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Abstract— The synchronization control of multi-agent sys-
tems plays a significant role in military and civil applications.
This paper investigates the acceleration motion of multi-agent
systems – unlike other synchronization protocols, we introduce
the constant value into the protocol, which acts as the accelera-
tion of the agents. Furthermore, we expand the acceleration
protocol into the formation control protocol, by which the
multi-agents can achieve the desired formations. Simulations
are provided for both protocols, and additionally we adopt
the Amigobots as our experiment environment to verify our
theoretical results. Compared with the Matlab simulations,
we conclude that, under the proposed protocols, the system
goes to acceleration synchronization or desired formation with
acceptable error.

I. INTRODUCTION

Synchronization control for multi-agent systems has at-

tracted more and more attention and research for its wide

applications in military and civil aspects [1]-[4], including

UAV’s (Unmanned Air Vehicles) and UGV’s (Unmanned

Ground Vehicles), distributed wireless sensor networks, and

swarms of heterogeneous air and space vehicles. The main

research in this area has been focusing on synchronization

protocol design. Many different design approaches have

been proposed to guarantee synchronization of multi-agent

systems under different circumstances. Specifically, in [5]

an observation-based synchronization protocol was presented

and a necessary and sufficient condition was provided to

guarantee the system synchronization. [12] adopted the

leader-follower mode to investigate the synchronization prob-

lem for multi-agent systems. The pinning control approach

for the synchronization of multi-agent systems was inves-

tigated in [13] in which a general criterion for ensuring

network synchronization has been derived.

In this paper, two problems are investigated. Firstly, the

averaging problem is discussed in large volumes of litera-

ture, but there is still one simple question remaining: can

we achieve the desired synchronization value, not just the

average for the multi-agent system? The second question is,
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can we achieve the desired formation for the multi-agent

system by a little change in the synchronization protocol?

With these questions in mind, we propose a novel syn-

chronization protocol to achieve the acceleration motion in

synchronization for the multi-agent system characterized by

double integrators. Under our protocol, the agents approach

the same acceleration motion by analyzing the zero-state

and zero-input effect for the system. Moreover, unlike other

synchronization [14] protocols, under which the velocity of

the synchronization is the average of the initial velocities

of each agent, we can adjust the synchronization velocity by

adjusting the constant in our protocol. Furthermore, based on

the proposed protocol, we present a formation protocol under

which the system can achieve the desired formation. Not

merely restricted to one dimension, we expand the protocols

into the x-y plane, and even x-y-z space.

Additionally, we adopt the Amigobots as our experiment

environment to test the acceleration synchronization protocol

and formation protocol for the multi-agent system, but due

to the limit of the robots, a one-dimensional experiment is

investigated. The corresponding Matlab simulations are also

provided which display the exact synchronization or forma-

tion for the agents. The robots move into synchronization

with acceptable error, thus verifying the theoretical analysis

of the protocol. Moreover, the Matlab simulations in the x-

y-z space are provided.

The organization of the rest of paper is as follows: the

basic graph theory is introduced in Section II, and in Section

II, the acceleration synchronization protocol is proposed

and fully analyzed; in Section III, we adjust the proposed

protocol into the formation protocol. Finally, the Amigobots

experiment and Matlab simulation results are shown in

Section IV, and Section V concludes the paper.

II. MATHEMATICAL PRELIMINARIES

Graph theory is a powerful tool for investigating net-

worked systems. In this paper, we use graph-related notation

to describe our network model. More specifically, let G =
(V ,E ,A ) denote an undirected graph with the set of vertices

V
.
= {v1, v2, v3, ...} and E ⊆ V ×V which represents the set

of edges. The matrix A with nonnegative adjacency elements

ai,j serves as the weighted adjacency matrix. The node index

of G is denoted as a finite index set N = {1, 2, 3, ...}. An

edge of G is denoted by ei,j = (Vi, Vj) and the adjacency
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elements associated with the edges are positive. We assume

ei,j ∈ E ⇔ ai,j = 1 and ai,i = 0 for all i ∈ N .

