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Abstract— his paper presents a numerical-experimental in-
tegrated framework for rapid online estimation of the tip
sample interaction forces for high speed AFM dynamic imag-
ing. Quantifying the tip-sample interaction in AFM dynamic
imaging is crucial towards achieving high-speed dynamic-mode
AFM imaging with minimized tip-sample forces, particularly
when imaging live biological samples in liquid media. Large
tip-sample interactions can result in sample deformation or
even destruction of the live biological samples. In this article,
we propose an ultra-fast inversion strategy based on parallel
algorithms implemented on Graphical Processing Units (GPUs).
The tip-sample interaction estimation problem is posed as
an inverse problem and is solved in near-real time using
GPUs. We investigate several cost-functional formulations to
ensure quality of reconstruction while maintaining a high
rate of reconstruction. The computational scheme is verified
with preliminary experimental results.his paper presents a
numerical-experimental integrated framework for rapid online
estimation of the tip sample interaction forces for high speed
AFM dynamic imaging. Quantifying the tip-sample interaction
in AFM dynamic imaging is crucial towards achieving high-
speed dynamic-mode AFM imaging with minimized tip-sample
forces, particularly when imaging live biological samples in
liquid media. Large tip-sample interactions can result in sample
deformation or even destruction of the live biological samples.
In this article, we propose an ultra-fast inversion strategy based
on parallel algorithms implemented on Graphical Processing
Units (GPUs). The tip-sample interaction estimation problem
is posed as an inverse problem and is solved in near-real time
using GPUs. We investigate several cost-functional formulations
to ensure quality of reconstruction while maintaining a high
rate of reconstruction. The computational scheme is verified
with preliminary experimental results.T

I. INTRODUCTION

In this article, a computational scheme is proposed for

rapid online quantification of the tip-sample interaction

force during dynamic-mode atomic force microscope (AFM)

imaging. We note that dynamic-mode AFM imaging [1]

has been established as the de facto mode to interrogate

surface topography of soft samples [2], [3], particularly

for live biological samples in their physiologically friendly

liquid environment [4], [5]. Although by using dynamic-

mode imaging, the detrimental lateral force on the sample

has been largely reduced, the applied normal force can still

be large and result in not only imaging distortion, but more

seriously, sample deformation and damage that can com-

pletely modify the sample [2]. Large normal force, however,

is needed in current dynamic-mode AFM imaging to ensure
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imaging quality (i.e., high signal to noise ratio), and/or to

achieve high-speed imaging. With an aim of developing a

novel high-speed dynamic-mode AFM imaging strategy with

minimized tip-sample interaction forces, this article presents,

as a first step, the development and experimental validation

of a computational framework for rapid online quantification

of tip-sample interaction force.

We note that high-speed dynamic-mode AFM imaging is

needed in the frontiers of polymer [3], [6], [7] and biolog-

ical [8], [9] science and engineering, where understanding

nanoscale behavior and evolution is important. For instance,

by using dynamic AFM imaging, time evolving phenomena

like crystallization of polymers [6] and the dehydration pro-

cess of collagen [10], [9] have been experimentally revealed

for the first time. In such interrogations, however, large

temporal errors exist as current dynamic AFM imaging—

with tens of minutes of imaging time—is too slow to discern

the temporal details that occur in the order of a few (tens

of) seconds. In addition, high-speed dynamic-mode AFM

imaging of soft samples without causing sample deformation

(or sample destruction) is challenging. Although the speed of

contact-mode AFM imaging can be substantially improved

by using recently-developed control techniques [11], [12],

additional hurdles exist in improving the speed of dynamic-

mode AFM imaging due to the oscillatory nature of the tip-

sample interaction and consequently, the much more compli-

cated interaction dynamics involved [13], [14]. The challenge

in tackling these hurdles lies in the need to maintain a small

tip-sample interaction force. Such a need, however, has not

been accounted for in recent efforts in achieving high-speed

dynamic-model AFM imaging via either control approach

[15] or hardware improvements [16]. Therefore, maintaining

a small probe-sample interaction force is central to achieving

high-speed dynamic-model AFM imaging of soft samples.

Tip-sample interaction dynamics has attracted great interest

recently. There has been some successes in post-processing

(but not on-line estimation) the experimental results to extract

the interaction. Examples include the linearized single mode

model to reconstruct interaction forces from Chebyshev poly-

nomials [17]. Recently, off-line inverse problems have been

formulated to estimate tip-sample interaction forces using

conjugate gradient optimization [18] with limited success.

