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Abstract— We introduce a non-model based approach for the
stable attainment of a Nash equilibrium in noncooperative static
games with infinitely-many (non-atomic) players. In classical
game theory algorithms, each player employs the knowledge
of the functional form of his payoff and of the other players’
actions, whereas in the proposed algorithm, the players need
to measure only their own payoff values. This strategy is based
on the extremum seeking approach, which has previously been
developed for standard optimization problems and employs
sinusoidal perturbations to estimate the gradient of an unknown
function. We consider games with quadratic payoff functions,
proving convergence to a neighborhood of the Nash equilibrium,
and provide simulation results for an example price game.

I. INTRODUCTION

The development of algorithms to achieve convergence

to a Nash equilibrium has been a focus of researchers for

several decades. Advances in both theory and technology

have helped continue this line of research as game theory

has found applications across a wide-array of disciplines. We

study here the problem of computing, in real time, the Nash

equilibria of static noncooperative games with infinitely-

many players by employing a non-model based approach.

By utilizing extremum seeking with sinusoidal perturbations,

the players achieve stable, local attainment of their Nash

strategies without the need for any model information.

Most algorithms designed to achieve convergence to a

Nash equilibrium require modeling information for the game,

assume that the players can observe the actions of the other

players, and are applied to games with a finite number

of players. In [1], a gradient-like algorithm that requires

knowledge of the game’s modeling information is used to

obtain an equilibrium point in convex games. A strategy

known as fictitious play (employed in finite games) depends

on the actions of the other players so that a player can devise

a best response. A dynamic version of fictitious play and

gradient response is developed in [2] and is shown to con-

verge to a mixed-strategy Nash equilibrium in cases where

previous algorithms did not converge. Distributed iterative

algorithms are designed for the computation of equilibria

in [3] for a general class of non-quadratic convex Nash

games. In [4], a synchronous distributed learning algorithm,

where players remember their own actions and utility values

from the previous two time steps, is shown to converge
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in probability to the set of restricted Nash equilibria. An

approach, which is similar to our Nash seeking method for

games with finitely-many players (found in [5], [6], [7]),

is studied in [8] to solve coordination problems in mobile

sensor networks. A comprehensive treatment of static and

dynamic noncooperative game theory can be found in [9].

The results of this work extend the methods of extremum

seeking [10], [11], [12], [13], [14], [15], originally developed

for standard optimization problems. Many works have used

the extremum seeking method, which performs non-model

based gradient estimation, for a variety of applications,

such as steering vehicles toward a source in GPS-denied

environments [16], [17], [18], optimizing the control of

HCCI engines [19] and nonisothermal continuously stirred

tank reactors [20], reducing the impact velocity of an elec-

tromechanical valve actuator [21], and controlling Tokamak

plasmas [22].

In this work, uncountably-many players in a static non-

cooperative game with quadratic payoff functions employ

extremum seeking to stably attain a Nash equilibrium. The

key feature of our approach is that the players are not

required to know the mathematical model of their payoff

function or the game. The players only need to measure

their own payoff values. The tradeoff is that convergence

in this case is proved only locally (or at best semi-globally,

see [11]). In games of this type, the action of a single player

cannot affect the outcome of the game. Economic models

with a continuum of players have been studied since the

1960s [23], [24], [25]. We present convergence results for

two classes of quadratic payoff functions and provide an

example price game with a continuum of players.

