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Abstract— This paper considers the model predictive con-
trol (MPC) formulation for a class of discrete time-varying
linear state-space model representations of parabolic partial
differential equations (PDEs) with time-dependent parameters.
The time-dependence of the parameters are due to the changes
in physical properties or operating conditions of the system
such as phase transformation, reactor catalyst fouling, and/or
domain deformations which arise in many industrial processes.
The MPC formulation is constructed for the low dimensional
discrete finite-dimensional state space representation of the
PDE system and constraints on input and infinite-dimensional
state evolution are incorporated in the convex optimization
algorithm. The underlying MPC synthesis is utilizing the
appropriately defined model representation of the PDE and
yields convex quadratic optimization problem which includes
input and PDE state constraints. Using the illustrative example
of a crystal growth process in which the time-varying property
is associated with the evolution of grown crystal, the proposed
time-varying MPC formulation is implemented for the optimal
crystal temperature regulation problem under the presence of
input and state constraints.

I. INTRODUCTION

Partial differential equations (PDEs) with time-varying
parameters represent an important class of physical process
models. In particular, tubular reactors and packed bed reac-
tors, and the (CZ) crystal growth process, are prime examples
of distributed parameter systems in which parameters vary in
time, for example the process of catalyst deactivation is the
time-varying process which needs to be incorporated in the
underlying PDE model [1], see Fig.1, while the time varying
nature in the CZ crystal growth process is due to the growth
of the domain described by the parabolic PDE, [2], [3].
However, even when the model accounts for the time varying
nature of the system dynamics the set of tools available for
analysis and subsequent control of time-varying dissipative
systems described by the parabolic PDEs is significantly
smaller relative to those available for time invariant models.

The distributive parameter systems modelled by the time
varying parabolic PDEs are represented in the time-varying
infinite dimensional state-space setting in [4]. The funda-
mental solution to the autonomous infinite dimensional time-
varying differential equations (e.g. ẋ(t) = A (t)x(t)) is given
as the approximation of the fundamental solutions corre-
sponding to the piecewise constant generators, see [4], [5].
In essence, the solution can been represented by the system
generator consisting of a time-invariant generator and time-
varying perturbation term [6]. Along these lines of work, the
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Fig. 1. Packed bed reactor

issue of stabilization of time varying systems is given in [7],
for bounded (A (t)) and in [8] for unbounded. A general sta-
bility theory has been provided in Hinrichsen and Pritchard
[9] which also introduced the notion of largest bound such
that the stability of system is preserved for all perturbations
of norm less than the bound in a given perturbation set.
Along the stabilization theme, the optimal control regulator
synthesis for the time-varying infinite dimensional systems
has been addressed by Curtain and Pritchard [10] and Lions
[11]. However, in the time-varying infinite dimensional case
there are few works which explore the Ricatti equation and
general optimal control problem. On the other side, the lin-
ear time-varying discrete infinite dimensional systems were
rarely consider in the model predictive control framework in
which the optimality, input and/or state of PDE constraints
satisfaction is required. The previous contributions to the
model predictive control of time invariant parabolic PDEs
addressed the low dimensional parabolic PDE representation
that is given in the formulation of the cost functional while
the infinite dimensional state satisfaction was incorporated
by feasibility of the optimization,[12]. Motivated by the
previous works, we look at the model predictive control
approach to the optimal control of general linear parabolic
PDE systems given through their representation as infinite-
dimensional state space systems Σ(A ,B,−) on separable
Hilbert spaces X and U with state evolution x ∈X and
input u ∈ U , where A is an unbounded spectral operator
with discrete spectrum σ(A ) = {λn,n ∈ N), normalized
eigenvectors {φn,n∈N} and input operator B ∈L (U ,X ),
see [13]. As an example, the parabolic PDE model:

∂ f
∂ t

(ξ , t) = α(t)
(

∂ 2 f
∂ξ 2 (ξ , t)

)
+K f (ξ , t)+Q(ξ , t)