The set of neighbors of the node Vi is denoted by N =
{Vj ∈ V |(vi, vj) ∈ E , j = 1 : M, j 6= i}. The degree matrix

of a graph G is defined as

△ = [δi,j ] (1)

where

δi,j =

{
∑N

j=1
ai,j , if i = j,

0, if i 6= j.

The Laplacian matrix of graph G is defined by

L = △− A . (2)

If there is a path from any node to any other node in

the graph, then we call the graph connected. In this paper,

we assume that the topology of the multi-agent system is

connected.

MAIN RESULT

Given a connected graph, according to Newtonian mechan-

ics, we adopt the same dynamic model as [9] for each agent:

ẋi = vi

miv̇i = ui

(3)

where xi, vi,mi are the position, velocity, and mass of the

node i, respectively. Moreover, for a system of M agents,

we assume m1 = m2 = ... = mM = 1.

Definition 2.1: The synchronization problem in accelera-

tion motion for multi-agent systems is to find a control law

ui such that

vi(t) =
1

M
11Tv(0) + bt

xi(t) =
1

M
11Tx(0) +

1

M
11Tv(0)t+

1

2
bt2 (4)

I.e., the trajectory of each agent of the multi-agent sys-

tem is under the same equation of acceleration motion.

Here, x(0) =
[

x1(0) x2(0) · · · xM (0)
]T

and v(0) =
[

v1(0) v2(0) · · · vM (0)
]T

, and xi(0), vi(0) are the ini-

tial states of the multi-agent system, 1 =
[

1 1 · · · 1
]

∈
R

M×1.

The following theorem is one of the main results of the paper.

Theorem 2.1: Given a connected multi-agent system, the

system achieves synchronization in acceleration motion as

defined in Definition 2.1 under the following synchronization

protocol

ui =

M
∑

j=1,j 6=i

ai,j [g(vj − vi) + k(xj − xi)] + b (5)

with k > 0, g > 0, aij is the (i,j)th element of the matrix

A , and b serves as the acceleration.

With Ei =
[

xi, vi

]T
and ψi =

[

0, b
]T

, under the protocol

(5), we obtain the vector form for the multi-agent system

Ėi = AEi +B

M
∑

j=1,j 6=i

ai,j(Ej − Ei) + ψi (6)

where A =

[

0, 1
0, 0

]

, B =

[

0, 0
k, g

]

. Furthermore, define E =
[

E1E2 · · · EM

]

Then, the multi-agent system dynamics be-

come

Ė = Φ × E + ψ (7)

where Φ = IM ⊗A− L⊗B and ψ = 1M ⊗
[

0
b

]

, where ⊗
denotes the Kronecker product.

To prove our main result, we investigate the the zero-state

effect and zero-input effect of the system.

A. Zero-input effect of the system

In this subsection, we will study the zero-input effect of

the system, in other words, the constant vector ψ is assumed

to be a zero vector. The following two lemmas are needed.

Lemma 2.1: The matrix Φ in the system (7) has the

following properties:

1. The matrix Φ has the eigenvalue λ = 0 with algebraic

multiplicity of two, which is denoted by λΦ,1 = λΦ,2 = 0.

2. Except for λΦ,1 and λΦ,2, all the other eigenvalues of Φ
satisfy Re(λΦ,i) < 0, i = 3, · · · , 2M .

Proof: Based on the fact that the eigenvalues of the

matrix L can be denoted by

0 = λL,1 < λL,2 < λL,3 < · · · < λL,M

and there exists an orthogonal matrix W such that

W−1LW = diag{λL,1, λL,2, · · · , λL,M}

then it follows that

(W−1 ⊗ I2)Φ(W ⊗ I2)

= IM ⊗A− diag{λL,1, λL,2, · · · , λL,M} ⊗ B

= diag{A,A − λL,2B, · · · ,A − λL,MB} (8)

