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Abstract— A constraint-aware eye-in-hand visual servoing
control law is proposed. The control law is designed for a
robot manipulator with an uncalibrated camera mounted on
its end-effector. The method uses an image-based command
to describe the desired end-effector position with respect to
an object with an unknown position. When starting from an
unknown position, the control law uses feedback from the
camera to move the robot towards the reference image while
satisfying a set of system constraints. The visual servoing control
law is implemented via a nonlinear model predictive control
framework to generate feasible and realistic robot trajectories
that respect the robot’s joint limits and velocity limits. The
control law explicitly keeps the target object within the camera’s
field of view and avoids potential collisions with workspace ob-
stacles. An appropriate representation of the robot’s whole-arm
collision constraints is extracted from well-known path planning
methods, such as probabilistic road maps and dynamic collision
checking algorithms. Experiments using an uncalibrated eye-
in-hand platform demonstrate the ability of the visual servoing
control law to achieve closed-loop positioning via collision-free
trajectories, even when the initial object location is uncertain.

I. INTRODUCTION

Visual servo control of robotic manipulators has been an

active area of research for the past 30 years [1][2][3][4].

While most image-based visual servoing (IBVS) methods

perform well for correcting small errors, they are inherently

unaware of the sensing, control, and physical limits of the

robotic-camera system. Application of typical IBVS to large

robot motions can result in unstable trajectories, due to:

(i) the target object leaving the sensor’s field-of-view; (ii)

the robot being commanded to move beyond its mechanical

limits, or beyond its actuation limits; or (iii) the robot arm

physically colliding into other objects within its workspace.

This work aims to simultaneously address all three of the

above challenges for visual servoing of large robot motions.

In previous work, control schemes using hybrid 2-1/2D

features [5], shifting cylindrical coordinates [6], image mo-

ments [7], and partitioned z-axis control [8] have been used

by researchers to improve the Cartesian trajectory of the

camera. These approaches, under specific conditions, lead

to improved robot motions. To keep the target object within
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the camera’s field of view during position-based visual ser-

voing (PBVS), researchers have used an adaptive switching

controller [9], 3D features [10], and alternative coordinate

frames [11]. In [12], a secondary task function was used

to avoid unilateral constraints by exploiting manipulator re-

dundancy via gradient projection methods. Image-based path

planning via homography-based reconstruction and artificial

potential fields was proposed by [13] to manage field-of-

view limits and joint limits. Circular-like trajectories were

used in [14] and offline optimization methods were used in

[15] [16] to realize large camera motions. More recently,

model predictive control is used to control a robotic tool

via feedback from a stationary imaging sensor [17] [18] and

from a catadioptric camera in simulation [19].

The main contributions of this paper are two-fold: (i) the

formulation of Model Predictive Control (MPC) for eye-
in-hand visual servoing and, to our knowledge, its first

experimental validation on a test-bed; and (ii) the inclusion of

manipulator collision avoidance in MPC visual servoing us-

ing a novel representation of whole-arm collision constraints.

We show that the collision-space manifold can be represented

as a bounded approximation that not only is suitable for

MPC optimization, but is also freely available from results

of well-known path planning methods, such as probabilistic

road maps (PRM) and dynamic collision checking (DCC).

MPC uses a dynamic model of the plant for online

planning and selection of an optimal sequence of control

actions to achieve a desired output, while compensating for

prediction errors using feedback provided by observations of

the real plant. MPC is formulated as the online solution of

a finite horizon, open-loop, optimal control problem. This

optimization is subject to the system dynamics and the

constraints related to the states and inputs of the system.

Details on the theory and analysis of MPC can be found in

[20].

II. EYE-IN-HAND VISUAL SERVOING

A. System Modelling

The following shorthand notation is used to refer to the

coordinate frames used for system modelling: robot base

frame Fb; robot end-effector frame Fe; camera frame Fc;

and target object frame Fo.

1) Object Model: The object model consists of a set

of feature points, whose coordinates (oXj ,
o Yj ,

o Zj) are

defined with respect to Fo. For a target object made up

of n feature points, the object model used for prediction

is oPj =
[
oXj

oYj
oZj 1

]T
, j ∈ [1, n].
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Fig. 1. A system diagram illustrating the input and output requirements
of the MPC controller.