∂ f
∂ t

(0, t) = 0,
∂ f
∂ t

(l, t) = 0, f (ξ ,0) = f0 (1)

gives the dynamics of a reaction-diffusion process in which
the diffusivity 0 < α(t) < ∞ of the domain 0 < ξ < l changes
over a period of time, with zero-flux boundary conditions,
and where K is the linearized generation term and Q(ξ , t) is
a spatially distributed input to the system with f0 denoting
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the initial condition. The spatial operator of Eq.1 is given by
the following:

A φ = α(t)
d2φ

dξ 2 +Kφ (2)

with D(A ) := {φ ∈ L2(0, l) |φ , dφ

dξ
abs. cont. d2φ

dξ 2 ∈
L2(0, l) and dφ

dξ
(0) = 0, dφ

dξ
(l) = 0} and has eigenvalues

{λn,n ∈ N} and associated eigenvectors {φn,n ∈ N} given
by the following:

λn =−α(t)
(nπ

l

)2
+K, φn(ξ ) =

√
2
l

cos
(nπ

l

)
(3)

with 〈φn,φm〉 = δnm at each time t > 0. One can note that
α(t) appears in the expression of the eigenvalues which are
associated with the dynamics of a PDE system and conse-
quently are influenced by the evolution of α(t). The input
Q(ξ , t) := b(ξ )u(t) where u(t) ∈ R so that B = 〈b(ξ ),φn〉.
Then for the state evolution x(·, t) = {x(ξ , t),0≤ ξ ≤ l} with
x ∈ L2(0, l) for all t ≥ 0, the infinite dimensional state space
representation of Eq.1 is given by:

ẋ(t) = A (t)x(t)+B(t)u(t) (4)

The optimal control of systems in the form of Eq.4 have
been realized by the minimization of an associated quadratic
cost function which, in some cases, for which closed form
solutions for the optimal control law can be determined,
see [14], [13]. However, the introduction of state and input
constraints produce a level of complexity which does not
permit analytic expressions for the optimal regulator and the
model predictive control synthesis for this class of systems
needs to be addressed.

Since, the model predictive control is discrete regulator
synthesis the analogous discrete-time state space models
originating from the modal infinite-dimensional state space
system representation of the PDE can be obtained under
the conditions of existence of an evolution system (Φ(t,s))
generated by the continuous family of operators A (t).
Therefore, the discretized version of Eq.4 emerges. Provided
the above model formulation, one can consider the MPC
synthesis for the following power stable infinite-dimensional
discrete time-varying dynamical system, Σ(Ak,Bk,−) given
by:

xk+1 = Akxk +Bkuk, k = {0,1,2, . . .} (5)

in which uk is the vector of inputs, xk is the vector of states.
Although, the Eq.5 refers to the discrete infinite dimen-

sional system, we invoke the high level approximation of it
in the construction of the subsequent constrained regulator
formulation. In particular, we account for the low dimen-
sional model representation in the construction of the cost
functional while the infinite dimensional state is accounted
in PDE state constraints satisfaction. In practical control
applications the PDE system is typically approximated via
modal decomposition utilizing appropriate basis functions
where the dominant dynamics of the infinite dimensional
system are captured within a low dimensional finite set of the
first n modes, see [15]. We consider the MPC formulation
as an extension of the work by Muske & Rawlings (1993) to
time-varying systems, see [16], since we want to utilize the
structural benefits of MPC algorithm in a case of decoupled

state dynamics as in the case of Eq.. The MPC algorithm
gives an input profile of N future control moves which is
based on the minimization of the following infinite horizon
open-loop quadratic objective function at time k:

min
uN

∞

∑
j=0

(
xT

k+ jQxk+ j +uT
k+ jRuk+ j

)
(6)

where xk state is low dimensional state representation of
the PDE state, Q is symmetric positive semidefinite penalty
matrix on states, R is symmetric positive definite penalty
matrix on inputs, uk+ j is input vector at time j in the open-
loop objective function, [17], [16]. The regulator calculates
the vector uN which contains the N future open-loop control
moves starting from time k = 0:

uN =
(

uk uk+1 · · · uk+N−1
)T (7)

which optimize the objective function in Eq.6. The first
input uk is sent to the plant and uN is recalculated at each
time step with uk+ j = 0 for all j ≥ N. The infinite-horizon
open-loop objective in Eq.6 function can be expressed as the
finite horizon open-loop objective function:

min
uN

Φk = xT
k+NQ̃xk+N +

N−1

∑
j=0

(
xT

k+ jQxT
k+ j +uT

k+ jRuk+ j
)