II. NASH EQUILIBRIUM SEEKING

We consider static games with uncountably many (non-

atomic) players that wish to maximize their quadratic payoff

functions. For such games, we associate with each player a

point x in the unit interval [0, 1] and denote the action of

player x by u(x) and its payoff value by J(x).
By utilizing extremum seeking, which is a non-model

based real-time optimization strategy, a player can stably

attain a Nash equilibrium u∗(x) by evolving its action u(x)
according to its measured payoff value J(x). Specifically,

the players employ the time-varying strategy

∂

∂t
û(x, t) = k(x)µ(x, t)J(x, t), (1)

u(x, t) = û(x, t) + µ(x, t), (2)

where µ(x, t) = a(x) sin(ω(x)t+ϕ(x)), a(x) is measurable,

positive, and bounded for all x ∈ [0, 1], and ω(x), k(x) > 0
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Fig. 1. Deterministic extremum seeking scheme employed by uncountably-
many players with the Nash seeking loop for player x ∈ [0, 1] depicted.

for all x ∈ [0, 1]. The strategy (1)–(2) requires player x to

know only its payoff value J(x). Knowledge of the mathe-

matical form of the payoff functions or of the other players’

actions is not needed. Figure 1 depicts a noncooperative

game played by infinitely many players implementing the

Nash seeking strategy (1)–(2).

We study two classes of quadratic payoff functions. First,

we analyze payoff functions of the form

J(x, t) = −c(x)u2(x, t) + d(x)u(x, t)

∫ 1

0

p(y)u(y, t) dy

+ q(x)u(x, t) +

∫ 1

0

r(x, y)u(y, t) dy + e(x),

(3)

where c, d, p, q, r, e are all measurable and bounded func-

tions. Moreover, c(x) > 0 for all x ∈ [0, 1], and we assume
∫ 1

0
p(y)d(y)

c(y) dy 6= 2 because the Nash equilibrium for games

with payoff functions of the form (3) is

u∗(x) =
d(x)

∫ 1

0
p(y)q(y)

c(y) dy

c(x)
(

4 − 2
∫ 1

0
p(y)d(y)

c(y) dy
) +

1

2

q(x)

c(x)
. (4)

The other class of quadratic payoff functions that we con-

sider, which is not a subset of (3), is

J(x, t) = −u2(x, t) + 2u(x, t)

∫ 1

0

r(x, y)u(y, t) dy, (5)

where r is measurable, bounded, cannot be expressed as a

product of two single-argument functions, i.e., r(x, y) 6=
g(x)h(y) in general. (Compare the second term of (5) to

the second term of (3).) The payoff functions (5) yield

u∗(x) ≡ 0 (6)

if supx∈[0,1]

∫ 1

0 |r(x, y)|2 dy < 1.

III. CONVERGENCE RESULTS

To state our convergence results, we introduce two sets

of functions. We define Ω as the set of positive, bounded

functions ω : [0, 1] → R+ such that, at each element of the

set ω([0, 1])∪2ω([0, 1]), the level set of ω is of measure zero.

Let Π be the set of positive functions ν(x) that are either

strictly increasing or strictly decreasing. Then, Π ⊂ Ω. Also

contained in Ω are all bounded C1[0, 1] positive functions

whose derivative is zero on a set of measure zero.

For games with payoff functions of the form (3), we have

the following result:

Theorem 1: Consider the system (1)–(2), along with (3)

and (4), where k(x) = εK(x) = O(ε), ε is a small, positive

constant, and c(x) > 1
2

( ∫ 1

0
d2(y) dy

)1/2( ∫ 1

0
p2(y) dy

)1/2

for all x ∈ [0, 1]. There exists a constant ε̄ such that for

all ε ∈ (0, ε̄) and functions ω ∈ Ω, if the L2[0, 1] norm of

∆(x, 0) is sufficiently small, then for all t ≥ 0,
∫ 1

0

∆2(x, t) dx ≤ Me−mt

∫ 1

0

∆2(x, 0) dx

+ O

(

ε2 + max
x∈[0,1]

a2(x)

)

, (7)

where

∆(x, t) = u(x, t) − u∗(x), (8)

M =
maxx{k(x)a2(x)}
minx{k(x)a2(x)} , (9)

m = 2 min
x∈[0,1]

{α(x)} min
x∈[0,1]

{k(x)a2(x)}, (10)

α(x) = c(x) − 1

2

(
∫ 1

0

d2(y) dy

)

1

2
(

∫ 1

0

p2(y) dy

)

1

2

.