Since the matrix A has two eigenvalues λA,1 = λA,2 = 0, it

gives that λΦ,1 = λΦ,2 = 0. For i = 2, 3, · · · ,M ,

det(A− λL,iB) = det

[

0, 1
−λL,ig, −λL,ik

]

= λL,ig 6= 0

Thus,

rank(Φ) = rank((W−1 ⊗ I2)Φ(W ⊗ I2))

= rank(A) +

M
∑

i=2

rank(A − λL,iB)

= 1 + 2(M − 1)

= 2M − 1 (9)
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Furthermore, the characteristic polynomial of A − λL,iB is

given as follows

fi(s) = det

[

s, 1
λL,ig, s+ λL,ik

]

= s2 + λL,iks+ λL,ig (10)

Put fi(s) = 0, then

s =
−λL,ik ±

√

(λL,ik)2 − 4λL,ig

2

Since k, g > 0, it follows that Re(λΦ,i) < 0 for i =
2, 3, · · · , 2M .

Lemma 2.2: let wr be the right eigenvector associated

with eigenvalue zero, and wl be the left eigenvector asso-

ciated with eigenvalue zero. Then,

wr =
1√
M

1M ⊗
[

1 0
]T

wl =
1√
M

1M ⊗
[

0 1
]T

(11)

and the generalized right eigenvector and the generalized left

eigenvector of Φ, denoted by vr and vl respectively, are

vr =
1√
M

1M ⊗
[

−k/g 1
]T

vl =
1√
M

1M ⊗
[

1 k/g
]T

(12)

Proof: Note that

Φ × wr = (

[

0, 1
0, 0

]

⊗ IM −
[

0, 0
k, g

]

⊗ L)

×(
1√
M

11×M ⊗
[

1
0

]

)

=

[

0, 1
0, 0

]

×
[

1
0

]

⊗ (IM
1√
M

11×M ) + 02M

= 02M

Φ × vr = (

[

0, 1
0, 0

]

⊗ IM −
[

0, 0
k, g

]

⊗ L)

×(
1√
M

1M ⊗
[

−k/g
1

]

)T

=
1√
M

1M1 × IM ⊗
[

1
0

]

= wr (13)

Similarly,

wT
l × Φ = 0T

2M (14)

also, vT
l Φ = wl, which completes the proof.

Then, we propose the state-input effect for the multi-agent

system.

Lemma 2.3: Consider the dynamic system (7) with ψ = 0.

Then for any k, g > 0,

lim
t→+∞

ζ(t) = limt→+∞ exp(Φ)ζ(0) (15)

=

[

1

N
11Tx(0) + 1

N
11Tv(0)t

1

N
11Tv(0)

]

(16)

Proof: Based on Lemma 2.1 and 2.2, there must exist

a nonsingular matrix P such that Φ can be factored into the

Jordan canonical form

Φ = PJP−1

= P















0 1 · · · 0 0
0 0 . . . 0 0
0 0 λΦ,3 . . . 0
...

...
...

. . .
...

0 0 0 · · · λΦ,2M















P−1 (17)

where P =
[

wr, vr, p3, · · · , p2M

]

, P−1 =
[

vl, wl, q3, · · · , q2M

]T
and p3, · · · , p2M

(q3, · · · , q2M ) are the right (left) eigenvectors or

generalized right eigenvectors associated with eigenvalues

λΦ,3, · · · , λΦ,2M , respectively. Since λΦ,3, · · · , λΦ,2M < 0,

it follows that

lim
t→+∞

E(t) = lim
t→+∞

exp(Φt)ζ(0)

=
1M

M
⊗
[

1 −k
g

0 1

] [

1 t
0 1

] [

1 k
g

0 1

]

⊗ 1T
M

=

[

1

M
11Tx(0) + 1

M
11Tv(0)t

1

M
11Tv(0)

]

(18)

which completes the proof.

B. Zero-state effect of the system

To prove Theorem 2.1, we need to investigate the zero-

state effect of the system (7) in this subsection.

