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Abstract— In this paper, a data-driven subspace approach for
economic performance assessment of the advanced process con-
trol (APC) systems is presented. The method introduces LQG
tradeoff curve to estimate potential of reduction in variance,
which is directly obtained from subspace matrices using closed
loop data. To exploit feasible economic performance of the APC
systems, the proposed approach considers the uncertainties
induced by process variability and evaluates the economic
performance through solving stochastic optimization problem.
Results of the performance evaluation provide a guideline for
the control system tuning to realize the potential improvement
in profitability of process. The application of the proposed
method is illustrated by its benefits evaluation on a simulated
example.

I. INTRODUCTION

With the widespread implementation of advanced pro-

cess control (APC) applications in oil, gas and chemical

industries in the last two decades, it has become evident

that the economic analysis of selected APC technologies is

an important task of control engineers for decision making

on any control upgrading project, because of their high

design and implementation cost [6]. Thus, recently economic

performance assessment (EPA) of advanced process control

has become one of the most active areas of research in the

field of control engineering, and there have been a group of

EPA techniques and relevant case studies have been reported

in the literature, and a particular informative and revealing

review of EPA for APC applications is provided in [10].

The interest in EPA of process control can be traced back to

the work of Astrom [17] and Harris [18] who proposed that

the minimum variance benchmark can be identified by using

normal closed-loop data. Martin presented a general frame-

work for economic justification of advanced process control

applications [7]. A statistics-based approach for analysis

of potential variance reduction and the associated benefits

under various improved control operations is developed in

[4]. In order to better investigate the potential performance

improvement of the process control in terms of variance, a

profit index has been developed that links the variation of the

quality process variable to economic performance quantities

Qiaoling Xu and Chao Zhao are with Faculty of College of
Chemistry and Chemical Engineering, FuZhou University, China.
seasky76@163.com

Defeng Zhang is with Faculty of School of Mechanical Engineer-
ing, Nanjing University of Science and Technology, Nanjing, China.
myfeidfzhang@yahoo.com.cn

Aimin An is with Faculty of School of Electrical Engineering and
Information Engineering, Lanzhou University of Technology, China.
anaiminll@163.com

Chi Zhang is with PhD candidate of School of Economics , Zhejiang
University, China. zhangchi83@163.com

[10]. Latour proposed an optimization based approach to

benefit calculation of process control named CLIFFTENT,

which introduces an integral operator into economic perfor-

mance assessment problem [5] and also provides a heuristic

way of determining the optimal operating points and the

best performance. Further extension and modifications to the

CLIFFTENT approach have been proposed by Zhou et al.[8]

who formulated the EPA problem into a constrained opti-

mization problem. According to steady state process model

and backoff idea, Xu et al. [1] developed an optimization

based approach for the economic performance evaluation

of MPC by calculating benefit potentials through variability

reduction of process variables or constraints tuning. Further

development of this approach was presented in Huang et al.

[2], [3], in which the probabilistic approach and Bayesian

inference were utilized for decision making on constraints

tuning to achieve optimal MPC performance. An innovative

technique for economic assessing APC performance has been

proposed in the work of Zhao et al. [11]. By incorporating

the LQG benchmark into performance evaluation framework,

the variance based performance assessment was transferred

to economic performance assessment for APC systems.

The LQG benchmark as an alternative benchmark has been

proposed for performance assessment of control systems

with consideration of the control action constraints [6].

A drawback of this benchmark is the requirement of a

perfectly known process model, which has to be obtained

through process identification under the open or closed loop

condition. However, process test for process identification

may not always feasible or may be expensive in practice [12],

[13]. The success of subspace identification has inspired an

alternative approach to assess the economic performance of

process control systems [16].

In this paper, a data-driven LQG benchmark based approach

to assess the economic performance of APC systems is

proposed. Firstly, the LQG benchmark obtaining from closed

loop data is introduced to estimate the potential variance

reduction of process variables. Secondly, a stochastic op-

timization approach to benefits analysis of process control

is developed. The proposed approach considers the uncer-

tainties induced by process variability and evaluates the

economic performance of advanced process control strategies

through solving the stochastic optimization problems, and the

main results are illustrated through a simulation example.
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II. OBTAINING LQG BENCHMARK FROM CLOSED-LOOP

DATA

Subspace methods provide a numerically robust approach

to conventional identification methods, which also give a

alternative for LQG controller design and performance as-

sessment since it does not require an explicit process model.