(11)
Proof: Denote the error at time t relative to the Nash

equilibrium as

ũ(x, t) = u(x, t) − µ(x, t) − u∗(x). (12)

By substituting (3) into (1)–(2), we obtain the error system

∂

∂t
ũ(x, t) = εK(x)G[ũ, u∗, c, d, p, q, r, e, µ](x, t), (13)

where the operator G (with the arguments suppressed) is

defined as

G[·](x, t) , µ(x, t)

[

− c(x)(ũ(x, t) + u∗(x) + µ(x, t))2

+ d(x)(ũ(x, t) + u∗(x) + µ(x, t))

×
∫ 1

0

p(y)(ũ(y, t) + u∗(y) + µ(y, t)) dy

+ q(x)(ũ(x, t) + u∗(x) + µ(x, t))

+

∫ 1

0

r(x, y)(ũ(y, t) + u∗(y) + µ(y, t)) dy

+ e(x)

]

. (14)

The form of (13) admits the application of general averaging

theory [26] for stability analysis, and the average error

system can be shown to be

∂

∂t
ũave(x, t) = lim

T→∞

εK(x)

T

∫ T

0

G[·](x, t) dt,

= −εK(x)a2(x)

(

c(x)ũave(x, t)

− 1

2
d(x)

∫ 1

0

p(y)ũave(y, t) dy

)

. (15)
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(Details of computing (15) are shown in the appendix.)

Let V (t) be a Lyapunov functional defined as

V (t) =
1

2ε

∫ 1

0

1

K(x)a2(x)
(ũave)2(x, t) dx (16)

and bounded from both sides by

V (t) ≥ 1

2ε maxx{K(x)a2(x)}

∫ 1

0

(ũave)
2
(x, t) dx, (17)

V (t) ≤ 1

2ε minx{K(x)a2(x)}

∫ 1

0

(ũave)
2
(x, t) dx. (18)

Taking the time derivative, substituting (15), and applying

the Cauchy-Schwarz inequality yields

V̇ = −
∫ 1

0

c(x) (ũave)
2
(x, t) dx

+
1

2

∫ 1

0

d(x)ũave(x, t) dx

∫ 1

0

p(y)ũave(y, t) dy,

≤ −
∫ 1

0

c(x) (ũave)
2
(x, t) dx

+
1

2

(
∫ 1

0

|d(x)|2 dx

)

1

2
(

∫ 1

0

|ũave(x, t)|2 dx

)

1

2

×
(

∫ 1

0

|p(y)|2 dy

)

1

2
(

∫ 1

0

|ũave(y, t)|2 dy

)

1

2

. (19)

Collecting terms and substituting the bound (18) gives

V̇ ≤ − min
x∈[0,1]

{α(x)}
∫ 1

0

(ũave)
2
(x, t) dx,

≤ −2ε min
x∈[0,1]

{α(x)} min
x∈[0,1]

{K(x)a2(x)}V. (20)

From the Comparison Lemma [27] and the bounds (17), (18),

we obtain
∫ 1

0

(ũave)
2
(x, t) dx ≤ Me−mt

∫ 1

0

(ũave)
2
(x, 0) dx. (21)

From [26, Theorem 3.6], the error system (13) retains the

stability properties of the average system (15). Specifically,
∫ 1

0

ũ2(x, t) dx ≤ Me−mt

∫ 1

0

ũ2(x, 0) dx + O(ε2). (22)

Noting u(x, t) − u∗(x) = ũ(x, t) + µ(x, t) and µ(x, t) is

O(maxx a(x)) completes the proof.