Lemma 2.4: Given a connected topology for the multi-

agent system, the zero-state effect of the system (7) is

lim
t→+∞

∫ t

0

exp[Φ(t− τ)]ψ dτ =

[

1

2
bt2

bt

]

⊗ 1M (19)

Proof: Note that

lim
t→+∞

∫ t

0

exp[Φ(t− τ)] dτ

= P lim
t→+∞

exp(J(t))P−1

=
[

wr, vr

]

[

t, 1

2
t2

0, t

] [

vT
l

wT
r

]

+
[

p3, p4, . . . , p2M

]

diag{ 1

λΦ,3

,
1

λΦ,4

, . . . ,
1

λΦ2M

}

×
[

q3 q4 · · · q2M

]T

(20)

It is easy to verify that

[

wr, vr

]

[

t, 1

2
t2

0, t

] [

vT
l

wT
r

]

=
1

M
(1M )(1M )T ⊗

[

1, 1

2
t2

0, t

]

(21)

Next we will prove

[

p3, p4, . . . , p2M

]

diag{ 1

λΦ,3
, 1

λΦ,4
, . . . , 1

λΦ2M
}









pT
3

pT
4

. . .
pT
2M









= 1

M
LM ⊗

[

−k/g, 0
1, 0

]

+ S ⊗
[

0, 1/g
0, 0

]

(22)
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where

LM =













M −1 · · · −1

−1 M
. . .

...
...

. . .
. . . −1

−1 · · · −1 M













and S is a matrix satisfying SL = 1

M
LM , and all the row

sums of S and the column sums of S are zero.

First, we introduce two parameters α and β. Note that

Pdiag{ 1

α
,
1

β
,

1

λΦ,3

,
1

λΦ,4

, . . . ,
1

λΦ2M

}P−1

×Pdiag{α, β, λΦ,3, . . . , λΦ2M}P−1

= 02M (23)

On the other hand,

Pdiag{ 1

α
,
1

β
,

1

λΦ,3

,
1

λΦ,4

, . . . ,
1

λΦ2M

}P−1

=
[

wr vr

]

diag{ 1

α
,
1

β
}
[

vl wl

]T

+
[

p3 . . . p2M

]

diag{ 1

λΦ,3

,
1

λΦ,4

, . . . ,
1

λΦ2M

}

×
[

q3 q4 · · · q2M

]T
(24)

and

Pdiag{α, β, λΦ,3, . . . , λΦ2M}P−1

= Φ +
[

wr vr

]

[

α −1
0 β

]

[

vl wl

]T
(25)

it is easy to verify that

(
1

M
LM ⊗

[

−k/g, 0
1, 0

]

+ S ⊗
[

0, 1/g
0, 0

]

+
[

wr vr

]

diag{ 1

α
,
1

β
}
[

vl wl

]T
)

×(Φ +
[

wr vr

]

[

α −1
0 β

]

[

vl wl

]T
)

= 02M (26)

Then, together with (23) and (24), one can obtain (22).

Furthermore,

[

p3, p4, . . . , p2M

]

diag{ 1

λΦ,3
, 1

λΦ,4
, . . . , 1

λΦ2M
}







qT
3

...

qT
2M







×1M ⊗
[

0
b

]

= 02M (27)

[

wr, vr

]

[

t, 1

2
t2

0, t

] [

vT
l

wT
r

]

× 1M ⊗
[

0
b

]

=

[

1

2
bt2

bt

]

⊗ 1M (28)

Now, based on Lemma 2.1 and Lemma 2.2, Theorem 2.1 is

obvious.

From this point, we can solve the former first question, that

is, how we can achieve the desired consensus value, which

is defined here as the achievement of the desired velocity for

the multi-agent system. This desired velocity is stated by the

following theorem.

