
  

  

Abstract— Developing a non-invasive direct brain control of 

artificial limbs is both challenging and desirable. Such a sensory 

and control system, if successful, will have profound impact on 

the disabled. In this paper, we present the design of a control 

algorithm capable of automatic reconfiguration to account for 

changing sensor conditions, selection of an appropriate transfer 

function based on input characteristics, and adaptation to 

adjust output strength based on the user’s activity. This 

algorithm is designed for use with our developed hybrid non-

invasive brain monitoring technique for the purpose of artificial 

limb control. The development of the algorithm and its initial 

performance together with our sensory system are presented 

and discussed. 

I. INTRODUCTION 

HIS research is focused on the development of a non-

invasive sensory system for the purpose of monitoring 

brain intentions as part of the goal of developing engineering 

systems to improve the quality of life for the disabled. The 

sensory system is specifically designed to monitor the motor 

cortex of the brain to detect control signals for movement of 

the musculoskeletal system, which can be utilized for 

actuation of an assistive robotic system or replacement limb 

to aid individuals with disabilities [1]. 

In the United States alone, there are an estimated 1.7 

million people who have experienced the loss of a limb and 

many of those lost multiple limbs [2]. An additional 46 

million Americans have been diagnosed with arthritis, which 

is predicted to increase to 67 million by 2030 [3] and 250 

thousand individuals have had a spinal cord injury [4]. 

Assistive devices to overcome chronic disabilities such as 

these have traditionally been limited due to technology and 

the complexity of brain, nervous, and motor control. 

Advancements in this field of research will have a significant 

impact on millions of people’s lives and the demand for 

these devices continues to grow. 
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As medical science has improved, the prevalence of limb 

loss has increased due to lower fatality rates in accidents and 

military theaters. Amputation of a soldier’s arm or leg can 

lead to a disability in an otherwise healthy, young individual 

and is a primary focus of research in this area. While these 

trends are of major concern, a commercially available system 

that provides natural mobility has yet to be produced and 

current research in this field tends to focus on invasive 

methods of restoring limb functions [5]. 

Through the combination of electroencephalography 

(EEG), near-infrared spectroscopy (NIRS), and 

electromyography (EMG), a non-invasive control system 

utilizing an adaptive algorithm and feedforward/feedback 

sensor integration for real-time control of artificial limbs is 

being developed for monitoring brain activity across the 

motor cortex (Figure 1). 

Through the combination of the temporal response of EEG 

with the spatial accuracy of NIRS, a non-invasive control 

system has been developed and further research continues to 

result in better accuracy using these techniques. Based on the 

EMG signals from healthy subjects, we are able to adapt the 

control system to properly correlate EEG and NIRS input 

patterns to matching muscle activations. NIRS is used as a 

second feedback loop to continuously adapt the control 

system and reduce error (Figure 2). This research will 

hopefully enable people with disabilities to use their brain to 

directly control artificial limbs and robotic arms to assist 

them in their daily activities, without going through an 

invasive surgery. It is without a doubt that many other 
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Fig. 1. EEG, NIRS, and EMG Hybrid sensor system for control of an 

artificial limb. 
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application areas, such as forensics, can benefit from the 

outcomes of this research [6]. 

II. TRANSFER FUNCTION CONTROL DESIGN 

A. Control System 

Prior research by the authors resulted in the design of a 

control system based on a transfer function design which 

mapped EEG input signal composition to EMG output 

strength [7]. This system is designed to mimic the motor 

control system of the human body, where EEG inputs are 

transformed into EMG outputs, which in turn are used to 

drive the motors of the artificial limb. In order to train the 

system and measure its performance, the calculated EMG 

outputs are compared to the actual EMG signals measured in 

healthy individuals. The transfer function is trained by 

performing a series of generalized arm motions and to 

achieve accurate control of the artificial limb, the system has 

to be trained for each new individual and adjusted for each 

new use in order to obtain similar EEG characteristics. The 

resulting control system design is described in the following. 

The actuators in the test arm are two servo-motors that are 

position controlled with pulse width modulation. The digital 

to analog converter that controls this signal works on a scale 

ranging from 0 to 1023, where 512 is the neutral position for 

both joints. The output value for each motor is calculated 

using equation 1. A simple proportional error controller was 

used for the test arm to limit the rate of actuation. Upon 

implementing this controller in a system for clinical use, 

where precision and performance will also be of concern, a 

more robust controller will be used. 

 

)( PDGPP −∗+=             (1) 

 

Where P is the motor position, G  is a calculated gain 

based on the sampling rate, and D  is the desired position 

for each motor. If P  is outside of the bounds of the 

minimum and maximum set for that joint, P  is set to the 

corresponding bound. 

