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Abstract— Statics for a two-link manipulator is re-derived
based on the biarticular muscle coordinate in this paper.
Torques of two joint-motors to generate a certain force at the
endeffector can be calculated in a simple trigonometric function
form. A H infinity optimization algorithm is applied to the
redundancy problem and minimizes the necessary torque for
each muscle. This algorithm can generate novel torque patterns
whose peak values are minimized and the maximum torque of
the actuators can be set small. The suggested statics provides
not only insight to the robot design, but also some interpretation
to our body’s muscle activation strategy.

I. INTRODUCTION

Force control in robotics has been an important issue. It

can be extended to motion control [1] and also used for

stable interaction with the environment using the concept

of impedance [2]. Generally, force control uses Jacobian

to define the relationship between actuator torque/force and

endeffector force. This relationship is so complicated that it

is unable to provide insight to understand the whole system.

For this reason, there has been research to simplify the

relationship in order to make it more straightforward [1],

[3]. In this paper, we suggest a simple and straightforward

statics using the biarticular muscle torque.
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Fig. 1. Two-Joint Manipulator with Muscle Model

Figure 1 shows the 3 pairs of muscles: flexors and exten-

sors of two monoarticular muscle pairs and one biarticular

muscle pair. Biarticular muscle described as f
e,f
3 in Figure 1

is said to be effective for the simplification of the complicated

relationship [4], [5]. Three pairs of muscles activated in an
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antagonistic way with a phase difference can generate a well-

shaped force hexagon at the endeffector [6].

These characteristics have been applied to robotics and

several robots mimicking animals have been developed based

on the biarticular muscle system [7], [8]. The feature of these

robots lies in the simplicity in the control alrogorithm.

In order to clarify the simplification of statics by the

biarticular muscle system, we have developed novel statics

based on the biarticular muscle system and it can be a

substitute of Jacobian [9]. The suggested statics consists of

simple sine functions that can relate the necessary muscle

torques to a specific desired force. It also could reveal the

relation between the required muscle torques and the lengths

of the links, and the phase relationship between the torque

pattern and the manipulator configuration.

Our previous study, however, did not utilize all muscle

torques. In order to avoid the redundancy problem, we

ignored the monoarticular muscle torque in the second joint.

This paper addresses this problem proposing a novel statics

based on our recent research [10] that optimizes the muscle

torque distribution to minimize the infinity norm of each

muscle torque.

First, in Section II we derive statics representation of

a general two-joint manipulator which has two actuators

located in two joints. This statics is rederived using trigono-

metric functions rather than Jacobian. The statics suggested

in [9] is used to derive this simple statics.

Then, the optimal distribution algorithm in [10] is applied

to this statics in Section III. The solution to this optimization

problem can be given in an analytical way, since the statics

derived in Section II is simple enough. Simulation results

and experimental results are shown and some interpretation

that can be obtained by the suggested simple statics is also

provided.

II. DERIVATION OF TRIGONOMETRIC FUNCTION

REPRESENTATION OF STATICS FOR A TWO-JOINT

MANIPULATOR

A. Simplified Statics based on Biarticular Muscle Coordi-

nate

Let us define the muscle torques that are generated by f
e,f
i

as τm
i and the resultant two joint torques as T

j
1 , T

j
2 , then the

relation between these two kinds of torques is defined as the

following. The superscript j means the joints and m means

the muscles.
(

T
j
1

T
j
2

)

=

(

τm
1 + τm

3

τm
2 + τm

3

)

, (1)
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Fig. 2. Configuration of Two-link Manipulator

Figure 2 is the configuration of a two-link manipulator,

where two actuators are located in two joints. Equation

(2) shows statics that represents the balance between forces

applied at the endeffector and joint torques; the force Fe in

Figure 2 is described as F e = (fx, fy)T .