Theorem 2.2: For the connected system (7), with k, g > 0
and a constant b 6= 0, ai,j as defined before, the multi-agent

system achieves desired velocity vd under the following

control protocol.

ui = C(t){
M
∑

j=1,j 6=i

ai,j [g(vj − vi) + k(xj − xi)] + b} (29)

where

C(t) ,

{

0, if t ∈ [td,∞),
1, otherwise,

(30)

and

td =
vd − 1

N
11Tv(0))

b
(31)

Proof: According to Theorem 2.1, the system goes into

acceleration synchronization at time ts, and the expression

of the velocity of each agent is

vi(t) =
1

N
11Tv(0)) + bt (32)

with td > ts, and at time td,

vi(td) = vd (33)

and ui(t) = 0 for t ≥ td, so the desired consensus is

achieved.

III. FORMATION CONTROL

To address the second question in regard to formation

control for multi-agent systems, in this section we propose

a formation control protocol which is the transformation of

our synchronization protocol presented before.

The formation control protocol for the multi-agent system

is:

ui =

M
∑

j=1,j 6=i

ai,j [g(vj − vi) + k(xj − xi − li,j)] (34)

where li,j is the ideal distance between i and j. Here, we

try to control the formation for the multi-agent system via

the control of the distance between each agent.

We can obtain the compact vector form of the multi-agent

system,

Ė = Φ × E + ψ (35)

where Φ = IM ⊗ A − L ⊗ B A,B is as defined before and

ψ = L⊗
[

0 0
0 g

]

[

0 0 0 l1,2 0 l1,3 · · · 0 l1,M

]

.

Define di,j = xj −xi and we have the following theorem.

Theorem 3.1: Given a connected multi-agent system (35),

under the formation control protocol (34), the system goes

to vi(t) = 1

M

∑

vi(0)di,j(t) = lij .

Proof: For the zero-state effect for the system, because

of (21) and (22), we have

[

wr, vr

]

[

t, 1

2
t2

0, t

] [

vT
l

wT
r

]

× ψ =
1

M
(1M )(1M )T × L

⊗
[

t, 1

2
t2

0, t

]

×
[

0, 0
0, g

]

= 0M×M ⊗
[

t, 1

2
t2

0, t

]

×
[

0, 0
0, g

]

= 02M (36)
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Furthermore,
[

p3, p4, . . . , p2M

]

diag{ 1

λΦ,3
, 1

λΦ,4
, . . . , 1

λΦ2M
}

[

q3 q4 · · · q2M

]T × ψ

=

(

L⊗
[

− k
g

M
0

1

M
0

]

+ S ⊗
[

0 1

g

0 0

]

)

× ψ

=

(

S ⊗
[

0 1

g

0 0

])

×
(

L⊗
[

0 0
0 g

])

×
[

0 0 0 l1,2 0 l1,3 · · · 0 l1,M

]T

= 1

M
LM ⊗

[

0 1
0 0

]

×
[

0 0 0 l1,2 0 l1,3 · · · 0 l1,M

]T

= −1
M

∑M
j=2

l1,j

+
[

0 0 0 l1,2 0 l1,3 · · · 0 l1,M

]T
(37)

Then, together with lemma 2.3, the theorem can follow

immediately.

Furthermore, one can extend our synchronization protocol

and formation control protocol into the x-y plane; even x-y-z

space. Without losing generality, the X-Y mode is developed

here.

X-Y plane mode:

ẋi = vx
i

ẏi = vy
i

v̇x
i = ux

i

v̇y
i = uy

i

where xi, yi is the position, vx
i , and vy

i is the x-axis velocity

and y-axis velocity, respectively. ux
i and uy

i are the control

inputs of the agent i respectively. Furthermore, we propose

the x-y plane synchronization protocol for the multi-agent

system

ux
i =

∑M
j=1,j 6=i ai,j [g

x(vx
j − vx

i ) + kx(xj − xi)] + bx

uy
i =

∑M

j=1,j 6=i ai,j [g
y(vy

j − vy
i ) + ky(yj − yi)] + by(38)

where ai,j is defined as before, and gx, gy, kx, ky are positive

constants.