LQG benchmark has been proven to be a realistic benchmark

for assessing constrained control systems since LQG tradeoff

curve represents the optimal performance limit in terms of

the best achievable input and output variances [15]. The LQG

objective function is define as:

J(λ) = E(y2
t ) + λE(u2

t ) (1)

Obtaining LQG tradeoff curve from subspace matrices is

briefly reviewed in this section following the approaches of

[12] and [13].

A. Subspace Identification

A linear time-invariant system can be described in a state

space representation form as

xt+1 = Axt + But + Ket (2)

yt = Cxt + Dut + et (3)

where the symbols are the input ut, the output yt, the sate

xt, the stochastic input et, the Kalman filter gain K and the

zero-mean Gaussian white noise et. A,B, C and D are the

matrices of the state space system with appropriate dimen-

sions. Based on the innovation form in (3), an extended state

space model can be formulated as following the standard

subspace notation, Equation (3) can be rewritten:

yf = ΓNxf + HNuf + Hs
Nef (4)

= LwWp + Luuf + Lee (5)

where

yp =









y0 y1 · · · yj−1

y1 y2 · · · yj

· · · · · · · · · · · ·
yN−1 yN · · · yN+j−2









(6)

yf =









yN yN+1 · · · yN+j−1

yN+1 yN+2 · · · yN+j

· · · · · · · · · · · ·
y2N−1 y2N · · · y2N+j−2









(7)

uf =









uN uN+1 · · · uN+j−1

uN+1 uN+2 · · · uN+j

· · · · · · · · · · · ·
u2N−1 u2N · · · u2N+j−2









(8)

xf =
[

xN xN+1 · · · xj−N+1

]

(9)

ef =
[

eN eN+1 · · · ej−N+1

]

(10)

The indices p and f stand for the past and future. ΓN is the

extended observability matrix, HN and Hs
N are the lower tri-

angular Toeplitz matrices corresponding to the deterministic

input uk and the unknown stochastic input ek, respectively

[13].

B. Obtaining LQG tradeoff curve from closed-loop data

Consider a regulatory finite-horizon LQG control objective

function defined as

J = E

{

N
∑

k=1

[

yT
k yk + uT

k (λI)uk

]

}

(11)

The optimal control criterion can also be written as

JLQG =
⌢
y

T

f
⌢
yf + uT

f (λI) uf (12)

where

uf =









u1

u2

· · ·
uN









⌢
yf =









⌢
y1
⌢
y2

· · ·
⌢
yN









(13)

are the future input sequences and the corresponding es-

timated future output sequences. Minimizing J , yields an

optimal control law:

uf = −
(

λIN1 + LT
u Lu

)

−1
LT

u Le,1e0 (14)

The corresponding optimal output expression:

⌢
yf =

[

I −
(

λIN1 + LT
u Lu

)

−1
LT

u

]

TLe,1e0 (15)

Define the following two matrices:








γ0

γ1

· · ·
γN−1









∆
= −

(

λI + LT
u Lu

)

−1
LT

u Le,1 (16)

and








ϕ0

ϕ1

· · ·
ϕN−1









∆
=

[

I − Lu

(

λI + LT
u Lu

)

−1
LT

u

]

Le,1 (17)

According to the principle of superposition, the optimal

sequence of control inputs as

u
opt
t =

N−1
∑

k=0

γket−k (18)

y
opt
t =

N−1
∑

k=0

ϕket−k (19)

From above equations, we can calculate the LQG benchmark

variances of the process inputs and outputs as

var [ut] =
N−1
∑

k=0

ϕivar [et]ϕ
T
i (20)

var [yt] =
N−1
∑

k=0

γivar [et]γ
T
i (21)

For obtaining the LQG tradeoff curve, define

uLQG = trace {var [ut]} (22)

yLQG = trace {var [yt]} (23)
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Fig. 2. Conventional approach to economic benefit estimation

By varying λ, various LQG control solutions of E
[

y2
t

]

and

E
[

u2
t

]

can be calculated. Then the achievable performance

limit for a linear system is given by a tradeoff curve which

can be plotted from these solutions [11], as shown in (Fig.1).