Let bTo define the homogeneous transformation that ex-

presses the coordinates of the object frame in the coordinates

of the robot base frame. The approximate object pose bTô

that is required for online open-loop planning in MPC is

obtained from: (i) the camera, via pose estimation only using

uncalibrated parameters; or (ii) the user, in the form of a

rough pose of the target object, when initiating the robot

positioning task.

2) Robot Model: A kinematic model of the robot bTe =
frobot(q), expresses the coordinates of the end-effector frame

in the coordinates of the robot base frame. Kinematic models

are typically used in visual servoing, given the relatively

slow frame-rate of the camera with respect to the inner

control loop of the robot, which stabilizes the dynamics. The

objective of the MPC controller is to generate kinematically

feasible robot trajectories that drive the robot towards com-

pletion of the positioning task using visual feedback. The

joint trajectory, q∗(t), generated by MPC is then used as

a reference signal (with quintic-polynomial interpolation) to

be tracked by a low-level PID controller. A system diagram

is shown in Figure 1.

3) Camera Model: A pin-hole camera model is used to

describe the projection of the target object on the camera

CCD array. Let C be the camera matrix defined as:

C =

⎡
⎣fku fku cot β u0

0 fkv( 1
sin β ) v0

0 0 1

⎤
⎦ , (1)

where (u0, v0) are the image coordinates of the principal

point, f is the focal length, β is the perpendicular skew

angle, and ku and kv are the number of pixels per unit

distance in x and y, respectively. The camera is mounted

on the robot’s distal link in an eye-in-hand configuration,

such that the position and orientation of its canonical frame

is controlled by the robot. The homogeneous transformation,
cTe, expresses the coordinates of the end-effector frame in

the coordinates of the camera frame. The image coordinates

(uj , vj) of the feature points can be modelled as:

(pj) =

⎛
⎝uj

vj

1

⎞
⎠ = C[I3×3|03×1]cTe

eTb
bTo

oPj , j ∈ [1, n].

(2)

Finally, a vector consisting of the image coordinates of all

feature points is used for image-based feedback control:

p =
[
(p1)T (p2)T · · · (pn)T

]T
. (3)

B. Constraint Modelling

1) Robot Joint-Limit and Joint-Velocity Constraints: For

a robot with N independent joint actuators, the robot joint-

limit constraints are modelled as lower bounds and upper

bounds on the range of feasible joint positions and of feasible

joint velocities:

q ∈ [qmin,qmax], qmin,qmax ∈ RN , (4)

q̇ ∈ [q̇min, q̇max], q̇min, q̇max ∈ RN . (5)

2) Camera Field-of-View Constraints: A rectangular

imaging sensor array, whose maximum and minimum co-

ordinates are umin and umax (respectively in the horizontal

axis) and vmin and vmax (respectively in the vertical axis),

has the following field-of-view constraints while viewing a

target object with n features:

uj(pj) ∈ [umin, umax] ∀j ∈ [1, n], (6)

vj(pj) ∈ [vmin, vmax] ∀j ∈ [1, n]. (7)

3) Whole-Arm Collision Constraints: For a robot with N
independent joint actuators, let Qfree ∈ RN be the collision-

free space, consisting of the set of joint configurations that

do not cause the robot to occupy the same physical space

as a workspace object. Whole-arm collision constraints are

represented as:

q ∈ Qfree. (8)

An exact closed-form solution to Qfree is typically not

available, except in the case of trivial workspace objects

(such as points) with kinematically simplified robots (such as

Cartesian gantry robots, or robots where N is limited). The

discussion of a representation of collision-free space that is

useful for MPC visual servoing is deferred until Section IV.