Based on the Theorem (2.1), we can obtain the following

corollary.

Corollary 3.1: Given a connected multi-agent system (7),

the multi-agent system achieves acceleration synchronization

under the control protocol (38).

Furthermore, we propose the following x-y plane forma-

tion control protocol for the multi-agent system:

ux
i =

M
∑

j=1,j 6=i

ai,j [g
x(vx

j − vx
i ) + kx(xj − xi − lxi,j)]

uy
i =

M
∑

j=1,j 6=i

ai,j [g
y(vy

j − vy
i ) + ky(yj − yi − lyi,j)] (39)

Since the goal is to achieve a particular formation for the

multi-agent system, it is necessary for the multi-agent system
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Fig. 2. Comparison of the Simulation and Experimental Result for System’s
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to achieve the same velocity, so here, we assume 11Tvx(0) =
11Tvy(0).

Based on Theorem (3.1), we can arrive at the following

corollary.

Corollary 3.2: Given a connected multi-agent system (7),

the system achieves the desired formation under the control

protocol (39).

IV. SIMULATION AND EXPERIMENTS

Given a connected topology, there are four agents in the

system and the topology is connected. Under our protocol

(5) with k = 1, g = 2, and b = 2, Fig. 1 and Fig. 2

are the Matlab simulation results, i.e., the velocities and

positions vs time t, respectively. We can conclude that the

system goes into acceleration synchronization with the same

equation of motion. Moreover, we apply the protocol to

achieve the desired consensus velocity. As Fig. 1 shows, the

(a) Initial Condition of the
Multi-Agent System’s synchro-
nization

(b) Final Condition of the
Multi-Agent System’s synchro-
nization

Fig. 3. Amigobots Experiment Set-up
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of Velocity vs Time

Fig. 4. Compare of the Simulation and Experiment Result for System’s
formation
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(b) Formation Experiment
of Position vs Time

Fig. 5. Compare of the Simulation and Experiment Result for System’s
formation

agents achieve the desired velocity vd = 0.225m/s using

our protocol (29).

The next goal is for the system to reach the desired for-

mation, which is achieved using proposed formation control

protocol (34). The desired formation is one in which the

distances between the position of each agent from agent 1

to agent 4 are the same. Fig. 4 displays the agent speeds

approaching the average of the initial speed values, and Fig.

5 displays the desired formation. Furthermore, the simulation

of the 3D formation is provided in Fig. 7.

In this paper, together with the simulation results, we adopt

the Amigobot mobile robots as our experiment environment

to verify our theoretical analysis. The same multi-agent

(a) Initial Condition of the
Multi-Agent System’s forma-
tion

(b) Final Condition of the
Multi-Agent System’s forma-
tion

Fig. 6. Amigobots Experiment Set-up
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(a) Multi-Agent System’s 3D for-
mation control
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(b) Multi-Agent System’s 3D for-
mation control

Fig. 7. 3D formation control for the multi-agent system

graph topology is investigated in the experiment. Under

synchronization protocol (29) and formation protocol (34), in

Fig. 1, Fig. 2, Fig. 4 and Fig. 5, we compare the experimental

results with the Matlab simulations. Fig. 3 and Fig. 6 are

photographs of the experiment set-ups having implemented

the synchronization and formation protocols, respectively.

V. CONCLUSION

This paper investigates the synchronization problem as it

relates to acceleration motion as well as the formation control

problem for multi-agent systems. Regarding our proposed

synchronization protocol, the agents of the system move

with the same equation of motion. Also, we provide an

application of this protocol, the result being that we can

obtain the desired consensus velocity instead of the average

of the initial velocities of the agents. Regarding our proposed

formation protocol, the desired formation can be achieved.

Both control protocols can be extended from a single axis

to 3D space, yet no discrepancies are encountered. The

Amigobots experiments and the Matlab simulations also

verify our theoretical analysis.
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