This article details the development of an approach to achieve

rapid quantification of tip-sample interaction force towards

high-speed dynamic imaging with the long-term goal of

minimizing the tip-sample interaction force. The main con-

tributions of this article are the following: (a) formulating the
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problem of estimating the tip-sample interaction as an inverse

problem posed as an unconstrained optimization problem; (b)

developing an ultra-fast predictive model for AFM dynamics

based on parallel algorithms implemented on Graphical

Processing Units (GPUs); (c) investigating several real-space

and frequency-space cost-functionals for the solution of the

inverse problem to ensure quadratic minimization and speed;

and (d) experimentally linking and verifying the results.

II. ONLINE ESTIMATION OF TIP-SAMPLE INTERACTION

FORCE IN DYNAMIC AFM IMAGING

The destruction of biological or other soft samples is

invariably caused by excessive tip-sample interaction forces.

As alluded to in the introduction, several attempts to over-

come these excessive forces have been made, none really

solving the problem. The true problem, lies in the complex

nature of these interaction forces. If the interaction forces

could be calculated, corrective action could be taken to avoid

excessive force. This section addresses the issue of calcu-

lating tip-sample interaction forces in real time. Given that

the force calculation is an ill-posed problem, a method for

solving ill-posed inverse problems is needed. This requires

(a) an efficient, accurate and fast forward model that models

the AFM dynamics as well as (b) appropriately defined cost-

functionals that aid rapid inversion.

A. Nonlinear Dynamic Model of the Tip-Sample Interaction

Dynamics in Dynamic Imaging

In AFM dynamic imaging (e.g., tapping mode imaging),

a micro-machined cantilever beam with a nanoscale-probe

on one free end (the other end is fixed) is driven under a

piezo-actuator to oscillate and tap on the sample surface.

The oscillation amplitude and phase are then measured and

the tapping amplitude is maintained around the setpoint value

through feedback control.

Fig. 1. AFM tip sample interaction model

We start with modeling the cantilever as a clamped-free

vibration beam based on the Euler-Bernoulli Beam theory

[19], [20], [21]:

EIu′′′′ + µü = F ′(t)− µŸ (t), (1)

where u is the cantilever deflection as a function of both time

and the location on the cantilever beam relative to its base, x;

F′ is the tip sample interaction force; Y is the displacement of

the cantilever base; E, I, µ are Young’s modulus, moment of

inertia and mass per unit length of the cantilever, respectively,

and u̇ and u′ denote the derivative of time t and position x,

respectively. Note that in the above model, we assume, as

widely adopted in previous works [20], [22], that the cross-

section of the beam is uniform and rectangular, the length of

the cantilever is much larger than the width, and the width

is much larger than the thickness, the vibration amplitude is

much smaller, and the cantilever beam is fully elastic.

We utilize the separation of variables approach [21] to

convert this partial differential equation into a set of ordi-

nary differential equations. The spatio-temporal variation in

deflection is represented as:

u(x, t) =

N
∑

i=1

ηi(t)Φi(x) (2)

The (orthogonal set of) modal shape functions, Φ i(x), are

computed by solving a homogeneous eigen-value prob-

lem [21]. The unknowns are now the temporal variables (or

coefficients), ηi(t). Define an inner product as,

〈f, g〉 =

∫

L

fgdx. (3)

where L is the length of the cantilever. Solving the PDE

system Eqn. 1 is equivalent to solving the following set of

ODEs.

η̈i + ω2
i ηi = Fi(t) + Yi(t), (4)

where Fi(t) = 〈F ′(x, t),Φi(x)〉, Yi(t) = 〈Y (t),Φi(x)〉. We

use the fact that the modal functions satisfy µ d4Φi(x)
dx4 =

ω4
iΦi(x) as well as orthogonality 〈Φi,Φj〉 = δij/µ.