(8)

The following section is motivated to provide a general
MPC regulator formulation for a time-varying discrete linear
system for which the time-dependence of the operators Ak
and Bk are known functions of time with some estimate of
the settling time index s such that Ak = As is constant for
all time k ≥ s. This condition is required in the algorithmic
realization of the MPC since, as it will be demonstrated, the
expression for the terminal state penalty matrix Q̃ depends
on the settling time s relative to the horizon N and the
knowledge of s is necessary to compute the contribution
of the infinite time horizon terms to Q̃. Given the example
PDE system in Eq.1, the condition implies that the time
varying parameter α(t) is known such that {λn,n ∈ N} and
{φn,n ∈ N} can be determined for t ≥ 0.

II. MODEL PREDICTIVE CONTROL (MPC) SYNTHESIS
FOR TIME-VARYING INFINITE-DIMENSIONAL SYSTEM

The following results provide synthesis for a general
class of discrete time-varying linear systems Σ(Ak,Bk,−)
arising from the discretization of Eq.4. In particular, we
decompose the system’s dynamics in low-dimensional and
infinite dimensional complement by introducing the projec-
tion operator P such that Ã = PA and Ã f = (I −P)A,
B = PB, B f = (I −P)B. In other words, we obtain the
state of parabolic system decomposed in finite x̃ and infinite
subsystem x̃ f , so that the time-varying dynamics are given
by:

x̃(k+1) = Ã(k)x̃(k) +B(k)u(k), k = {0,1,2, . . .} (9)

x̃ f (k+1) = Ã f (k)x̃ f (k) +B f (k)uk, (10)

The ensuing formulation of the MPC synthesis that deals
with the construction of the cost functional deals only with
the finite low dimensional state given by Eq.9.
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A. MPC cost functional formulation
Theorem 2.1: For s > k the terminal state penalty matrix

Q̃ in Eq.8 is given by:
Q̃ = Q̃(a) +MQ̃(b)MT (11)

where for L and M defined as:L =
i

∏
j=N

ÃT
k+ j, M =

s−1

∏
j=N

ÃT
k+ j (12)

the matrices Q̃(a) and Q̃(b) are given by:
Q̃(a) = Q+

s−2

∑
i=k+N

LQLT , Q̃(b) =
∞

∑
i=0

ÃT i

s QÃ
i

s (13)

such that Q̃(b) is determined from the solution of the discrete
Lyapunov equation:

Q̃(b) = Q+ ÃT
s Q̃(b)Ãs (14)

Proof: From Eq.8, the series expansion with respect to
x̃ gives:
x̃T

k+NQ̃x̃k+N =
∞

∑
j=N

(
x̃T

k+ jQx̃k+ j
)

=

x̃T
k+NQx̃k+N + x̃T

k+N+1Qx̃k+N+1 + x̃T
k+N+iQxk+N+i + · · ·

+ x̃T
s−1Qx̃s−1 + x̃T

s Qx̃s + x̃T
s+1Qx̃s+1 + · · ·

Since x̃k+N+r = Ãk+N+r−1Ãk+N+r−2 · · · Ãk+N x̃k+N :
x̃T

k+NQ̃x̃k+N =
∞

∑
j=N

(
x̃T

k+ jQx̃k+ j
)

= x̃T
k+N

{
Q+ ÃT

k+NQÃk+N + ÃT
k+N ÃT

k+N+1QÃk+N+1Ãk+N + · · ·

+ ÃT
k+N · · · ÃT

k+N+i−1QÃk+N+i−1 · · · Ãk+N + · · ·
+ ÃT

k+N · · · ÃT
s−2QÃs−2 · · · Ãk+N + · · ·

+ ÃT
k+N · · · ÃT

s−1
(
Q+ ÃT

s QÃs + ÃT
s ÃT

s QÃsÃs+

ÃT
s ÃT

s ÃT
s QÃsÃsÃs + · · ·

)
Ãs−1 · · · Ãk+N

}
x̃k+N

Collecting terms gives:

x̃T
k+NQ̃x̃k+N = x̃T

k+N

{
Q+

s−2

∑
i=k+N

(
i

∏
j=N

ÃT
k+ j

)
Q

(
i

∏
j=N

ÃT
k+ j

)T

+

(
s−1

∏
j=N

ÃT
k+ j

)(
∞

∑
i=0

ÃT i

s QÃ
i

s

)(
s−1

∏
j=N

ÃT
k+ j

)T }
xk+N

which yields Eq.11 using the identities defined in Eqs.12-13.