C. Control Law Design

A first-order discretization is used for MPC prediction for

the visual feedback loop, where δt is the time step:

qk+1 = qk + δtq̇k. (9)

The error function for MPC visual servoing is chosen to

be similar to IBVS. Let εi|k represent the error predicted at

time k for time k + i. This error is defined as the difference

between the predicted image coordinates pk+i|k and the

desired image coordinates pd, plus a disturbance (model)

correction term dk. The correction term dk captures the

difference between the latest plant output pk and the latest

model output p(qk|k−1):

εi|k = (pk+i|k − pd) + dk, (10)

dk = p(qk|k−1) − pk. (11)

The cost function C to be minimized is a quadratic function

[18] of image errors ε and of joint velocities q̇:

C =
1
2
(
Np−1∑
i=1

εT
k+i|kQεk+i|k + q̇T

k+i|kWq̇k+i|k), (12)

where Np is the prediction horizon, and Q and W are

two symmetric positive definite matrices, which weight the
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Fig. 2. Reference image describing the desired position of the end-effector
with respect to a target object.

predicted image errors against the predicted joint control

efforts at time instant k.

III. SIMULATIONS

A. Setup

The MPC eye-in-hand visual servoing controller is im-

plemented in simulation to test its ability to perform

large robot motions in the presence of constraints and

pose estimation errors. The simulations are designed to

reflect the parameters of the experimental test-bed described

in Section V-A. The target object consists of ten non-

coplanar feature points, resembing the object shown in

Figure 2. In Figure 3, the feature points designated ‘o’

show the camera’s initial view of the target object, while

the feature points designated ‘x’ show the desired view.

In the simulations, the actual pose of the target object is
bTo = Txyz(−0.28, 0.51, 0.14)TRz(145◦)TRx(−55◦)[m],
whereas the estimated pose of the target object used by

the MPC controller for joint-space planning, is bTô =
Txyz(−0.30, 0.50, 0.15)TRz(135◦)TRx(−45◦)[m].

The prediction horizon Np is set to 5 and the control

horizon Nc is set to 1. The time step δt of 10ms is used for

simulations. Q is the identity matrix, I, while W is 2500I.

The minimization of the cost function for predictive control

is solved using a sequential quadratic programming (SQP)

optimization algorithm [20][21]. To speed up computations,

the gradients to the cost function and constraints are provided

via a closed-form analytic function composed of the robot

Jacobian, the image Jacobian and the measured errors.

B. Results

Figure 3 shows the target object’s trajectory as observed by

the eye-in-hand camera, while Figure 4 shows the camera’s

trajectory in Cartesian space. The motion requires significant

translation towards the target object, as well as in-plane and

out-of-plane rotations. The control law successfully generates

motions that bring the camera to the desired position.

Figure 5 shows the joint-space trajectory of the 6-DoF

CRS-A465 robot. The joint limits of the robot are shown as

dotted lines, whereas the actual joint trajectories are shown

as solid lines. The robot responds to its joint limits (e.g.,

joint 5) by predicting several steps ahead and replanning

Initial Image

Final Image
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p
i
x
e
l
]

Fig. 3. Image trajectory generated by MPC visual servoing

x [m]y [m]

z
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m
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Fig. 4. Camera Cartesian trajectory generated by MPC visual servoing.

control inputs to avoid constraint violation. Figure 6 shows

the joint velocities of the robot. The velocity limits of the

robot are shown as dotted lines, whereas the actual joint

velocities are shown as solid lines. The aggressive controller

maximizes the robot’s output capabilities by keeping the joint

velocities just below their limits. Note that the simultaneous

avoidance of these unilateral constraints cannot be achieved

with a saturator, as this will likely bring the target object

outside of the camera’s field of view and cause instability in

the control loop.

IV. WHOLE-ARM COLLISION CONSTRAINTS

The representation of whole-arm collision constraints in

terms of the robot’s joint-space from known Cartesian-space

geometry is a non-trivial problem. Figure 7 depicts a hypo-

thetical set of collision-free robot configurations, represented

as a three-dimensional manifold in joint-space for 3 out of

the 6 available robot joints. While it is easy to check for

the absence or presence of collision at a particular robot

configuration, it is difficult to obtain topological information
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Fig. 5. Robot joint trajectory generated by MPC visual servoing, demon-
strating the avoidance of robot joint position limits.

pertaining to the collision-free manifold, without which the

constrained optimization problem cannot be easily solved.