III. ECONOMIC BENEFIT ANALYSIS OF ADVANCED

PROCESS CONTROL

It is assumed that improved process control strategies

(such as APC strategies et al.) would result in a variance

reduction of the key process variable [9], which in turn

allows the process operating mean value to be shifted closer

to the operation constraint without increasing the frequency

of violation. The economic benefit is realized by from this

new operation point, as shown in (Fig.2).

Thus, the economic performance assessment problem can

be expressed in terms of determining the optimal operating

condition for a given control system. Accordingly benefits

calculation may be formulated as an optimization problem.

In order to make ensure that the obtained operating point

is practically feasible, the formulated optimization problem

must incorporate the uncertainties in both process economic

function and the constraints [8]. Therefore, performance

estimation problem can be stated as stochastic optimization

problem:

max P = E [ϑ] =

∫

x

ϑ (x)f (x, µ, σ) dx (24)

g1 (x) ≤ 0 (25)

Pr {g2 (x) ≤ 0} ≥ α (26)

where P is the profit objective function, ϑ(x) is the eco-

nomic performance function (EPF), f(x) is the probability

density function (PDF). Pr {·} is the operator of probability

computation and α is the specified probability level. g1(x)
represents the deterministic constraint, and g2(x) is the

probabilistic constraint which should be satisfied at a defined

probability level α.

Generally, the economic objective of process is to maximize

the product profitability with the minimum cost. Thus, eco-

nomic performance function can be expressed in terms of

those quality process variables, which are the main profit

factors contributing to the benefits of the process control

systems. Accordingly, EPF is expressed as a linear function

in this paper:

ϑ =

p
∑

i=1

c(i)
y yi−

m
∑

j=1

c(j)
u uj (27)

where uj , yi are the ith input variable and jth output

variable, and cy , cu are economic (or cost) coefficient

vectors of output and input variables, which are assumed

to be known. Since the process variables are assumed to

be normally distributed in this work, profit function can be

obtained as follows

profit = P =

p
∑

i=1

c(i)
y ȳi−

m
∑

j=1

c(j)
u ūj (28)

A robust approach for dealing with constraints under uncer-

tainty is to frame the problems into probability constraints,

which are usually stated as following:

Pr {yi,min ≤ yi ≤ yi,max} ≥ αi, i = 1, . . . , p (29)

Inequality (29) is the form of individual probabilistic con-

straint (IPC), where each individual constraint in IPC prob-

lem is satisfied at a specified probability level αi, Incorporat-

ing the probabilistic constraints into performance evaluation

problem helps to make a robust decision on the economic

quantification of a given process control, based on a desired

tradeoff between profitability and reliability.

Since the process constraints are linear in process variable,

and output variables are assumed to follow a Gaussian distri-

bution, the constraint (29) can be recast as the deterministic

form

yi,min − Φ−1 (1 − αi) × σyi ≤ ȳi (30)

yi,max − Φ−1 (αi) × σyi ≥ ȳi (31)

Where Φ−1 is the inverse function of the Gaussian distri-

bution function, its value is only dependent on the specified

confidence level.

Generally, constraints enforced on the input variables are

usually considered as the hard constraints, constraint vio-

lation is not allowed in practice. Thus, a more conservative
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manner is taken to define probability level for the process

constraints on input variables.

uj,min + 3 × σuj ≤ ūj ≤ uj,max − 3 × σuj (32)

where σyi and σuj are the standard deviation of input and

output variables.

The LQG benchmark is used for estimating the available

process variability change, σyi and σuj , in this paper. The

LQG tradeoff curve in terms of variances are obtained

directly from subspace matrices using closed-loop data with

certain external excitations, as previous section mentioned.

The way to determine LQG tradeoff curve in terms of

equalities can be referred to the work [11].

A. Economic Performance Evaluation

Economic profit function should be evaluated by maximiz-

ing the profit function, subject to the probability constraints

enforced on the process variables and the equalities related to

process variances. Based on previous analysis, the problem

formulation of optimal operation is described as follows.