(

T
j
1

T
j
2

)

= JT

(

fx

fy

)

(2)

J =

(

−l1 sin θ1 − l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)
l1 cos θ1 + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

)

(3)

When the magnitude and direction of Fe are given as

Fe = (F cos θf , F sin θf ), the biarticular muscle coordinate

in Equation (1) simplifies this statics as the following equa-

tion [9].

τm∗
1 = Fl1 sin(θf −θ1), τm∗

2 = 0

τm∗
3 = Fl2 sin(θf −θ12), (4)

where θ12 = θ1 + θ2 and the superscript m∗ means the

required muscle torque under the condition of τm∗
2 = 0.

Even though one redundant degree of freedom τm∗
2 is

set to 0 to simplify the problem, Equation (4) is the most

simplified form of the statics considering the biarticular mus-

cle torque. We proposed an optimized distribution algorithm

[10] in order to deal with this redundancy problem so that

the statics in Equation (4) can be modified based on the

algorithm.

B. Trigonometric Function Representation of Statics for

General Two-joint Actuator

In order to apply the optimized distribution, the statics in

Equation (2) is transformed into the trigonometric functions.

By substituting the required muscle torque in Equation (4)

to Equation (1), the statics in Equation (2) is expanded as

the following.

T
j
1 = Fl1 sin θf + Fl2 sin(θf − θ2)

T
j
2 = Fl2 sin(θf − θ2), (5)

where θ1 is set to 0 which means θf is defined as the

angle with regard to the direction of the first link. Figure 3

describes the parameters that will be used in the remainder

of the paper.
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Fig. 3. Parameters for Statics of Two-link Manipulator

Statics in Equation (5) is simplified as follows using the

combination of sine functions with the parameters of lm and

θm in Figure 3.

T
j
1 = Flm sin(θf − θm)

T
j
2 = Fl2 sin(θf − θ2) (6)

Detailed derivation process is explained in Appendix A.

Note that Equation (6) can relate the required torques

T
j
1 , T

j
2 to the desired force described by F and θf in a

much simpler way than the conventional Jacobian. It also

can provide insight of the statics of a two-link manipulator.

C. Generic Characteristic in Manipulator Force Exertion

Revealed by the Suggested Statics

Figure 4 is the required torques T
j
1 and T

j
2 in order to

generate a force of 1N at the endeffector with the direction of

θf under the configuration l1 = l2 = 1m, θ2 = π
3

. Necessary

torques are illustrated with regard to the angle θf .
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Fig. 4. Necessary Torques to Generate a Force at the Endeffector

This figure provides some general points that can be

revealed only by this simplified statics. T
j
1 becomes same

with T
j
2 when the force direction θf is set to 0 regard-

less of the parameters l1, l2, θ2, since lm sin θm is same

as l2 sin θ2 as shown in Figure 3. There are four specific

angles θa, θb, θ
′
a, θ′b; θa(= θm) is the angle where T

j
1 cannot

4100



l
1

l
2

θ
2θ

m

l
m

θ
a

θ'
a

θ
b

θ'
b

Fig. 5. Specific Angles in Force Exertion of Two Joint-motor Manipulator

contribute to the force at the endeffector since the moment

arm of the torque T
j
1 to the force is zero (Figure 5 explains

this characteristic), θb(= θm) is the same angle for the case

of T
j
2 , while θ′a(= π

2
+θm) is the angle where T

j
1 contribute

most to the force and θ′b(=
π
2

+ θ2) is the same angle for

T
j
2 .

Figure 5 shows these angles in terms of the robot con-

figuration; θa is same with θm, the direction in which the

first joint and the endeffectors are aligned and θb is identified

with θ2, the direction of the second link. θ′a and θ′b are the

angles π
2

away from θa and θb. This relationship is in good

agreement with the explanation of Figure 4.

Magnitude Flm and Fl2 in Equation (6) also explain some

points. In the range of 0 ≤ θ2 ≤ 2π
3

, lm is greater than l2

which means the larger torque is required for T
j
1 than T

j
2 .