Popular path-planning methods, such as probabilistic road

maps (PRM), use sampling to first find collision-free config-

urations and then employ geometric collision-tests to deter-

mine if a path between two configurations is also collision-

free. Unfortunately, such offline graph-based representations

of the collision-free space are insufficient for online control,

as one cannot guarantee that the robot will remain on the

path while servoing. This section describes how an existing

PRM graph or a successful collision-test between two robot

configurations can be exploited to provide a representation

of the collision-free space for MPC visual servoing.

A. Dynamic Collision Checking

Given the initial configuration qi and the final configu-

ration qf , a dynamic collision checking (DCC) algorithm

proposed by [22] determines if the trajectory defined by

q(t) = qi + (qf − qi)t for 0 ≤ t ≤ 1 results in a collision.

Let d(qi) be the shortest distance between an obstacle and

the robot in the configuration qi. Similarly, let d(qf ) be

the shortest distance between an obstacle and the robot in

the configuration qf . Let �(q(t)) be the the longest distance

traveled by any point on the robot during the trajectory q(t).
Then, given d(qi), d(qf ) and �(q(t)), DCC determines that

the manipulator does not collide with the obstacle if:

�(q(t)) < d(qi) + d(qf ). (13)

If (13) is not satisfied, the algorithm proceeds by dividing

the trajectory q(t) in two trajectories q(u) for 0 ≤ u < t/2

and q(v) for t/2 ≤ v ≤ 1 and (13) is evaluated for both

trajectories. This procedure is applied recursively until every

trajectory satisfies (13) or a collision is detected.
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Fig. 6. Robot joint velocities generated by MPC visual servoing, demon-
strating the avoidance of robot joint velocity limits.

{Q free } is a function of 
Manipulator Geometry

AND Obstacle Geometry

Collision-Free Space
(Complex Manifold)

Fig. 7. Joint-space representation of the collision-free space (right) for a
particular manipulator and obstacle configuration (left). The collision-free
space is represented in 3-dimensional space for 3 joints only.

Given a trajectory q(t) and the set of 3-D points H rep-

resenting the hull of the manipulator, �(q(t)) is determined

by

�(q(t)) = max
P∈H

∫ 1

0

|Ṗ|2dt. (14)

Solving (14) is tedious but much can be gained given that

(13) is an inequality and it still holds if �(q(t)) is replaced by

an upper bound [22]. For a manipulator with N actuators,

suppose that the trajectory q(t) only involves rotating the

jth actuator by an amount Δqj . Then, it is possible to find

a configuration for the actuators qj+1, . . . , qN such that

�(q(t)) ≤ max
qj+1,...,qN

�(q(t)) (15)

= �j(q(t)). (16)

If the jth actuator is a revolute joint around the axis zj , then

�j(q(t)) = max
qj+1,...,qN

P∈Hj∪···∪HN

∫ 1

0

|Ṗ|2dt (17)

= rj |Δqj | (18)

where P ∈ Hj ∪ · · · ∪ HN are the points on the hulls of

the links j to N and rj is the greatest possible distance
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Fig. 8. Hyperrectangular collision-free spaces obtained from a PRM as a
byproduct of the form chosen for �(q(t)) (2-DoF case shown here).

between the line zj and a point P. Finally, generalizing (17)

to trajectories involving N actuators we obtain

�(q(t)) ≤
N∑

j=1

rj |Δqj |. (19)

B. Collision Constraints for Visual Servoing

The right hand side of (19) is “trajectory-free”. That is, it

does not depend on qi, qf or the trajectory q(t). One notable

constraint is that any trajectory must be bounded within the

hyperrectangle with corners qi and qf . Subsituting (19) into

(13) results in:

N∑
j=1

rj |Δqj | < d(qi) + d(qf ). (20)

Equation (20) is used to define collision-free regions that

are: (i) obtained as a computational by-product of DCC and

are (ii) expressed in a compact form that is suitable for

online MPC visual servoing, as shown in Figure 8. If an

existing PRM is not available, the collision-free space must

be estimated dynamically as shown in Figure 9. At every

iteration k, the optimal sequence of inputs determined by

MPC is checked for collision prior to execution. If DCC fails,

then adaptive bisection is invoked to provide an estimate

of Qfree for replanning, starting at the initial configuration

qi. The next optimization step replaces (8) with the joint

boundaries defined by (20). This redefinition of the collision-

free space allows the MPC controller to react to upcoming

obstacles several steps ahead in the predictions horizon to

achieve robustness against local minima.