Given an p × m system, having steady-state process gain

matrix K. (ȳi0, ūj0) is defined as the current operating point

and (ȳi, ūj) is the optimal operating point. Then the steady

state optimization problem is :

max
ūj ,ȳi;σuj ,σyi

P =

p
∑

i=1

c(i)
y ȳi−

m
∑

j=1

c(j)
u ūj (33)

subject to

∆ȳi =
m

∑

j=1

[Kij × ∆ūj ]

ȳi = ȳi0 + ∆ȳi

ūj = ūj0 + ∆ūj (34)

yi,min −Φ−1 (1 − αi)×σyi ≤ ȳi ≤ yi,max −Φ−1 (αi)×σyi

(35)

uj,min + 3 × σuj ≤ ūj ≤ uj,max − 3 × σuj (36)

σY = f (σU ) (37)

σ2
Y =

p
∑

i=1

wiσ
2
yi (38)

σ2
U =

m
∑

j=1

rjσ
2
uj (39)

σuj ≥ 0
σyi ≥ 0

(40)

where i = 1, · · · , p and j = 1, · · · ,m; (∆yi,∆uj) is the

variable change, which must satisfy the steady state relation

(36) [1]. Then the solution of this optimization problem

yields an optimal operating condition and the optimal eco-

nomic performance that can be expected. We will discuss the

economic performance calculations under different operation

scenarios [11]:

• Base case operation: In this case, only evaluation of

performance objective function by replacing (ȳi, ūj)
with the current operating point (ȳi0, ūj0) in (36), which

is denoted as P0. It is a value to be compared with

improved performance for the calculation of economic

potentials.

• Existing variability case: It is the evidence that the

performance degrades with time in any control system

[5]. Thus, existing controller may not be optimally

tuned in the most cases. By shifting operating point

only, and no action is taken to reduce the variability

of the quality variables in this case, The resultant

optimal operating point is denoted as (ȳSi, ūSj), and

corresponding objective function as PS .

• Maximum achievable performance: Performance

improvement not only results from the shift in setpoint,

but also from the reduction in variance through

improved control operation [6]. With variability

reduction on the quality variables due to tuning of

control system, which will further move the mean

value closer to the specification limit and thus gives

rise to increased economic benefit. The optimal

operating point in this case is denoted as (ȳRi, ūRj),
and corresponding economic performance is defined as

PR, which can be calculated via the solution of defined

performance evaluation problem.

Now economic benefit improvement due to control system

upgrade can be investigated by comparison of performance

for different process operation conditions, and two economic

benefit benefits, the existing benefit potential (∆PS) and

the maximum available economic benefit (∆PR), can be

determined accordingly.

∆PS = PS − P0 (41)

∆PR = PR − P0 (42)

Compared ∆PR with ∆PS , the following inequality holds

∆PS ≤ ∆PR.

A large value of ∆PS means that the calculated operating

point in the existing variability scenario is much closer

to specification limit that current value, and the controller

tuning through simply mean shifting for controller may lead

to better economic performance. While ∆PR represents the

maximum achievable profitability improvement that can be

obtained by reducing the variability through LQG control.

IV. CASE STUDY

In this section, a simulation example is performed to

demonstrate the effectiveness of the proposed approach to

the benefits analysis problem of the APC systems. The

process considered in this case study is a chemical pilot plant

with implementing of the advanced process control strategy,

which was presented in [14]. The process has three manip-

ulated variables ( electrovalve for flow (u1), electrovalve for

level (u2) and fan speed (u3)), three controlled variables (

flow sensor(y1), level sensor (y2) and temperature sensor
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Fig. 3. Closed-loop system data
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Fig. 4. Base case operation of simulated control process

(y3)), and a disturbance variable (tank liquid temperature

(d1)). The process model is described by the following

transfer functions




y1

y2

y3



 =





G11 0 0
G21 G21 0
0 G32 G33









u1

u2

u3



 +





Gn1

0
Gn3



 d1

(43)

where

G11 =
2.3

0.73s + 1
e−3sG21 =

0.27

s + 1
e−3s (44)

G22 =
−0.21

s + 1
e−6sG32 =

0.75

15.3s + 1
e−15s (45)

G22 =
−0.95

25s + 1
e−11sGn1 =

0.6

s + 1
Gn2 =

1

s + 1
(46)

Based on Matlab MPC toolbox, a designed MPC controller

is implemented in the simulated distillation process. are the

nominal steady state values. In the MPC design problem

formulation, the constraints enforced on the manipulated and

controlled variables are shown in [14].

