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Abstract

We propose a computational approach to systematically
find decentralized H∞ suboptimal controllers for general
unstructured models. Exploiting the quadratically in-
variant model projection and the classical robust control
synthesis techniques, we show that the original noncon-
vex problem can be conservatively solved by a series of
convex optimization problems.

1 Introduction

We consider decentralized control systems, where the
controllers are spatially distributed and each controller
has access to a different subset of the information. Sys-
tematic and efficient synthesis of decentralized control
policies in such architectures has been a fundamental
and central issue for networked control problems, how-
ever many of the crucial questions regarding this issue
have not yet been answered clearly.

One of the critical factors limiting these technological
developments is that the model-based control synthesis
procedures which have been so effective at centralized
control do not currently have counterparts for decentral-
ized control. Although good heuristics are known in some
cases, and certain special cases have been solved exactly,
for the general problem there is currently no method that
can in general numerically compute, for example, the
optimal mean-square performance achievable by decen-
tralized control, even for the highly specialized scenario
of low dimensional linear time-invariant state-space sys-
tems. It no longer fits within the existing paradigm (Ric-
cati equations, linear matrix inequalities, et cetera) for
optimal centralized control problems; this is the key ob-
stacle to the overall problem, and a tractable algorithm
for finding the optimal controller, even the optimal linear
controller, does not yet exist [2].
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Local optimization algorithms have been suggested,
[4, 5] for example, of which the convergence largely de-
pends on the choice of initial feasible point. Branch-
and-bound techniques were applied to find the globally
optimal design [1, 13], however they usually result in
extremely large computational load even for small-sized
problems. These reflect that finding the globally opti-
mal solution for such decentralized control architectures
is not trivial at all.

A recent work introduces the notion of quadratic in-
variance (QI) which characterizes the largest class of con-
vex problems in structured control design problems [9].
It shows that for a large range of practical problems with
structured plant models, the decentralized control prob-
lem can be formulated as an infinite dimensional convex
problem. Furthermore, if one is interested in the H2 opti-
mality, the solution can be computed efficiently [8, 9, 12].
However, the following two natural questions still remain
unanswered; 1) how we can deal with the unstructured
plant models, and 2) how we can solve the quadratically
invariant H∞ optimization problems. This paper mainly
addresses the first issue. A simple method to conserva-
tively handle the second issue is also introduced.

We resolve the unstructured model issue by introduc-
ing the QI projection. We first find the projection of the
full model onto the set of sparse models under which the
information constraint is quadratically invariant. Then
we synthesize a robust controller treating the projection
error as the additive model uncertainty. This is a sub-
stantially sophisticated extension from the rudimentary
approach introduced by the authors [7]. This transforms
the original hard problem into iterative convex structured
H∞ optimization problems, through which we land on
the second issue. This is approximately treated by relax-
ing the information constraint and solving the multiob-
jective H∞ optimization problem, which can be cast to
semidefinite programming (SDP). Though this circum-
vention does not guarantee the global convergence for
general problems, it is demonstrated to work quite well
on the presented numerical example.

2 Decentralized Control Synthesis

For centralized control architectures with widely ac-
cepted control objective functions, such as the H2 norm
or the H∞ norm of the closed-loop system, there are
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several well known methods that solve the problem effi-
ciently. Such problems can be expressed using the fol-
lowing generalized plant description.

minimize
K stabilizing

∥

∥P11 + P12K(I − P22K)−1P21

∥

∥

where P11, P12, and P21 describe the input-output inter-
connection of the models. P22 represents the plant model
and K is the controller to be designed.

The above objective function is not convex in the
variable K, but the problem can be transformed to a
convex one by change of variables according to Q =
K(I − P22K)−1. The optimal control is full in general,
which requires the centralized control authority.