B. Formulating the inverse problem as an unconstrained

optimization problem

An efficient computational implementation of the forward

problem is a necessary prerequisite for fast inversion of

the tip-sample interaction. We pose the inverse problem as

follows: Given the experimentally measured deflections at a

finite number of positions along the cantilever U(xj , t), j =
1, .., k, and the base deflection, Y (t), estimate the tip-

sample interaction force, F ′(t) such that the deflections,

u(x, t), computed by solving Eqn. 1 match the experimental

results. The inverse problem can be reformulated into an

unconstrained optimization problem [23], [24] by defining

an appropriate cost-functional, J , that quantifies the mis-

match between the experimentally estimated deflections, U
and the numerically computed deflections, u:

Find F ′(t) ∈ L2[0, tmax] ∋ (5)

J (F ′) ≤ J (F ), ∀F ∈ L2[0, tmax]

Starting from a guessed value of the tip-sample interaction,

an optimization framework is used to minimize the cost-

functional, J to find out the optimal tip-sample interaction.

The choice of the cost functional is very important: (a)

to ensure that a minima exists, (b) an appropriate initial

guess can be estimated to ensure convergence. In particular,

quadratic cost-functionals with an initial guess that lies in

the basin of attraction of the cost-functional are helpful

to guarantee convergence. We investigated the following
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choices of the cost-functional:

JL2(F ) =

√

∫ tmax

0

(u(x, t)− U(x, t))
2
dt (6)

JPSD(F ) =

√

∫ fNyquist

0

(

ũ(f)− Ũ(f)
)2

df (7)

JC−PSD(F ) =

√

√

√

√

∫ fNyquist

0

(

∫ f ′

0

[ũ(f)− Ũ(f)]df

)2

df ′ (8)

JKL(F ) =

[

∫ fNyquist

0

(

log
ũ(f)

Ũ(f)

)2
df

fNyquist

−

(

∫ fNyquist

0

log
ũ(f)

Ũ(f)

df

fNyquist

)2




0.5

,(9)

where u(x, t) and U(x, t) are the calculated and experi-

mental cantilever deflection respectively and ũ , Ũ represent

the power spectral density of the deflections. As a first step to

inversion, we looked at the feasibility of using each of these

cost-functionals in the context of two issues (a) occurrence of

a convex quadratic form with one single minima, (b) speed

of calculating on the GPU based framework. Results are

detailed in Section III.

C. Computational Framework for the direct problem

Since both the modal functions, Φi(x) and the modal co-

efficients, ηi(t) are needed for fast calculation of deflection,

we develop accelerated strategies for concurrently solving

for Φi(x), and ηi(t). Fig. 2 shows a schematic of the modal

function calculation framework.

Fig. 2. Modal Function Calculation Flowchart

An optimized Newton root solver and Simpson integration

modules used. One difficulty in implementation is the fact

that the hyperbolic trignometric functions (in the Modal

function evaluation) grow very quickly and cause over-flow

errors. This limits the number of modes to around the first

ten modes, if the hyperbolic trig form is used. To resolve

this issue, we recast the evaluation of the modal functions,

Φi(x) [21] into the following equivalent form:

2 sin(βix)− 2G cos(βix) + (G− 1) expβix+exp−βix

2
, (10)

where,

G =
2 exp−βiL sin(βiL)− exp−2βiL+1

2 exp−βiL cos(βiL)− exp−2βiL +1
. (11)

The solution of the ODE Eqn. 4 requires a user-defined

F ′(x, t) (which will become the unknown function in the

inverse problem), and pre-computed ω 2
i and Φi(x) from the

modal function program. The value of ω 2
i grows very quickly

with increasing i, making Eqn. 4 a stiff ODE. We utilize an

explicit fourth order Runge-Kutta method. Because the solver

is explicit, it is very efficient. However explicit schemes

require small time steps to ensure stability. This is however,

not an issue since to mimic the experimental sampling rate,

very small time steps are required.

Results of the computational framework have been

checked against analytical solutions for simple forced vi-

bration and constant forces. This also allowed us to perform

extensive runtime analysis to pick an optimal time-step, spa-

tial discretization as well as the number of modes to ensure

maximum accuracy while guaranteeing computational speed.

Fig. 3, and 4 show the run-times with increasing spatial

descritization, and number of modes. Extensive numerical

analysis revealed that the optimal spatial descretization was

nx = 101, while m = 8 modes prove more than necessary

to resolve most dynamics.
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D. Parallel implementation on GPUs: Complexity analysis

A complexity analysis of the various stages of the direct

problem is performed. This allowed us to develop and

deploy an optimized algorithm implemented on a Graphical

Processing Unit (GPU). The calculation of modal functions,

Φi(x) involves:

(1) Newton-Raphson Root finding, (2) Simpson Integration,

(3) Equation Evaluation. These calculation have a complexity

of O[(k + nx)m + nx], where k is the number of digits

of accuracy required for the root finding method, m is the

number of modes, and nx is the spatial discretization. This

2881



is a one-time calculation and in practice adds little to the

overall complexity.