According to [14], the economic incentive in this process

is to maximize the flow of the product while keep the

temperature closer to the lower limit in order to minimize the

energy consumption. At the same time, possible overflows

or underflows must be avoided. Since the satisfaction of the

tank level (y2) is more important than those of the flow (y1)

and temperature (y3). Therefore, the output constraints need

to be satisfied with the specified probability level 1 − α1 =
90% for y1, 1 − α2 = 95% for y2 and 1 − α3 = 90%
for y3. Meanwhile, the profit function takes the form as

P = 6.9ȳ1 − 1.9ū3.

In order to calculate the LQG tradeoff curve based on the

subspace matrices, closed-loop input/output data is obtained

by exciting the system using the designed RBS signals of ap-

propriate magnitude for the setpoints and random white noise

of standard deviation 0.2 for the disturbance in Simulink.

The closed-loop is plotted in Fig.3, and the obtained LQG

tradeoff curve is shown in Fig.5.

By simulation on this MPC application, a set of 4000

samples are extracted from the base case operation with given

constraints limits is shown in Fig.4. According to the benefits

analysis procedure discussed in section 2, the resultant opti-

mal operation condition, the calculated and verified economic

benefits under different scenarios are summarized in Tab.I,

which provide an indication of the potential improvement in

profitability of process.

Based on the above results, the existing economic benefit

and the best achievable benefit potential are calculated as

∆PS = 15.8 and ∆PR = 66.1 respectively, which means

that 23.2% of maximum achievable benefit potential may

be theoretically realized from moving the operating point

towards the optimal one, while the reminder 76.9% of

maximum economic potential is possible achieved by further

reducing variability of controlled variables through further

controller tuning.

The calculated benefit potentials can be verified by setting

the optimal operating point obtained in different cases as

the setpoint for corresponding low-level regulatory control

loop with appropriate control upgrading. The realized benefit

potentials are also list in Tab I. For the existing variability

scenario, the verified potential is about 62.8% of calculated

one. This indicates that the calculated existing benefit po-

tential is indeed achieved in practice. The achieved benefit

potential is verified as 52.1 by reducing the variability of

process variables through tuning regulatory control loops,

and it is also close to that of calculated one. The base

case operation, optimal operation and the verified operation

condition in terms of standard deviations are shown in Fig.5.

Fig.6 presents a typical simulation result for output y1 under

the base case and the variability reduction case operation.

With the variance reduction of the y1, the mean operating

value is shift closer to its upper constraint limit, and thus

give rise to increased economic benefit. Previous analysis and

results once again shows that realized economic potentials

agree with those calculated ones, and which demonstrates the

feasibility of proposed approach for economic performance

assessment of advanced process control strategies.
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TABLE I

ECONOMIC PERFORMANCE ASSESSMENT RESULT OF PILOT PLANT

scenarios optimal operation point benefits value economic potentials

u1 u2 u3 y1 y2 y3 calculated verified

Base 37.1 49.6 27.5 41.7 43 32.9 235.7

Existing 32.6 45.3 31.9 45.2 52 31.6 251.3 15.6 9.8

Maximum 39.2 50.1 42.1 55.3 49.6 32.2 301.6 65.9 52.1
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Fig. 5. Standard deviations of process under the different operation
conditions
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Fig. 6. Comparison of base case operation and improved control operation

V. CONCLUSION

An economic performance assessment algorithm based on

the data-driven LQG benchmark is developed to evaluate the

benefit potentials of APC strategies in this study. The optimal

LQG benchmark variances are obtained directly from the

subspace matrices using closed-loop data. Based on the

LQG tradeoff curve as well as the inclusion of the process

uncertainties into the performance evaluation problem, the

economic potential and optimal operation condition can be

obtained via solution of the formulated optimization prob-

lem. The proposed approach is illustrated by the application

to economic performance assessment of a simulated model

predictive control system.
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