On the other hand, synthesizing optimal decentralized
controls requires additional constraints which makes the
problem far harder. The optimal decentralized control
problem can be described as follows, by adding an infor-
mation constraint.

minimize
K stabilizing

∥

∥P11 + P12K(I − P22K)−1P21

∥

∥

subject to K satisfies the information constraint

The last constraint, using a sparsity pattern, defines
the decentralized control architectures. The change of
variables, which helped the centralized problem, is of no
use in this case since it transforms the linear information
constraint to a complicated nonconvex one. In general,
finding the optimal control for such decentralized setups
is very hard, and no algorithm is known to efficiently
solve the problem in polynomial time [2].

2.1 Quadratic invariance

Quadratic invariance characterizes a simple algebraic
condition of the plant and the controller, under which
the optimal decentralized control problem reduces to a
convex optimization problem [9].

Suppose U and Y are Banach spaces, and let L(Y,U)
be the space of all linear and continuous maps K : Y →
U . As a general representation of decentralization con-
straints, we call a subspace S ⊆ L(Y,U) an information
constraint.

We consider finding optimal linear controllers, and de-
fine the following class of information constraints.

Definition 1. Suppose G ∈ L(U ,Y) and S ⊆ L(Y,U).
S is called quadratically invariant under G if

KGK ∈ S for all K ∈ S

For the linear decentralized control problem with a
quadratically invariant information constraint, we can
show that the optimal controller may be found via convex
optimization.

Theorem 2. Suppose G ∈ L(U ,Y), and S ⊆ L(Y,U) is
a closed quadratically invariant subspace. Also suppose
that the operator I −GK is invertible for every K ∈ S.
Then

K ∈ S ⇐⇒ K(I −GK)−1 ∈ S

Proof. See [9] for details.

The theorem says that the quadratic invariance guar-
antees the convexity of the information constraint set un-
der the transformation according to Q = K(I −GK)−1.
This gives the equivalent problem.

minimize
Q∈RH∞∩S

‖P11 + P12QP21‖

This is now an infinite dimensional convex optimiza-
tion problem, and the H2 norm case can be solved by
standard methods [8]. This implies that if the system and
the controller jointly satisfy some simple algebraic condi-
tion, the optimal decentralized control problem may be
easily solved.

The notion of quadratic invariance is powerful for some
class of sparse plant models. However it is not appropri-
ate for application to general unstructured models, be-
cause the only quadratically invariant class of controllers
for full plant models are the full (centralized) controllers.

2.2 QI projection

In synthesizing the decentralized control laws for gen-
eral unstructured linear systems, we suggest an intuitive
procedure to extensively apply the notion of quadratic
invariance to the full unstructured models.

Suppose that a control structure requirement is given
by the information constraint S. We denote by S∗ the
set of all linear maps under which S is quadratically in-
variant.

Definition 3. Suppose S ⊆ L(Y,U) is an information
constraint. We define a complementary set S∗ ⊆ L(U ,Y)
as follows.

S∗ =
{

H | S is quadratically invariant under H
}

Now the QI projection of G is defined by the closest
point in S∗ from G.

Definition 4. Suppose G ∈ L(U ,Y), and S ⊆ L(Y,U)
is an information constraint for which S∗ is nonempty.
Then G̃ is called a QI projection of G if

G̃ ∈ argmin
H∈S∗

‖G−H‖
∞

The projection error is denoted by G⊥ = G− G̃.

It is reasonable that we can consider G̃ as some approx-
imation of G, and then G⊥ corresponds to the associated
approximation error (or uncertainty). Hence intuition
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behind the choice of G̃ is that it minimizes the size of the
uncertainty.

Although finding the QI projection for general S may
not be obvious, some problems such as the following two
player case yield simple solutions.

Example 1. The QI projection of G =

[

g11 g12
g21 g22

]

with

respect to S :

[

• •
◦ •

]

is G̃ =

[

g11 g12
0 g22

]

.