V. EXPERIMENTS

A. Experiment Setup

An overview of the experimental test-bed is shown in

Figure 11. The aim of the experiment is to demonstrate

positioning of the eye-in-hand robot with respect to a conrod

located at a cluttered and uncertain location in the workspace,

such that the two-fingered gripper is in the correct position

for grasping. Figure 10 shows the initial image that the

robot observes prior to servoing. To communicate the correct

Actual Goal
Configuration

Collision-free
space

q2
Configuration

Collision-free
space

Collision-free
space

Collision-free
space

q1

Model Predictive Control (MPC) 

Initial Configurationg

Fig. 9. Hyperrectangular collision-free spaces obtained from MPC and
DCC as a byproduct of the form chosen for �(q(t)) (2-DoF case shown
here).

Fig. 10. Overhead image describing the initial position of the camera and
end-effector.

grasping position, the reference image in Figure 2 is shown

to the robot.

1) Camera: The imaging sensor that is used in the ex-

periments is a Sony XC-HR70 monochrome CCD camera,

with a 4.8mm lens, as shown in Figure 11. The camera

acquires images at a resolution of 1024×768 at a maximum

frame rate of 30fps. Table I shows the camera parameters

that are used in the MPC controller for experiments. These

parameters are obtained from the product manual with-

out calibration. A camera-to-end-effector transformation of
eTc = TRz(90◦)TRx(−12.5◦)Txyz(0,−0.085, 0.070)[m]
is measured by hand, roughly assuming the location of the

optical center.

Experimental Setup

Connecting Rod  g
(Engine Part)

CRS-A465 Robot XC-HR70 Camera Two-fingered 
Servo Gripper

Fig. 11. Eye-in-hand platform for MPC visual servoing experiments.
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TABLE I

UNCALIBRATED CAMERA PARAMETERS

f 0.0048 [m]

(umin, umax) (1,1023)

(vmin, vmax) (1,767)
(u0, v0) (512,384)
ku (4.65 × 10−6)−1 [pixels/m]
kv (4.65 × 10−6)−1 [pixels/m]
β 90◦

TABLE II

DIMENSIONS OF WORKSPACE OBSTACLES

Length Width Height
[m] [m] [m]

Textbook 1 0.255 0.175 0.025
Textbook 2 0.235 0.190 0.025
Binder 0.290 0.270 0.040
Pliers 0.165 0.075 0.020

2) Robot: The robot used in this experiment is a 6-DoF

CRS-A465 robot. A forward kinematic model of the robot

is used in the MPC controller to estimate for the location

of the camera frame, given a set of joint configurations.

Volumetric models of the robot, the camera, the gripper, and

the obstacles (constructed using geometric primitives) are

used for the dynamic collision tests. The joint-position limits

and the joint-velocity limits (reduced to 5% of the allowed

maximum for safety reasons) of the CRS-A465 robot are

shown in Figure 5 and 6, respectively.

3) Target Object: The target object is an automobile

part (conrod) with ten feature points as shown in Fig-

ures 10 and 2. In the experiments, a human user de-

scribed the target object as having undergone a translation

of (10cm, 40cm, 15cm) in (x, y, z) and a rotation of 90◦

about the vertical axis, so that an object pose of bTô =
TRz(90◦)Txyz(0.100, 0.400, 0.150)[m] is used for joint-

space path planning.

Positional errors have been introduced in order to demon-

strate the robustness of MPC visual servoing with respect

to modelling errors. Manual measurements confirm that the

(x, y, z) location of the conrod with respect to the robot’s

base is closer to (0.130, 0.460, 0.170)[m]. One side of the

conrod rests on top of another object, as shown in Figure 10,

resulting in out-of-plane rotation in the y axis with respect to

the robot’s base. This is not captured in the pose estimate that

is used by the MPC controller, which only has a rotation of

90◦ about the z axis. Also, the rotation of the conrod about

the z axis is actually closer to 135◦. These additional pose

estimation errors are designed to test the ability of the MPC

controller to compensate for large errors in its prediction

model.