The calculations involved in calculating the modal coeffi-

cients, ηi(t) are:

1) Simpson integration for force, Fi(t); 2) Marching forward

in time using a fourth order Runge-Kutta ODE Solver. The

runtime complexity is O[(nxnt + nt)m], where nt is the

number of time steps. The cost-functional calculation (an

integral over time) has a runtime complexity of O(n t). Thus,

a single forward problem with associated cost-functional cal-

culation has a runtime complexity of O[(nxnt+nt)m+nt].
In practice, for a typical run of nx = 101, nt = 10001, and

m = 8, this results in an average runtime of 1.29 seconds.

To get close to real-time inversion (which takes multiple

hundreds of forward problem evaluations), this runtime must

be reduced by at-least two orders of magnitude. To that end,

the use of Graphical Processing Units is considered.

The CUDA framework is used to implement a parallel

algorithm [25] on the GPU computing platform. The only

limitation of using GPUs is memory availability [25]. This

necessitates the development of algorithms with a focus

on memory management and efficient running of streaming

multiprocessors. The major memory needs of the forward

problem and cost-functional calculations are: (a) storing the

experimental and calculated deflection data 4n tk Bytes (

approximately 12 kB of memory). Here k is the number

of deflection points measured experimentally (usually 3);

(b) storing modal functions, Φi(x) requires 4nxm bytes (

approximately 3.2 kB of memory). Ideally, all the data for

calculation on a GPU should be stored in the shared memory

in order to maintain fast memory accesses. However in this

case the memory needs are such that the 16 kB shared

memory is not enough.

Using all the shared memory is a possibility, but that

would leave no room for other data requiring subsequent

data paging. An alternative to shared memory that can also

provide fast memory access is the constant memory. We use

this memory to store the modal function and the experimental

deflection data since these are one time transfers. The CPU

would have to calculate the modal functions before the GPU

routine is called. Thus, room is left in the shared memory

for the calculated deflection data, prefix sum for integration,

and other smaller data needs. This will lead to only one

interaction with the slower global memory to store the metric

value. For the GPU based algorithm, the modal functions

are calculated the same way as the serial algorithm and

stored in constant memory at one time computational cost as

explained above. In order to calculate the modal coefficients,

a force integral, Fi(t) (Eqn. 4) needs to be solved. This is

a good candidate for parallel prefix. The next step is the

time-marching of the ODE. Given that ODE solvers have a

strong dependence on the previous time step, it is difficult

to parallelize solving the ODE’s. Since multiple modes, m
are computed, several force integrals and ODE need to be

solved in the same time step; thus parallelizing across modes

is another possibility.

We considered both approaches in developing our parallel

framework. When only parallel prefix is used, a thread is

assigned to every space point of the modal functions in

order to put the most threads to work. This results in a

runtime complexity of O[(ntlog(nx)+nt)m+nt] compared

to the serial runtime complexity of O[(ntnx + nt)m + nt].
However, this method requires a large number of threads,

which on the GPU is limited to 512. In contrast, when only

parallelism across modes is used, a runtime complexity of

O[(nxnt + 2nt] is achieved. If only one thread was used

per mode, each thread would have the same work as the

serial algorithm. In practice, the number of modes is small.

Having a small number of threads running on a GPU is a

problem because streaming multiprocessors require a large

number of threads to work efficiently. To get the most out of

the GPU, the best solution should be to use a combination

of the two methods. Choosing to operate as many threads

as possible, there are two ways the 512 threads could be

divided, either maximizing the number of threads towards

parallel prefix or maximizing the number of threads to the

modes. The runtime analysis of the combined method, with

maximizing the number of threads towards parallel prefix

is O[(ntlog(nx) + nt)
nxm

threads
+ log(nt)]. The end result of

these combined methods is that each CUDA block solves one

cost-functional and the threads are focused on the forward

problem. With this implementation each forward problem

is solved in 0.002 seconds. This is two orders of magnitude

reduction in time compared with the serial algorithm (1.29

seconds). However, there is significant scope for further

improvement as the current implementation only achieves

13% occupancy. We anticipate an occupancy of 41% with

further optimization cutting the compute time by another

order of magnitude. Fig. 5 shows the GPU runtime as a

function of the number of cost-functionals calculated.