Proof. Note that S∗ = S in this case. Then ∀H ∈ S∗,

we have that G − H =

[

f11 f12
g21 f22

]

with some f11, f12,

and f22. But, ‖g21‖∞ ≤ ‖G−H‖
∞

since matrix dilation
is norm non-decreasing. This follows that min ‖G−H‖∞
is achieved when f11, f12, and f22 are zero.

2.3 Decentralized robust control synthesis

In this paper, we are specifically interested in finding a
solution to the following non-QI decentralized H∞ sub-
optimal control problem.

• Original problem:

find stabilizing K

subject to ‖Fl(P (G),K)‖
∞

≤ 1

K ∈ S

where G is a stable, unstructured plant model and S

is an information constraint which is not quadratically
invariant under G. Fl(P,K) represents the lower linear
fractional transformation (LFT), and Fu(P,K) is the up-
per LFT. Note that P22 is either G or −G depending on
the sign of the feedback signal, and P11, P12, and P21

may affinely depend on G.

For an illustrated example, see Figure 1, for which case
the plant description P is as follows.





z1
z2
y



 =





W1 −W1G

0 W2

I −G





[

r

u

]

G

K

W1

W2

−

+

r

z1

z2

u y

Figure 1: Original problem with G
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Figure 2: Standard feedback interconnection.

For directly solving the original problem is difficult,
we introduce the following alternative problem exploit-
ing the QI projection. Suppose that G̃ and G⊥ are sta-
ble, and let G be the set of plant models inside the disk
centered at G̃ with radius ‖G⊥‖∞.

G =
{

G̃+∆G⊥ | ∆ = δI, |δ| ≤ 1, δ ∈ C

}

The alternative problem description follows below.

• Alternative problem:

find stabilizing K

subject to ‖Fl(P (G′),K)‖
∞

≤ 1, ∀G′ ∈ G

K ∈ S

For the illustrated example in the alternative problem
description, see Figure 3 where the specific plant descrip-
tion P̄ (G̃, G⊥) is (hereafter, P̄ will imply P̄ (G̃, G⊥)),
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Because G ∈ G, solving the alternative problem solves
the original problem too. However it should be noted
that the solution can be conservative.

Now let us recall the robust performance condition of
the plant P̄ with the feedback perturbation ∆ as in Fig-
ure 2, which helps to solve the alternative problem. Fol-
lowing the convention, let ∆̂ = diag(δI,∆P ) with ∆P

G̃
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+

+

ũ
ỹ

Figure 3: Alternative problem with G̃
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being the fictitious full perturbation with ‖∆P ‖∞ ≤ 1,
and let µ∆̂(F ) be the structured singular value of F asso-

ciated with the structure ∆̂. Then we have the following.

Lemma 5. Consider the standard feedback interconnec-
tion of the stable plant P , P̄ with the controller K and
the perturbation ∆ as in Figure 2. Then for the alter-
native problem in Figure 3, the following statements are
equivalent.

1. ‖Fl(P (G′),K)‖
∞

≤ 1, ∀G′ ∈ G

2.
∥

∥Fu

(

Fl(P̄ ,K),∆
)∥

∥

∞
≤ 1, ∀∆ = δI, |δ| ≤ 1

3. µ∆̂

(

Fl(P̄ ,K)
)

≤ 1

Proof. This follows from the standard result in the
robust control contexts. See [11, 14], for example.

The above lemma states that a suboptimal K for the
original problem can be found from the µ-suboptimal K
satisfying the last statement. We claim that such subop-
timal structured K may be practically found via a mod-
ified D-K iteration process introduced below. Though
the series of coordinatewise convex optimization does not
guarantee the global convergence on the general jointly
convex function, computational results have shown that
it is very reliable in practice [11, 14].

1. K-step (modified):

minimize
K stabilizing

∥

∥DFl(P̄ ,K)D−1
∥

∥

∞

subject to K ∈ S

2. D-step:

minimize
D∈D

∥

∥DFl(P̄ ,K)D−1
∥

∥

∞

where D represents the set of all stable, minimum
phase, and structured transfer function matrices satis-
fying D∆̂ = ∆̂D. A good choice for the initial D can be
D = I.