When θ2 ≥ 2π
3

, smaller T
j
1 is good enough to generate a

specific force at the endeffector.

This point shows a significant difference between the

statics strategies of the general two-joint actuator manipu-

lator and the biarticulated actuator manipulator. Comparing

Equation (4) with Equation (6), it should be noticed that the

magnitude of the necessary torques is constant in the case of

the biarticulated actuator manipulator. This indicates that the

output of the motor installed in the first joint can be utilized

efficiently regardless of the configuration of the manipulator

with the biarticular muscle actuator; the biarticular muscle

torque can improve the efficiency of the actuators in terms

of force generation.

For example, in the worst case where θ2 is set to 0, the

maximum torque required for T
j
1 is F (l1 + l2), while the

maximum torque required for τm
1 is still Fl1 to generate the

same force at the endeffector.

III. NOVEL STATICS FOR BIARTICULAR MUSCLE

SYSTEM BY OPTIMIZATION OF INFINITY NORM OF

ACTUATOR OUTPUT

A. Infinity Norm Minimization of Biarticular Muscle System

Recently we have developed an optimization algorithm

for the biarticular muscle system, which optimizes the dis-

tribution of the necessary muscle torques, minimizing the

necessary maximum torque for each actuator. The problem

formulation is as follows.

1) Minimize max {|τm
1 |, |τm

2 |, |τm
3 |}

2) subject to

{

T
j
1 = τm

1 + τm
3

T
j
2 = τm

3

3) under the assumption max τm
1 = max τm

2 = max τm
3 .

The solution is given as follows [10]:

Case 1 when T
j
1 T

j
2 ≤ 0















τm
1 =

T
j

1
−T

j

2

2

τm
2 =

T
j

2
−T

j

1

2

τm
3 =

T
j

1
+T

j

2

2

(7)

Case 2 when T
j
1 T

j
2 > 0 and |T j

1 | ≥ |T j
2 |















τm
1 = T

j
1 −

T
j

2

2

τm
2 =

T
j

2

2

τm
3 =

T
j

2

2

(8)

Case 3 when T
j
1 T

j
2 > 0 and |T j

1 | < |T j
2 |















τm
1 =

T
j

1

2

τm
2 = T

j
2 −

T
j

1

2

τm
3 =

T
j

1

2

(9)

However, in our previous research, the torque T
j
1 and T

j
2

required to generate a certain force at the endeffector are

calculated based on Jacobian, As a result, the calculation is

so complicated that we could not obtain any simple analytical

solution for each muscle torque, particularly the conditions

for the cases.

In this paper, based on the novel statics derived in Equation

(5) and (6), an analytical solution to this optimization prob-

lem is given so that we can obtain insight on the biarticular

muscle statics from it.

B. Application of Minimization Algorithm to Trigonometric

Statics Representation

Conditions for three cases are analyzed at first. Figure 3

gives a significant guidance to solve these inequalities. As

is said in previous section, lm sin θm is same with l2 sin θ2

that can be induced from the figure. This represents T
j
1 = T

j
2

when θf = 0 regardless of l1, l2, and θ2. The other point we

should notice is that θ2 ≥ θm also with any configuration,

which can be induced from the figure leading to the fact that

T
j
1 becomes positive earlier than T

j
2 (θa ≤ θb in Figure 4

with any value of θ2).

The angle where two graphs of T
j
1 and T

j
2 intersect can

be calculated by the subtraction T
j
1 − T

j
2 . As calculated in

Appedix B, T
j
1 − T

j
2 = l1 sin θf and the intersection occurs

at θf = 0 and π regardless of the values of θ2, l1, l2.

Taking these points into consideration, the conditions for

three cases in Equation (7),(8), and (9) can be derived as

follows. Case 1 holds when θm ≤ θf ≤ θ2 or π+θm ≤ θf ≤
π+θ2, Case 2 holds when θ2 < θf ≤ π or π+θ2 < θf ≤ 2π.