Theorem 2.2: The general form of the quadratic program
for uN of Eq.8 is given by:

min
uN

Φk = (uN)T FuN +2(uN)T Gx̃k (15)

where for s > k the matrices F and G in Eq.15 have the
following structures:

F =


BT

k Q̃[1]Bk +R BT
k H[1]Q̃[2]Bk+1 · · ·

BT
k+1Q̃[2]H

T
[1]Bk BT

k+1Q̃[2]Bk+1 +R · · ·
...

...
. . .

BT
k+N−1Q̃[N]H

T
[N−1]Bk BT

k+N−1Q̃[N]H
T
[N−2]Bk+1 · · ·

BT
k H[N−2]Q̃[N]Bk+N−2 BT

k H[N−1]Q̃[N]Bk+N−1

BT
k+1H[N−2]Q̃[N]Bk+N−2 BT

k+1H[N−1]Q̃[N]Bk+N−1
...

...
BT

k+N−1Q̃[N]H
T
[N−1]Bk+N−2 R+BT

k+N−1Q̃[N]Bk+N−1



G =


BT

k Q̃[1]H
T
[1]Ãk

BT
k+1Q̃[2]H

T
[2]Ãk

...
BT

k+N−1Q̃[2]H
T
[N−1]Ãk

 (16)

For the following identities defined as:

L[p] =
i

∏
j=p

ÃT
k+ j, M[p] =

s−1

∏
j=p

ÃT
k+ j, H[q] =

N−1

∏
j=q

ÃT
k+ j (17)

the elements of F are given by:

Fmn =

{
BT

k+qQ̃[p]Bk+q +R, m = n

BT
k+qQ̃[p]H

T
[q]Bk+q, m 6= n

(18)

for {m,n} ∈ {1,2, . . .N} and where p = {1,2, . . . ,N} and
q = {0,1, . . . ,N− 1} such that F is symmetric with FT

mn =
Fnm = BT

k+qH[q]Q̃[p]Bk+q. and the state penalty matrix is given
by:

Q̃[p] = Q̃(a)
[p] +M[p]Q̃

(b)MT
[p] (19)

with components Q̃(a)
[p] and Q̃(b) defined as:

Q̃(a)
[p] = Q+

s−2

∑
i=k+p

L[p]QLT
[p], Q̃(b) =

∞

∑
i=0

ÃT i

s QÃ
i

s (20)

Proof: Algebraic manipulation of Eq.8 leads to the
matrix structures of F and G with Eqs.19-20 determined
from the recursion of the identities given in Eq.12 to those
in Eq.17.

Remark 1: The quadratic minimization formulation in The-
orem 2.2 is given for s > k. The structures of F , G and the
state penalty matrix Q̃[p] are determined by the underlying
dynamical nature of the system Σ(Ãk,Bk,−) in Eq.9. In
particular, one can notice that the terminal state penalty
matrix Q̃ is comprised of two components: Q̃(a) which
corresponds to the contribution of Ak for time instances
r < s, and Q̃(b) which corresponds to the contribution of Ãs
for r ≥ s. Since uN is recalculated at each time step k, the
interval of N control moves is shifted forward whereas the
settling time remains fixed at time k = s such that Q̃[p] is also
time-varying. As r→ s, the contribution of Q̃(a) is calculated
over a shorter time interval. This change in the state penalty
matrix is demonstrated by examining more specific cases of
Theorem 2.2 in the following set of Lemmas.

Lemma 2.1: For s ≤ k + N the terminal state penalty
matrix Q̃ in Eq.8 is given by:

Q̃ = Q̃(b) (21)

where Q̃(b) is determined from the solution of the discrete
Lyapunov equation in Eq.14.