The desired position D  is set by equation 2 and is the 

calculated estimate of the EMG values that were used to 

train the system. 
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Where 
1kE  and 

2kE  are selected scalar constants based on 

EMG signal intensity and 1E  and 2E  are the calculated 

EMG values for opposing sets of muscles corresponding 

with the selected joint [8]. This functions the same as the 

human body, where opposing muscle groups produce 

moments about a joint and the differential of the moments 

determines the force of the output. 

 The calculated EMG values are determined by equation 3. 
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Where F , V , and S  represent the FFT, variance, and 

summation of the EEG input data. The variance is the 

difference of the maximum and minimum values observed on 

an input channel during the last 128 samples and the 

summation is the first index of the FFT for each input 

channel. tE , tF , tV , and tS  are threshold values for 

corresponding terms based on maximum values observed 

during training. kF , kV , and kS  are matrices correlating 

the relationship of each EEG input measure to corresponding 

EMG output values. The subscript n  indicates the EMG 

channel that the calculation is being performed for and the 

subscript m  indicates the EEG channel. These matrices are 

normalized prior to use. 

B. Training Algorithm 

The transfer function is trained by building a correlation 

between measured inputs and known outputs using the 

following algorithm. Equations 4-6 are used to train kF , kV , 

and kS . 
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Where kT  is a training constant based on the number of data 

points in the training set, E  is the measured EMG, and mE  

is a matrix of minimum values observed on each EMG 

channel. 

 
Fig. 2. Control loops for training and adaptation algorithms. 
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C. Transfer Function Control System Performance 

Tests using a transfer function to calculate desired muscle 

activity from electroencephalography recordings indicate 

that this method is suitable for controlling the artificial limb 

during simple motions. The best results are obtained by 

training the transfer function using a variety of tasks to create 

the most diverse mapping of brain activity to muscle 

activation. The trained constants are then used to calculate 

motor outputs for the elbow and wrist joints during simple 

tasks. The system was tested using healthy subject data that 

had previously been collected. Measured EMG activity 

during brain monitoring sessions was used to validate the 

output of the EEG to EMG transfer function. 

The motor control based on EEG was very similar to the 

simulated arm activity generated based on simultaneous 

recordings with EMG. Motor control in Figure 3 depicts 

movement of the elbow joint and full range of motion using 

the transfer function control system during five repetitions of 

an elbow flexion. Figure 4 indicates that the wrist was flexed 

as well during bicep curls, as reflected by simultaneous EMG 

readings indicating the secondary activity took place. In both 

graphs, the y-axis value represents change from the resting 

position, with 461 representing full proximal flexion of the 

elbow, 256 representing full proximal flexion of the wrist, 

and -256 representing full distal extension of the wrist. 

There is a recurring time delay that appears in the 

correlation between calculated EMG and measured EMG 

data. This delay is shown in Figure 5, where the delay from 

peak of measured EMG activation to peak of calculated 

EMG activation averages 0.57 seconds. This delay is 

primarily caused by the transfer function utilizing the last 

one second of data for input parameters. A sufficient amount 

of indicator data must be present for the net effect of the last 

one second to correlate to the change in brain activity. This 

delay is acceptable based on the expectations of the proof of 

concept but will be addressed once the project has moved 

into clinical trials. 

III. ADAPTIVE CONTROL DESIGN 

To minimize the effect that changes in sensor connection 

quality have on the transfer function compatibility, the sensor 

system is recalibrated each time it is used, allowing for the 

change in signal strength to be the dominating factor and not 

absolute magnitude. This led to the development of an 

automated system for establishing system parameters. 

A. Automated Transfer Function Selection and Adaptive 

Adjustment 

Two major limitations of the original transfer function 

training system were the requirement of the system to be 

trained for each new individual and for values to be selected 

for the relative effect that each component of the system 

should affect on the output. The combination of two baseline 

recordings is used to overcome these limitations. A resting 

baseline paired with a maximum activation measurement 

allows for the automated selection of relative weightings as 

well as the selection of a potential matching trained system 

selected from a database. 

The threshold, minimum, and maximum values that were 

previously manually set are selected by characterizing the 
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Fig. 3. Measured elbow activity from EMG (Dashed) and calculated 

values (Solid) during elbow flexion. 
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Fig. 4. Measured wrist activity from EMG (Dashed) and calculated 

values (Solid) during elbow flexion. 
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Fig. 5. Measured muscle activity (Dashed) and calculated values 

(Solid) during elbow flexion. 
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signal properties automatically. As a result most of the 

constants that were experimentally determined in the original 

control system are now automatically calculated at each 

session based on the baselines, using the components of the 

data that were originally used to derive those values. 