Note here that the D-step problem is identical to that
of the classical µ synthesis. On the other hand, in the
modified K-step, an information constraint is added to
the classical K-step; this is the hard part. However the
problem is convex because P̄ contains G̃, and the infor-
mation constraint S is quadratically invariant under G̃.

More explicitly, note that the solution from the D-
step has the structure of D = diag(d, I) with some full,
complex matrix d. The modified K-step problem can be
rewritten as follows.

• K step (modified):

minimize
Q∈RH∞∩S

‖T11 + T12QT21‖∞

where

[

T11 T12

T21 T22

]

=





dP00d
−1 dP01 dP02

P10d
−1 P11 P12

P20d
−1 P21 P22





and

Q = K(I − T22K)−1

Obviously, S is quadratically invariant under T22 (in
this example T22 = P22 = −G̃), therefore the condition
K ∈ S is equivalent to Q ∈ S.

This formulation now implies that the original noncon-
vex H∞ problem can be conservatively solved by a series
of convex H∞ problems.

Recall that the H2 problem in this form can be solved
efficiently [8], however the H∞ problem is not the case. A
series of convergent solutions may be obtained by finite
dimensional bases expansion [3, 6]. However such ap-
proachs need to handle very large linear matrix inequal-
ities (LMIs), and current off-the-shelf solvers (such as
SeDuMi) usually fail even in simple control design prob-
lems.

Another approach based on the iterative coordinate-
wise optimization can be used to find the optimal Q el-
ementwisely. Like the D-K iteration in the µ-synthesis,
this approach usually finds a sound solution in practice,
but without a mathematical guarantee of convergence.

In the next section, we introduce another approach to
solve this particular infinite dimensional convex problem
conservatively.

2.4 Quadratically invariant H∞ optimization

We solve the problem by relaxing the information con-
straint first, and then reformulate the relaxed problem as
a multiobjective H∞ optimization problem.

For the illustrated example, let’s consider the 2 × 2
nested information pattern as follows.

S :

[

• •
◦ •

]

Relaxing the information constraint to a norm inequal-
ity with some positive ǫ ≪ 1 yields,

minimize
Q∈RH∞

‖T11 + T12QT21‖∞

subject to ‖Q21‖∞ ≤ ǫ

As ǫ → 0, the optimal value of the above relaxation ap-
proaches to the optimal value of the exact problem; more
precisely, the difference is bounded by a linear function of
ǫ. Provided that ǫ is sufficiently small, we can reasonably
project the relaxed solution onto S, and can use the pro-
jection for the decentralized control purpose. Note that
the projection is also stable, thus stabilizes the plant.
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The problem can be cast as the following form of mul-
tiobjective problem, and the solution can be obtained by
an appropriate choice of ν.

minimize
Q∈RH∞

‖T11 + T12QT21‖∞ + ν ‖Q21‖∞

For the illustrated problem in Figure 3, Q21 equals to
the transfer function from r1 to u2. We can also introduce
the weight W2 to the second term, for computational
convenience, and obtain the solution by,

minimize
Q∈RH∞

‖T11 + T12QT21‖∞ + ν′ ‖T3QT4‖∞

where T3 =
[

0 I
]

W2 and T4 =
[

I 0
]T

, with a new
constant ν′ defining the penalty term.

At the cost of introducing conservativeness, the above
can be formulated as an SDP with manageable size of
LMIs [10], so it can be efficiently solved. However it
should be noted that the amount of the conservativeness
being entered differs from a specific problem to another.
Therefore it is possible that this multiobjective approach
with the SDP formulation may result in an unacceptable
solution for some problems.

A numerical example on a mixed sensitivity tracking
problem, as in Figure 3, is presented in the next section.

3 Numerical Example

We use a scaled linear model of the GE F404 turbine
engine at a rated thrust condition at 35,000 ft altitude.