Proof: If s≤ k +N, Ãr = Ãs for all r ≥ k +N and the
expansion of the infinite sum in Eq.8 gives,

∞

∑
j=N

(
x̃T

k+ jQx̃T
k+ j
)

=

x̃T
k+N

(
Q+ ÃT

s QÃs + ÃT
s ÃT

s QÃsÃs + · · ·
)

x̃k+N
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which immediate yields Q(b) in Eq.13.
This result leads to the simplification of the element

structures of F and G in quadratic program for uN in Eq.15
which is given in the following Lemma.

Lemma 2.2: For s≤ k+N, the quadratic program for uN is
given in Eq.15. The matrices F and G in Eq.16 with element
structures given in Eq.18 and the state penalty matrix Q̃[p]

in Eq.19 with components Q̃(a)
[p] and Q̃(b)

[p] given by:

Q̃(a)
[p] = Q+

N−2

∑
i=k+p

L[p]QLT
[p], Q̃(b) =

∞

∑
i=0

ÃT i

s QÃ
i

s (22)

are defined for the following identities:

L[p] =
i

∏
j=p

ÃT
k+ j, M[p] =

N−1

∏
j=p

ÃT
k+ j, H[q] =

N−1

∏
j=q

ÃT
k+ j (23)

Proof: Algebraic manipulation of Eq.8 with Q̃ = Q̃(b)

yields the matrix structures of F and G with the components
given in Eq.22 and identities given in Eq.23.

Remark 2: One can note that the quadratic program in
Eq.15 can be made to satisfy Lemma 2.2 by selecting an
appropriately long control horizon. That is, choosing N ≥ s
ensures that the condition s ≤ k + N is satisfied which is
feasible since s < ∞ and less computationally intensive for
small s. Similarly, one can determine Q̃[p] for r < s < r +N
to further verify the change in the state penalty matrix as
the interval of control moves N shifts forward. Moreover,
the transition in Q̃[p] as Ãk→ Ãs is captured by the quadratic
program structure for uN in Theorem 2.2 as can be observed
by determining the quadratic program for the time r ≥ s. In
this case, state penalty matrix is given by Q̃[p] = Q̃(b) and
the matrices F and G of the quadratic program in Eq.15 are
given by:

F =


BT

r Q̃(b)Br +R BT
r ÃT

s Q̃(b)Br · · · BT
r ÃT N−1

s Q̃(b)Br

BT
r Q̃(b)ÃsBr BT

r Q̃(b)Br +R · · · BT
r ÃT N−2

s Q̃(b)Br
...

...
. . .

...

BT
r Q̃(b)Ã

N−1
s Br BT

r Q̃(b)Ã
N−2
s Br · · · R+BT

r Q̃(b)Br



G =


BT

r Q̃(b)Ãs

BT
r Q̃(b)Ã2

s
...

BT
r Q̃(b)ÃN

s

 (24)

which complies with the quadratic program for a time-
invariant linear system in the standard MPC formulation.

B. Constraints

The quadratic program in Eq.15 is subject to the following
set of constraints:

umin ≤ uk+ j ≤ umax, j = 0,1, . . . ,N−1
xmin ≤ xk+ j ≤ xmax, j = j1, j1 +1, . . . , j2 (25)

where state constraints are applied from time k+ j up to time
k + j2 with j1 ≥ 1 and j2 ≥ j1. The choice of j1 is made to

ensure that the state constraints are feasible at time k and j2
is chosen such that feasibility of the state constraints up to
time k + j2 guarantees the feasibility of the state constraints
on the infinite time horizon. One can construct the following
set of matrices which relates the constraint on input uk to
the states of the future N future control moves under closed
loop state feedback is given by:

T =


Bk 0 · · · 0

W T
[2,1]Bk Bk+1 · · · 0

...
...

. . .
...

W T
[N−1,1]Bk W T

[N−1,2]Bk+1 · · · Bk+N


where for i = {1,2, . . . ,N} and j = {1,2, . . . ,N} the elements
W[i, j] are defined as:

W[i, j] =


i−1

∏
j=p

ÃT
k+p i > j

0 i≤ j

(26)

Then the constraints in Eq.25 can be expressed as:
I
−I
T
−T

uN ≤


I1
I2
T1
T2

 (27)

where I1, I2,T1 and T2 are given by:

I1 =

 umax
...

umax

 , I2 =

 −umin
...