Finally Case 3 holds when 0 < θf < θm or π < θf < π+θm.

With these conditions and substitutions of the muscle

torques, the optimized muscle torque distribution is given

as follows.
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Case 1) when θm ≤ θf ≤ θ2 or π + θm ≤ θf ≤ π + θ2







τm
1 = F

2
l1 sin θf

τm
2 = −F

2
l1 sin θf

τm
3 = F

2
l1 sin θf + Fl2 sin(θf − θ2)

(10)

Case 2) when θ2 < θf ≤ π or π + θ2 < θf ≤ 2π






τm
1 = F

2
l1 sin θf + F

2
l2 sin(θf − θ2)

τm
2 = F

2
l2 sin(θf − θ2) −

F
2
l1 sin θf

τm
3 = F

2
l1 sin θf + F

2
l2 sin(θf − θ2)

(11)

Case 3) when 0 < θf < θm or π < θf < π + θm







τm
1 = Fl1 sin θf + F

2
l2 sin(θf − θ2)

τm
2 = F

2
l2 sin(θf − θ2)

τm
3 = F

2
l2 sin(θf − θ2)

(12)

C. Simulation Result of Optimized Statics of Biarticular

Muscle System

In this section, several torque patterns are simulated based

on the suggested optimized statics. Figure 6 and 7 are the

torque patterns for muscles under the same configuration in

Figure 4, where l1 = l2 = 1m, and θ2 = π
3

. In order to

investigate the optimization result, the muscle torque statics

with τm∗
2 = 0 in Equation (4) is also simulated.
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Fig. 6. Muscle Torques with Two Muscle Torques (θ2 = π
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Figure 6 is the torques τm∗
1 and τm∗

3 derived by Equation

(4) and Figure 7 is the torques τm
{1,2,3} obtained by Equations

(10) to (12). Comparing the peaks of all torques, we can

verify that max T
j
1 > max τm∗

1 > max τm
1 . The maximum

value of τm
1 is the half that of T

j
1 due to the optimization.

The algorithm distributes the necessary T
j
1 torque to τm

1 and

τm
3 with the same value at its peak so that it can minimize

the peak torque.

The problem is that the necessary maximum value of T
j
1

changes with regard to θ2; if a constant force F is required at

the endeffector with all the angles of θ2, the maximum torque

of T
j
1 will be F (l1 + l2) when two links of the manipulator

is set aligned with θ2 set to 0 and the suggested algorithm

minimizes it only by half. In the worst case where l1 = l2,

the suggested algorithm minimizes the necessary peak torque

only by the same amount with the strategy in Equation (4).
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Fig. 8. Joint Torques to Generate Constant Force (θ2 = 2π
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Fig. 9. Muscle Torques with Two Muscle Torques (θ2 = 2π
3

)
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A simulation under the setting of θ2 = 2π
3

is conducted

and Figures 8 to 10 show the results. Here, the necessary
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joint torques T
j
1 and T

j
2 have the same peak torque since

lm = l2 and the suggested algorithm distributes these peak

torques to three muscle torques reducing them by the half

value.

Next, θ2 is set to 5π
6

and the same optimization is

conducted. Figure 11 to 13 show the results. Since θ2 > 2π
3

,

the peak of T
j
1 is less than T

j
2 and the suggested algorithm

reduces the peak value of T
j
2 by the half.
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Fig. 11. Joint Torques to Generate Constant Force (θ2 = 5π
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Fig. 12. Muscle Torques with Two Muscle Torques (θ2 = 5π
6

)
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Fig. 13. Muscle Torques Maximum Value Minimized (θ2 = 5π
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These simulation results with various θ2 show that the

suggested algorithm can minimize the maximum value of

necessary torques in all configurations.