Similarly, for payoff functions of the form (5), we have

the following result:

Theorem 2: Consider the system (1)–(2), along with (5)

and u∗(x) ≡ 0, where k(x) = εK(x) = O(ε), ε is a small,

positive constant, and supx∈[0,1]

∫ 1

0 |r(x, y)|2 dy < 1. There

exists a constant ε̄ such that for all ε ∈ (0, ε̄) and functions

ω ∈ Ω, if the L2[0, 1] norm of u(x, 0) is sufficiently small,

then for all t ≥ 0,
∫ 1

0

u2(x, t) dx ≤ Me−σt

∫ 1

0

u2(x, 0) dx

+ O

(

ε2 + max
x∈[0,1]

a2(x)

)

, (23)

where

σ = 2β min
x∈[0,1]

{k(x)a2(x)}, (24)

β = 1 − sup
x∈[0,1]

(
∫ 1

0

|r(x, y)|2 dy

)

1

2

, (25)

and M is given by (9).

Proof: Following the proof of Theorem 1, we obtain

the average error system,

∂

∂t
ũave(x, t) = −εK(x)a2(x)

(

ũave(x, t)

−
∫ 1

0

r(x, y)ũave(y, t) dy

)

, (26)

and using the Lyapunov functional (16), we have

V̇ = −
∫ 1

0

(ũave)
2
(x, t) dx

+

∫ 1

0

ũave(x, t)

∫ 1

0

r(x, y)ũave(y, t) dy dx,

≤ −
∫ 1

0

(ũave)
2
(x, t) dx + sup

x∈[0,1]

(
∫ 1

0

|r(x, y)|2 dy

)

1

2

×
(

∫ 1

0

|ũave(x, t)|2 dx

)

1

2
(

∫ 1

0

|ũave(y, t)|2 dy

)

1

2

,

≤ −2εβ min
x∈[0,1]

{K(x)a2(x)}V, (27)

where we have applied the Cauchy-Schwarz inequality and

substituted the bound (18). The remainder of the proof

directly follows after noting u∗(x) ≡ 0.

The structural differences between these two classes of

quadratic payoff functions are manifested in their respective

convergence rates—specifically, in the terms (11) and (25).

To understand more intuitively how these convergence results

are achieved, one may also compute the average of the

û(x, t)-system (1), which reveals that this Nash seeking

method is, on average, a gradient descent algorithm.

IV. UNCOUNTABLY-MANY PLAYER PRICE GAME

For an example game with uncountably-many players, we

consider a price game where the players, indexed by x ∈
[0, 1], wish to maximize payoff functions of the form

J(x, t) = s(x, t) (u(x, t) − m(x)) , (28)

where s(x, t) is the sales volume of player x, u(x, t) is its

price, and m(x) is its marginal cost.

The sales volume s(x, t) is modeled as

s(x, t) =
R||

R(x)

(

S − u(x, t)

R||
+

∫ 1

0

u(y, t)

R(y)
dy

)

, (29)

R|| =

(
∫ 1

0

dy

R(y)

)−1

, (30)

where S is the total sales volume and R(x) is the consumer’s

“resistance” toward buying the product of player x. This

resistance R(x) is measurable, positive, and bounded for
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Fig. 2. Price evolution of the uncountably-many player oligopoly price
game.

all x ∈ [0, 1]. We assume the players do not know the

mathematical structure of (28) as it is difficult to know the

consumer preference and how it enters the sales model (29).

Substituting (29) into (28) leads to

J(x, t) = −u2(x, t)

R(x)
+

R||

R(x)
u(x, t)

∫ 1

0

u(y, t)

R(y)
dy

+

(

R||S

R(x)
+

m(x)

R(x)

)

u(x, t)

− R||m(x)

R(x)

∫ 1

0

u(y, t)

R(y)
dy − R||Sm(x)

R(x)
, (31)

which yields the Nash equilibrium prices,

u∗(x) = R||

(

S +
1

2

m(x)

R||
+

1

2

∫ 1

0

m(y)

R(y)
dy

)