−umin

 (28)

The infinite dimensional state constraints show up through
the following expression xk = x̃k + x̃ f (k) in the Eq.25:

T1 =


xmax− Ãkx̃k− x̃ f (k)

xmax−ZT
[1]Ãkx̃k− x̃ f (k)

...
xmax−ZT

[N−1]Ãkx̃k− x̃ f (k)

 (29)

T2 =


−xmin + Ãkx̃k + x̃ f (k)

−xmin +ZT
[1]Ãkx̃k + x̃ f (k)

...
−xmin +ZT

[N−1]Ãkx̃k + x̃ f (k)

 (30)

where the element Z[i] is given by:

Z[i] =
N−1

∏
p=i

ÃT
k+p (31)

and where x̃ f (k) dynamics is bounded due to the power
spectral stability of infinity dimensional Ã f (k) and boudness
of the input due to the existence of feasible optimization
solution.
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C. Unstable systems

The receding horizon regulator in Section-II-A was for-
mulated for stable systems. In the case of unstable systems,
which are assumed to be stabilizable with the number of
control moves being greater or equal than the number of
unstable modes, i.e. N ≥ nu, the approach to the regulator
synthesis is by the partitioning of the Jordan form of Ãk into
stable parts and unstable parts, Js and Ju respectively, see
[16]:

Ak = V JV−1 =
(

V u
k V s

k

)( Ju
k 0
0 Js

k

)(
Ṽ u

k
Ṽ s

k

)
(32)

Then for
(

zu
k

zs
k

)
=
(

Ṽ u
k

Ṽ s
k

)
xk the transformed discrete state

space system is given by:(
zu

k+1
zs

k+1

)
=
(

Ju
k 0
0 Js

k

)(
zu

k
zs

k

)
+
(

Ṽu
Ṽs

)
Bkuk (33)

and the objective function in Eq.8 is subject to the equality
constraint zu

k+N = 0 such that uN stabilizes the unstable
modes at time k + N. The state and input constraints of
Section-II-B are applied in the regulator formulation for the
system in Eq.33.

Remark 3: The time-varying nature of the system Eq.5
produces complexity for the synthesis of MPC for the
transformed system in Eq.33 such as the case if the instability
of the system is due to a finite number of time-varying
process parameters, e.g. α(t) = {α1(t), . . . ,α j(t)}. Even if
the trajectory of α(t) is known, the condition that N ≥ nu
must be satisfied to ensure that zu

k+N = 0 is feasible for
every xk. If, for example, the trajectory of α(t) is such that
the modes alternate between stable and unstable regions at
various intervals of time, then N must be adjusted to accom-
modate this variation. Moreover, for all cases considered, the
nominal stability of the regulator formulation is ensured by
the evaluation of the state penalty on the infinite horizon,
see [17]. For time-varying unstable systems, the requirement
for evaluating Q̃ is that Ãk→ Ãs in a finite time index s and
remains there for all k ≥ s and also that Ãs is stable. The
regulator formulation of this class of unstable time varying
discrete systems is not considered in this work.

III. EXAMPLE

In this section we consider the annealing process depicted
in Figure 2 in which a mechanically driven pulling arm draws
a slab from a melt according to a prespecified schedule which
determines the length of the domain l(t) and the velocity of
the boundary w(t).

A. System representation

The PDE model of the temperature dynamics in the slab
domain 0 < ξ < l(t) is given by:

∂ f
∂ t

(ξ , t) = D0
∂ 2 f
∂ξ 2 (ξ , t)−w(t)

∂ f
∂ξ

(ξ , t)+Q(ξ , t)

∂ f
∂ t

(0, t) = 0,
∂ f
∂ t

(l(t), t) = 0, f (ξ ,0) = f0 (34)

Melt

Crucible

Crystal

Fm

w(ξ, t)
Q(ξ, t)

f(ξ, t)

ξ = l(t)

ξ = 0

Fig. 2. CZ crystal growth process where f (ξ , t) represents the temperature.
The boundary ξ = l(t) is moving with velocity w(t) such that the domain
is 0 < ξ < l(t) and where Q(ξ , t) is the heat input to the system.