4) Workspace Obstacles: The obstacles are modelled as

polygons for collision detection. The dimensions of the

workspace obstacles and the homogeneous transformations

from their centroidal frames to the robot base frame can be

found in Table II and Table III respectively.

5) Control System Implementation: The MPC controller is

implemented on a Pentium Dual-Core 2.0 GHz CPU running

TABLE III

LOCATION OF WORKSPACE OBSTACLES

Homogeneous Transformation
[m]

Textbook 1 bTwo1 = TRz(60◦)Txyz(−0.030, 0.570, 0.185)
Textbook 2 bTwo2 = TRz(95◦)Txyz(−0.025, 0.450, 0.160)
Binder bTwo3 = Txyz(−0.040, 0.440, 0.120)
Pliers bTwo4 = TRz(60◦)Txyz(0.110, 0.440, 0.150)

Windows XP. A Matrox Meteor II acquisition board acquires

images from the Sony XC-HR70 at a frame rate of 30Hz. A

visual tracker based on the ViSP [23] library is used to track

the centroid location of the feature points. The maximum

control rate that is achieved, with SQP optimization running

on one thread and feature tracking running on another, is

10Hz. The low-level PID, independent joint controller is

implemented on a Pentium 4, 2.8 GHz computer operating

with a Windows RTX extension. The hardware is controlled

through a Quanser Multi-Q PCI card and WinCon software.

The inner control loop runs at 1kHz. Quintic polynomial

interpolation is used to provide smooth reference signals for

PID tracking, to account for the difference in control rates

between the inner and the outer control loops. Communica-

tion between controllers is handled via the Quanser serial

block.

6) Tuning Parameters: The prediction horizon Np is set

to 10 and the control horizon Nc is set to 1. The use

of a longer prediction horizon in the MPC controller is

intended to account for the (possibly significant) discrepancy

between the real eye-in-hand system and the approximate

model used by the MPC controller for planning. The MPC

controller time step, δt, is set at 0.1 seconds. Q is an identity

matrix, I, while W is 10000I. The difference in magnitude

between the chosen W and the chosen Q accommodates

unit normalization (i.e., pixels vs. joint angles in radians).

B. Experiment Results

Figure 12 shows the trajectory of the target object, ob-

served from the eye-in-hand camera. The image-based con-

trol law successfully handles both the significant rotation

that is required about the camera’s optical axis and the

translational motion that is required towards the target object.

The MPC controller is able to recognize the out-of-plane

rotation required to properly align the gripper with the

conrod.

Figure 13 shows the trajectory of the robot as the visual

servoing task is executed. The initial robot motions executed

in frames 1 to 7 are very aggressive; the DCC algorithm is

able to guarantee collision-free motion for all prediction steps

ahead. Robot motions become more conservative when the

robot gripper is in proximity to the workspace obstacles next

to the conrod. In frames 8 to 12, collision-free motion can no

longer be guaranteed by the DCC algorithm between large

changes in robot configurations. As the regular DCC algo-

rithm fails (inequality not satisfied), the MPC controller re-

places its joint limits with the dynamically updated collision-

free bounds provided by the DCC bisection algorithm. The
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Fig. 12. Sequence of camera motions generated by MPC visual servoing
to complete a grasping task. The resulting image feature trajectories satisfy
the camera field-of-view constraints.

Fig. 13. Sequence of robot motions generated by MPC visual servoing
to complete a grasping task. The resulting robot trajectory satisfies joint
position, joint velocity, and workspace collision constraints.

MPC controller is optimized over a smaller region in joint-

space where collision-free robot motion is feasible. The last

few frames show the robot taking incremental steps within

the latest, dynamically updated collision-free region while

servoing towards the goal.

VI. CONCLUSION

Our constraint-aware control law for eye-in-hand manip-

ulators successfully demonstrates visual servoing motions

across the workspace while handling joint, visual and col-

lision constraints. The MPC controller does not require the

camera to be calibrated and only needs an approximate esti-

mate of the target object location. Using the DCC algorithm,

the control law can move quickly in uncluttered regions but

still generates whole-arm, collision-free motions in cluttered

areas. Future work will consider more complex scenarios

as well as applications to robot arms on mobile platforms,

increasing the workspace size.
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