing the ratio of the maximum number of aircraft that require

maneuvers (A = Om
1 + Pm

1 ) to the total time of the single

2750



0

20

40

0

20

40

0

1

2

3

4

D
1
 [NM]

D
2
 [NM]

R
re

s
 [

R
e

s
o

lu
ti
o

n
s
/M

in
]

Fig. 7. The maximum rate of resolution when aircraft are bounded by

∆φ̂i,j = Ds/ cosβ.

cycle (B). The formulation is in a form equivalent to the

problem in (20). Thus, from Lemma 4.5, the solution to (24),

can be repeated for infinite number of cycles. According to

the solution from (24), the maximum required resolution rate

can be calculated according to equation (17).

V. RESULTS

For the conflict resolution strategies presented for reducing

taskload, it is possible bound the maximum required rate of

resolution to deconflict traffic at an intersection. For the case

when D1 ≥ 2Ds/ cosβ and D2 < 2Ds/ cosβ the control

policy CRP-F1 can be utilized. The control policy CRP-O

can be implemented over any range of D1 > Ds and D2 >
Ds. However, it is particularly effective at establishing an

upper bound on the maximum rate of required resolution

when D1 < 2Ds/ cosβ and D2 < 2Ds/ cosβ. Depending

on the allowable ∆φ̄i,j , it is possible that CRP-O provides a

tighter bound on the maximum required resolution rate than

CRP-F1. For the case when ∆φ̄i,j = Ds/ cosβ, which is

the upper-bound for any maneuver for CRP-F and CRP-F1,

the resolution rates for each policy is shown in Fig. 7 for

θ = 90, and Ds = 5NM . In this case, CRP-F1 outperforms

CRF-O when D1 ≥ 2Ds/ cosβ and D2 < 2Ds/ cosβ, and

vice versa.

The effectiveness of CRP-O is dependent on the allowable

length of the interval defined by the sets uu
q , and implicitly

the allowable magnitude of any maneuver given by ∆φ̄i,j .

The maximum required resolution rate for a variety of D1

and D2 are provided in Fig 8

VI. CONCLUSIONS

A new approach for studying a fundamental limit of

aircraft capacity at an intersection has been presented.

Through abstraction of complex continuous trajectories into

corresponding phase-shifts, it is possible to construct simple

conflict-resolution commands. The commands represent ap-

proximations of speed and heading changes. By representing

resolution commands in this manner it is possible to charac-

terize taskload performance requirements given worst-case

scenarios. In this case it is possible to calculate a bound

Fig. 8. Increasing length of the intervals defined by the sets uu
q reduces

the workload of CRP-O.

on the maximum rate of resolution commands required to

deconflict two flow of aircraft at an intersection through a

centralized controller.
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