The effect that each calculated EMG value has on the net 

motor output is also adjusted during the training session. The 

training activities are assumed to produce maximum flexion 

of each joint in both directions, therefore the relationship 

between opposing EMG outputs is modified to achieve a 

maximum flexion based on the values acquired during the 

training activity. The value of each EMG channel is recorded 

at the peak of each activity and stored in the matrix tE . The 

values for kE  are then calculated using equations 7-10 to 

simultaneously solve for the variable sets. 
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Where tM  contains the maximum EMG values recorded for 

each channel. 

 A second element has also been added to the training 

algorithms to improve the correlation between input signal 

strength and net output. Equations 11 and 12 are used to 

adjust the training matrix values based on the observed error 

between calculated EMG output and measured EMG for 

each channel. This adjustment has led to the elimination of 

using the EEG Summation term in the EMG output 

calculations since the main purpose of that term was to 

monitor the relative correlation of the intensity of each input 

to output. 
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Where nK  is the known EMG output and the n
th
 set of 

elements is modified to better correspond with the n
th
 output. 

If the user does not have the ability to attach EMG sensors 

to a limb, the training exercise is performed with visual 

stimulus while the user tries to mimic the corresponding 

output. The artificial limb performs a pre-established set of 

motions corresponding to the same activities that a healthy 

subject would have performed during the training session. If 

the resulting transfer function does not produce desirable 

results, a pre-trained transfer function may be selected by 

comparing principle components of the user’s baseline data 

with those in a database of previously trained data and 

performing a least-squared-error analysis to determine the 

closest match or an interpolation between two closely 

matching matrices. 

NIRS is used during real-time operation to further adjust 

the output of the system to better match the activities and 

desires of the user. The coefficients of the proportional error 

controller are modified continuously based on the relative 

brain activity measured through NIRS by making 

adjustments if there is deviation in relative brain activity 

compared to motor output. If the NIRS data matches a 

sustained muscle activity and the recent EEG data isn’t 

producing the same output, the motor transfer function 

values are adjusted incrementally to adapt the system to 

better match the desired system output within a bound of 

values allowing up to two orders of magnitude variation. 

B. Adaptive Control Algorithm Performance 

Designing the system to calculate all of the required 

coefficients for training and implementation has resulted in 

less precise estimation of desired EMG output values (Figure 

6), but has produced reasonable motor actuation (Figure 8). 

However, further research has lead to the decision to 

implement a different technique for analyzing the input 

signals from EEG. Instead of observing each input channel 

and correlating the characteristics to output data, combining 

paired sets of sensors into groups and analyzing the 

difference between channels as well as their average has 

shown improved results (Figures 7 and 8) [9]. The new 

control system inputs are obtained with equations 13-16. 

 
Fig. 6. Calculated EMG values (Black) and Measured EMG Values 

(Grey) for Each Channel 
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Where 'nF  represents the new input used for the control 

system and nF  represents the original FFT input data from 

each EEG channel. The values 512 and 1/2 are used to re-

center the data on the 0 to 1023 input data range being used. 
 

Figure 8 shows the improvement in activity matching 

obtained through the difference/average method compared to 

the original individual channels method. The major activity 

of the elbow flexion is nearly identical in both cases, but the 

resting position and sporadic motion in the second method 

are much improved. 

From these results it can be concluded that using the 

difference and average of corresponding EEG channels is a 

more effective method for data analysis. While the 

estimation of EMG activity is similar between methods, the 

noise cancellation is much improved by this technique. 

NIRS is being used in these results to attenuate or amplify 

the variable gain used for motor control. However, in the 

limited duration of these results, the cumulative effects of the 

adaptation algorithm are minor. Extended use should result 

in a decrease in the actuation speed demonstrated by figure 

8. 

IV. CONCLUSION 

Based on the results of this study, the combination of EEG 

and NIRS is sufficient for real-time control of an artificial 

limb. Training the system through the use of EMG produces 

the best results, but selection of a previously trained transfer 

function does produce results sufficient for the current level 

of system complexity. Additional system customization 

through the use of baseline reconfiguring and continuous 

adaptation using NIRS produces sufficient results for typical 

use. 

The next step will be to perform human subject testing 

with a larger group of healthy volunteers to begin collection 

of a wide variety of training data as well as make final 

refinements to the control system design. Additional degrees 

of freedom may be able to be utilized upon the level of 

success observed during the healthy subject trials. Once a 

sufficient amount of data has been collected, the device 

should be ready for clinical trials as the quality and 

functionality of the output device are improved.  
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