D. Experiment with Optimized Torque Pattern

We have developed a wire driven robot where the complete

3 pairs of 6 muscles are installed using 6 motors. Torques

pattern suggested in this paper are provided to this robot and

force at the endeffector is measured under the constraint of

the endeffector. In this experiment, l1 = l2 = 122mm and

θ2 is set to 39.4 degree.
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Fig. 14. Three Muscle Torque Patterns Given to the Manipulator
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Fig. 15. Measured Force at the Endeffector

Figure 14 shows three torques for τm
1 , τm

2 , and τm
3 . Figure

15 depicts the measured force. The measurement shows that

with the suggested torque patterns, a good force pattern with

a constant magnitude and varying direction can be obtained,

even though there is some saturation in torques.

E. Coincidence with Biological Data

It has been suggested by many groups that antagonistic

muscle pairs have their own directions where they play the

significant role in the exertion of force at the endeffector

in that direction. Some experiments with a human subject

show that the activation level of the muscle pairs changes

based on this direction [6]. Figure 16 is the activation level

of 6 muscles in Figure 1 described by the pairs. The x

axis represents the force direction that is identified with the

direction of the force at the hand. This has the same meaning

with θf . The direction is divided into 3 pairs of 6 regions

- a′, b′, c′, d′, e′, f ′ which correspond to the direction of the
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Fig. 16. Muscle Activation Level Measured in Human Arm [6]

first link, the second link and the line connects the shoulders

and the hand.

The direction division is same with the direction shown

in Figure 17 that is derived in Equation (10) to (12):

θm, θ2, π, π + θm, π + θ2, 2π. This implies that our muscle

l
1

l
2

θ
2θ

m

l
m

θ
m

θ
2

2ππ

Fig. 17. 6 Major Directions by 3 Pairs of Muscle

also adopts the minimization of maximum value strategy to

generate forces.

IV. CONCLUSIONS

We propose a simplified statics strategy for a general two-

link robot manipulator with two joint-motors and applied it

to the optimization algorithm we have developed to minimize

the peak values of necessary torques. This process can

provide an analytic form of the optimized muscle torque

pattern. By simulations and experiments, the efficiency and

reduction of the peak value of the necessary torques are

verified.

The statics we derived for a robot manipulator can be

utilized in various robot designs. For example, the suggested

statics indicates that in a robot leg, an actuator needs to be

implemented in the hip joint larger than the one in the knee

joint to generate a specific force in the horizontal direction

at the foot. As our previous research [11], the suggested

statics also can provide a novel feedback control due to its

simplicity.

APPENDIX

A. Combination of the Torques for T
j
1

The torque to generate a specific external force with the

magnitude F and the direction θf is given as Equation (5).

Two sine functions in T
j
1 can be combined as follows.

T
j
1 = Fl1 sin θf + Fl2 sin(θf − θ2)

= F (l1 sin θf + l2 sin θf cos θ2 − l2 cos θf sin θ2)

= F ((l1 + l2 cos θ2) sin θf − l2 sin θ2 cos θf )

= Flm sin(θf − θm), (13)

where l2m = (l1 + l2 cos θ2)
2

+ l22 sin2 θ2, cos θm =
l1+l2 cos θ2

lm
, and sin θm = l2 sin θ2

lm
that corresponds with the

definition in Figure 3

B. Subtraction of T
j
1 − T

j
2

T
j
1 − T

j
2 = lm sin(θf − θm) − l2 sin(θf − θm)

= lm sin θf cos θm − lm cos θf sin θm

−l2 sin θf cos θ2 + l2 cos θf sin θ2

= l1 sin θf + l2 sin θf cos θ2 − l2 cos θf sin θ2

−l2 sin θf cos θ2 + l2 cos θf sin θ2

= l1 sin θf , (14)

since cos θm = l1+l2 cos θ2

lm
, and sin θm = l2 sin θ2

lm
as defined

in Appendix A.
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