. (32)

Because (31) has the form of (3), the conditions of

Theorem 1 are satisfied when the players implement the

Nash seeking strategy (1)–(2). Hence, the players achieve

local, exponential convergence to Nash equilibrium u∗(x).
For this specific example, one can obtain

∫ 1

0

∆2(x, t) dx ≤ Me−ξt

∫ 1

0

∆2(x, 0) dx

+ O

(

ε2 + max
x∈[0,1]

a2(x)

)

, (33)

where ∆, M are given by (8), (9). The convergence rate ξ =
minx{k(x)a2(x)}

maxx{R(x)} is found by performing Lyapunov analysis

on the average error system using the Lyapunov functional

(16).

For a numerical example, we choose S = 100, m(x) =
20 + 5 sin(4πx), and R(x) = 1 + cos(2πx)/4, which result

in the Nash equilibrium

u∗(x) = 25
√

15 + 20 +
5

2
sin(4πx), (34)

and the corresponding sales volume

s∗(x) =
100

√
15 − 10 sin(4πx)

4 + cos(2πx)
. (35)
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Fig. 3. Nash equilibrium u∗(x) (dashed) of the oligopoly price game with
the players’ price (blue) at t = 400 sec superimposed.

To approximate the uncountably-many player game, we dis-

cretize the interval [0, 1] using N = 1001 points, represent-

ing N players, and use the trapezoidal numerical integration

scheme to approximate the integral terms in (31). For these

N players, we select the Nash seeking parameters k(x), a(x),
and ω(x) by a random draw from a uniform distribution.

Namely, k(x) is sampled from the distribution Uk(1, 5), a(x)
from Ua(0.1, 0.2), and ω(x) from Uω(30, 60), where U(a, b)
denotes the uniform distribution with probability density

function

f(x) =

{

1
b−a if a ≤ x ≤ b,

0 otherwise
. (36)

The players are initialized at u(x, 0) = S + v(x) where v is

distributed normally with zero-mean and unity variance.

Figure 2 depicts the evolution of the players’ prices as they

converge to a neighborhood of u∗(x). Figure 3 shows u∗(x)
with û(x, t) at t = 400 sec. We show û(x, t) to highlight

the players’ convergence to u∗(x) since u(x, t) contains the

additive signal µ(x, t). Figure 4 depicts the evolution of the

players’ payoff values.

V. CONCLUSIONS

We have introduced a non-model based approach to solve

noncooperative games with uncountably-many players that

possess quadratic payoff functions. A player can stably attain

its Nash equilibrium by measuring only the value of its

payoff function. No other information about the game is

needed. Such an approach may be used to negotiate prices

in electronic markets in real time as the supply and demand

fluctuates.

APPENDIX

To obtain the average error system (15), we compute the

average of the operator G (14), which requires averaging

terms of the following forms: µ(x, t), µ2(x, t), µ3(x, t),

µ(x, t)
∫ 1

0
ρ(y)µ(y, t)dy, and µ2(x, t)

∫ 1

0
ρ(y)µ(y, t)dy,

where ρ is bounded and measurable.
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Computing the average of the first three terms is straight-

forward:

lim
T→∞

1

T

∫ T

0

µ(x, t) dt

= a(x) lim
T→∞

cosϕ(x) − cos(ω(x)T + ϕ(x))

Tω(x)
,

= 0, (37)

lim
T→∞

1

T

∫ T

0

µ2(x, t) dt

= lim
T→∞

a2(x)

2T

∫ T

0

[1 − cos(2ω(x)t + 2ϕ(x))] dt,

=
a2(x)

2
, (38)

lim
T→∞

1

T

∫ T

0

µ3(x, t) dt

= lim
T→∞

3a3(x)

4T

∫ T

0

sin(ω(x)t + ϕ(x)) dt

− lim
T→∞

a3(x)