where D0 is the diffusivity constant, Q(ξ , t) is the heat input
to the system and f0 is the initial temperature distribution of
the slab, see [14], [18]. For each t ∈ [0,∞), and admissible
function φ(ξ )∈L2(0, l), the time-dependent spatial operator
of Eq.34 is given by:

A φ := D0
d2φ

dξ 2 −w
dφ

dξ

D(A ) :=
{

φ ∈ L2(0, l) : φ ,
dφ

dξ
abs. cont.,

d2φ

dξ 2 ∈ L2(0, l),and
dφ

dξ
(0) = 0,

dφ

dξ
(l) = 0

}
(35)

The eigenvectors {φn,n ∈N} and eigenvalues {λn,n ∈N} of
the operator defined in Eq.35 are given by:

φn(ξ ) = Bne
w

2D0
ξ

(
cos
(nπ

l
ξ

)
− w

2D0
( nπ

l

) sin
(nπ

l
ξ

))

λn =−D0

(nπ

l

)2
− 1

2D0

w2

2
, n≥ 1 (36)

The procedure given in Section-I to obtain the discrete time-
varying linear state space system representation of Eq.34 is
employed. The eigenvectors in Eq.36 that vary with w(t)
and l(t) are utilized for the exact modal decomposition of
Eq.35 for the first n = 10 modes which gives the finite-
dimensional evolutionary state space system representation
of Eq.34 for each time t. Identifying λmax = supn,t |λn(t)|,
the sampling time ts is selected such that ts < λ−1

max and the
system is discretized which yields the discrete time-varying
finite dimensional linear state space system Σ(Ak,Bk,Ck) of
the form in Eq.5. The system is stable in the absence of gen-
eration terms and the receding horizon regulator formulation
with terminal state penalty matrix given in Theorem 2.1 and
quadratic program in Theorem 2.2 is employed.

B. Simulation and numerical results

The finite dimensional discrete time-varying system rep-
resentation of Eq.34 given by Σ(Ak,Bk,Ck) as determined
in the previous section was simulated with the regulator
formulation of Section-II-A employed which determined the
minimizing vector uN of the quadratic function Eq.15 subject
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Fig. 3. Domain evolution

to the input constraints, umin ≤ u ≤ umax, given in Section-
II-B. The evolution of the domain is depicted in Figure 3
which settles at time ts ∼= 2 to a steady state value of lss = π

at which time Ãk = Ãs for all k ≥ s. The control horizon
was set at N = 30 discrete time instances k. At each k the
vector uN of k + N future control moves was determined
and input uk was injected into the closed loop system which
resulted in the temperature profile evolution of the slab with
moving boundary depicted in Figure 4. The minimizing input
uk stabilized the temperature of the domain within t = 3 time
instances from an initial perturbation temperature distribution
of f (ξ ,0) = f0. The state and input profiles are shown in
Fig.5 which demonstrates that the respective constraints are
satisfied as the temperature of the slab is stabilized.

IV. CONCLUSIONS

In this paper, we considered the model predictive control
of the discrete time-varying system representation of a class
of linear partial differential equations with time-varying
coefficients. The infinite-time horizon MPC was developed
by the construction of the quadratic program for the time
varying system Σ(Ak,Bk,−) which accounts for the low
dimensional cost function representation while the input and
state constraints account for the infinite dimensional PDE
state representation. A parabolic PDE with time-varying
coefficient described by the evolution of the spatial domain

00.511.522.53
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ξ

f (ξ , t)

Fig. 4. Closed-loop temperature evolution in domain with slab conductivity
D0 = 1.5 and initial condition f0 = 5sin(ξ ) with heat input determined by
constrained receding horizon regulator formulation with control parameters
Qnn = 10 and R = 0.01.
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Fig. 5. Upper: Constrained state evolution xmin ≤ x(t) ≤ xmax, at input
location ξ = 2.1. Lower: Constrained input evolution umin ≤ u(t)≤ umax.

was simulated using the discrete modal system representation
of the system. Numerical simulation results of the closed
loop system demonstrated that the regulator formulation
stabilized the PDE system subject to the imposed state and
input constraints.
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