Fig. 5. Number of cost-functional evaluations vs. run-time in sections on
GPU implementation

III. EXPERIMENTAL VALIDATION AND PRELIMINARY

RESULTS

In this section, we demonstrate some preliminary results.

We investigate the applicability of the cost-functional defined

in the previous sections and show-case the near-real time

inversion capabilities of the framework in estimating the

base deflection given tip deflections for simple sinusoidal

and chirp input signals. We start by describing the AFM

system employed and the experimental procedure.
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A. Experimental AFM System

The highlight of the experiments is the operation speed

which is contributed by the hardware set-up. For the purpose

of obtaining highly sensitive AFM deflection output, the

frequency of the driving input signal was around the resonant

frequency of the AFM cantilever, which was 25.53KHz.

The usual DAQ cards are not able to convert such high

speed signal. In order to handle the high speed signal, an

Altera Stratix FPGA development kit was used during the

experiments. The control signals, both sinusoidal signal and

chirp signal were sent to the AFM piezo drive channel

through FPGA card and its daughter card. The sampling

frequency of the FPGA used in the experiments was 25MHz.
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Fig. 6. Top: sinusoidal input signal; bottom: deflection of sinusoidal drive

B. Procedure

The AFM probe used for testing is a Veeco MPP-31200-

10 tapping mode probe, which is made of 0.01 - 0.025 Ωcm

Antimony (n) doped Si. The tip specifications are as follows:

• Geometry: Anisotropic

• Tip Height: 15 - 20µm

• Tip Radius: 8nm

• Spring Constant: 0.9N/m

• Length: 450µm

• Width: 35µm

• Thickness: 3.0µm

• Resonant Frequency: 25.53KHz

During the experiment, a sinusoidal input signal frequency

at 25KHz and a voltage amplitude of 0.4V was used. A

chirp input drive signal with a frequency range from 10KHz

to 50KHz, and voltage amplitude 0.35V was also used.

Duration of both kinds of input drive signal is 2s, and data

capture sampling frequency is 25MHz.

C. Results and Discussion

Figure 6 plots the sinusoidal control input and the can-

tilever deflection without tip sample interaction, respectively.

Figure 7 plots the chirp control input and the cantilever

deflection without tip sample interaction, respectively. The

frequency response of the base-cantilever dynamic model

without tip sample interaction was captured by a Digital

Signal Analyzer.
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The computational framework estimated the frequency and

amplitude of the base deflections within 0.2 seconds by

rapidly constructing the phase space and recognizing the

minima. Only two of the cost-functionals satisfied the two

criterion for rapid inversion (existence of only one minima

and most initial guess should lie in the minimal basin). The

JL2(F ) and JPSD(F ) cost-functional both demonstrated

minima as shown in Fig. 8 and Fig. 9, while the other two

cost-functionals (JC−PSD(F ), and JKL(F )) did not show

a global minima as seen in Fig. 10. The JL2(F ) showed a

Fig. 8. JL2 cost-functional values contour around the minima

minima at an amplitude of 1.3 nm and a frequency of 25.590

kHz. JPSD(F ) demonstrated a minima at an amplitude of

1.6 nm and a frequency of 25.610 kHz. Both these values are
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Fig. 9. JPSD cost-functional contour around the minima

Fig. 10. JC−PSD cost-functional contour around the minima

in close agreement to the actual values (of frequency). Sim-

ilarly, the computational framework estimated the frequency

and amplitude characteristics of the base deflections within

0.22 seconds for the chirp signal by rapidly constructing the

phase space and recognizing the minima. For this case also,

the JL2(F ) and JPSD(F ) cost-functionals performed well.

IV. CONCLUSIONS

We have developed an ultra-fast inversion strategy based

on parallel algorithms implemented on Graphical Processing

Units (GPUs). The estimation problem is posed as an inverse

problem and is solved in near-real time using GPUs. We

investigated several cost-functional formulations to ensure

quality of reconstruction while maintaining a high rate of

reconstruction. The computational scheme is verified with

experimental results. We have show that reconstruction of

simple, preliminary inputs is possible within fractions of

seconds (0.2, 0.22 seconds). We are currently extending this

framework to estimate more realistic tip-sample interaction

forces.
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