4T

∫ T

0

sin(3ω(x)t + 3ϕ(x))) dt,

= 0. (39)

Calculating the averages of µ(x, t)
∫ 1

0 ρ(y)µ(y, t)dy and

µ2(x, t)
∫ 1

0
ρ(y)µ(y, t)dy requires more care. We start by

computing the average of µ(x, t)
∫ 1

0
ρ(y)µ(y, t)dy,

lim
T→∞

1

T

∫ T

0

µ(x, t)

∫ 1

0

ρ(y)µ(y, t)dy dt

= a(x) lim
T→∞

∫ 1

0

a(y)ρ(y)

T

∫ T

0

sin(ω(x)t + ϕ(x))

× sin(ω(y)τ + ϕ(y)) dt dy, (40)

where we have switched the order of integration and sub-

stituted for µ(x, t) and µ(y, t). Next, we compute the inner

integral over t on the last line of (40). Specifically,

1

T

∫ T

0

sin(ω(x)t + ϕ(x)) sin(ω(y)t + ϕ(y)) dt

=
1

2T

∫ T

0

[cos ((ω(x) − ω(y))t + ϕ(x) − ϕ(y))

− cos ((ω(x) + ω(y))t + ϕ(x) + ϕ(y))] dt,

=
1

2

(

sin((ω(x) − ω(y))T + ϕ(x) − ϕ(y))

(ω(x) − ω(y))T

− sin(ϕ(x) − ϕ(y))

(ω(x) − ω(y))T
+

sin(ϕ(x) + ϕ(y))

(ω(x) + ω(y))T

− sin((ω(x) + ω(y))T + ϕ(x) + ϕ(y))

(ω(x) + ω(y))T

)

,

= δ0(x, y, T ), (41)

where we have used the fact that for any given x, the set

{y ∈ [0, 1]|ω(x) = ω(y)} is of measure zero since ω ∈ Ω.

To switch the order of the limit and the integration over y
in (40), we apply the dominated convergence theorem, which

requires that the integrand a(y)ρ(y)δ0(x, y, T ) be bounded

by a function η0(x, y) and that
∫ 1

0 η0(x, y) dy be finite. Using

the sum of angles trigonometric identity, we have

|δ0(x, y, T )|

≤ 1

2

(

|cos(ϕ(x) − ϕ(y))|
∣

∣

∣

∣

sin((ω(x) − ω(y))T )

(ω(x) − ω(y))T

∣

∣

∣

∣

+ |sin(ϕ(x) − ϕ(y))|
∣

∣

∣

∣

cos((ω(x) − ω(y))T ) − 1

(ω(x) − ω(y))T

∣

∣

∣

∣

+ |cos(ϕ(x) + ϕ(y))|
∣

∣

∣

∣

sin((ω(x) + ω(y))T )

(ω(x) + ω(y))T

∣

∣

∣

∣

+ |sin(ϕ(x) + ϕ(y))|
∣

∣

∣

∣

cos((ω(x) + ω(y))T ) − 1

(ω(x) + ω(y))T

∣

∣

∣

∣

)

,

≤ 2, (42)

which implies the following bound on the integrand,

|a(y)ρ(y)δ0(x, y, T )| ≤ 2 max
y∈[0,1]

{a(y)ρ(y)}. (43)

Clearly,
∫ 1

0
2 maxy∈[0,1]{a(y)ρ(y)} dy < ∞, which with

(43), allows the dominated convergence theorem to be ap-

plied to (40). Thus,

lim
T→∞

1

T

∫ T

0

µ(x, t)

∫ 1

0

ρ(y)µ(y, t)dy dt

= a(x)

∫ 1

0

lim
T→∞

a(y)ρ(y)δ0(x, y, T )dy = 0, (44)

since limT→∞ δ0(x, y, T ) = 0.