G =

[

g11 g12
g21 g22

]

=

[

3.07(s+2.19)(s+1.16)
(s+0.4)(s+0.90)(s+2.79)

−5.87(s+1.64)(s−4.74)
(s+0.4)(s+0.90)(s+2.79)

0.37(s+5.23)
(s+0.90)(s+2.79)

27.50(s+2.24)
(s+0.90)(s+2.79)

]

As in Figure 1, we are interested in finding a decen-
tralized mixed sensitivity H∞ controller

K ∈

[

• •
◦ •

]

rendering

∥

∥

∥

∥

[

W1(I +GK)−1

W2K(I +GK)−1

]∥

∥

∥

∥

∞

≤ 1

Variable Description

u Wf Fuel flow rate
Aj Nozzle area

y Tt4.5 Turbine total temperature
N2 Fan speed

Table 1: Input/output variables for the engine model
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Figure 4: Structured singular value plot

with design parameters given by,

W1 =
0.5(s+ 5)

(s+ 0.0001)
I W2 = 0.2I

Recall from Example 1 that the QI projection for this
information pattern is simply,

G̃ =

[

g11 g12
0 g22

]

G⊥ =

[

0 0
g21 0

]

The alternative problem was solved using cvx and Se-
DuMi, with ν′ = 50 chosen for the multiobjectiveH∞ op-
timization. The µ-suboptimality, µ∆̂(Fl(P̄ ,K)) ≤ 1, was
achieved at the first D-K iteration (Figure 4), proving
the guaranteed performance for all plants in G, including
the original unstructured plant G in particular.

The computation results are presented with the com-
parison of the following three controls.

• Qc (centralized solution) : obtained from the origi-
nal problem without the information constraint. Kc

related by Qc = Kc(I +GKc)
−1.

• Qr (close-to-decentralized solution) : obtained from
the relaxed multiobjective problem. Kr related by
Qr = Kr(I + G̃Kr)

−1.

• Qd (decentralized solution) : obtained by projecting
Qr onto S. Kd related by Qd = Kd(I + G̃Kd)

−1.

The sensitivity function and the step response on the
full unstructured plant G are plotted in Figure 5 and
Figure 6. In these plots, Kr and Kd produce the al-
most overlaping plots, by which we indirectly recognize
that Qr is very close to S. More quantitatively, the el-
ementwise size of Qr in the H∞ norm, is shown below,
which indicates that the relaxed multiobjective problem
successfully finds a close-to-sparse solution.

[

‖Qr,11‖∞ ‖Qr,12‖∞
‖Qr,21‖∞ ‖Qr,22‖∞

]

=

[

1.2291 0.3123
0.0008 0.1308

]

Achieved closed loop performance on the original un-
structured plant G is displayed in Table 2. Again, note
thatKr andKd render the practically equal performance,
and all three controllers successfully achieve the required
suboptimality.
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4 Concluding Remarks

We proposed a decentralized H∞ synthesis algorithm for
general full plants. We define the QI projection of the
original unstructured plant model, and develop a slightly
modified µ-synthesis technique on the projected model.
The approach conservatively guarantees the suboptimal
performance by the structured singular value condition
with a structuredK constraint. The modified µ-synthesis
results in a series of the quadratically invariant H∞ opti-
mization problems, which we approximately solve by the
ǫ-norm relaxed multiobjective H∞ optimization.

An issue in the presented approach was that the multi-
objective formulation for the quadratically invariant H∞

problem does not provide the globally optimal solution,
although it found a sound solution in the particular nu-
merical example. The authors believe that one may be
able to find an efficient realization of the globally optimal
solution, because the problem is in convex form. This can
be a natural extension of the presented work.

Another extension may be implementation of this re-

Controller ‖Fl(P,K)‖∞

Kc 0.5770
Kr 0.6784
Kd 0.6794

Table 2: Achieved closed loop performance on G

sult to practical problems with more realistic plant mod-
els.
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