We compute the average of µ2(x, t)
∫ 1

0
ρ(y)µ(y, t)dy in a

similar manner. We have

lim
T→∞

1

T

∫ T

0

µ2(x, t)

∫ 1

0

ρ(y)µ(y, t)dy dt

= a2(x) lim
T→∞

∫ 1

0

a(y)ρ(y)

T

∫ T

0

sin2(ω(x)t + ϕ(x))

× sin(ω(y)t + ϕ(y)) dt dy, (45)
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and computing the inner integral on the last line of (45) gives

1

T

∫ T

0

sin2(ω(x)t + ϕ(x)) sin(ω(y)t + ϕ(y)) dt

=
1

2T

∫ T

0

[sin(ω(y)t + ϕ(y))

− cos(2ω(x)t + 2ϕ(x)) sin(ω(y)t + ϕ(y))] dt,

=
1

4T

∫ T

0

[2 sin(ω(y)t + ϕ(y))

− sin((2ω(x) + ω(y))t + 2ϕ(x) + ϕ(y))

+ sin((2ω(x) − ω(y))t + 2ϕ(x) − ϕ(y))] dt,

=
1

4

(

2 cos(ϕ(y)) − 2 cos(ω(y)T + ϕ(y))

ω(y)T

+
cos((2ω(x) + ω(y))T + 2ϕ(x) + ϕ(y))

(2ω(x) + ω(y))T

− cos(2ϕ(x) + ϕ(y))

(2ω(x) + ω(y))T
+

cos(2ϕ(x) − ϕ(y))

(2ω(x) − ω(y))T

−cos((2ω(x) − ω(y))T + 2ϕ(x) − ϕ(y))

(2ω(x) − ω(y))T

)

,

= δ1(x, y, T ), (46)

where we have used the fact that for any given x, the set

{y ∈ [0, 1] | 2ω(x) = ω(y)} is of measure zero since ω ∈ Ω.

As before, to switch the order of the limit and the inte-

gration over y in (45), we apply the dominated convergence

theorem. Bounding δ1(x, y, T ) leads to

|δ1(x, y, T )|

≤ 1

4

(

2 |cos(ϕ(y))|
∣

∣

∣

∣

1 − cos(ω(y)T )

ω(y)T

∣

∣

∣

∣

+ 2 |sin ϕ(y))|
∣

∣

∣

∣

sin(ω(y)T )

ω(y)T

∣

∣

∣

∣

+ |cos(2ϕ(x) + ϕ(y))|
∣

∣

∣

∣

cos((2ω(x) + ω(y))T ) − 1

(2ω(x) + ω(y))T

∣

∣

∣

∣

+ |sin(2ϕ(x) + ϕ(y))|
∣

∣

∣

∣

sin((2ω(x) + ω(y))T )

(2ω(x) + ω(y))T

∣

∣

∣

∣

+ |cos(2ϕ(x) − ϕ(y))|
∣

∣

∣

∣

1 − cos((2ω(x) − ω(y))T )

(2ω(x) − ω(y))T

∣

∣

∣

∣

+ |sin(2ϕ(x) − ϕ(y))|
∣

∣

∣

∣

sin((2ω(x) − ω(y))T )

(2ω(x) − ω(y))T

∣

∣

∣

∣

)

,

≤ 2, (47)

which implies the bound on the integrand

|a(y)ρ(y)δ1(x, y, T )| ≤ 2 max
y∈[0,1]

a(y)ρ(y). (48)

Thus, the dominated convergence theorem applies and (45)

becomes

lim
T→∞

1

T

∫ T

0

µ2(x, τ)

∫ 1

0

ρ(y)µ(y, t) dt

= a2(x)

∫ 1

0

lim
T→∞

a(y)ρ(y)δ1(x, y, T )dy = 0, (49)

since limT→∞ δ1(x, y, T ) = 0. From (37), (38), (39), (44),

and (49), we obtain the average system (15).
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noncooperative gams,” IEEE Trans. Autom. Control, submitted.
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