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Abstract— This paper studies norms that quantify safety of
robotic vehicle trajectories. The main motivation behind this
work is to automate the process of selecting safe motions in
complex state spaces such as ones arising from environments
cluttered with obstacles or when trajectories lie close to the
permitted boundary of configuration space. An autonomous
vehicle can plan obstacle-free trajectories in a known environ-
ment but the inherent uncertainty in sensing and motion could
render these trajectories unsafe during execution. Therefore, in
the presence of uncertainty it is crucial to predict in real-time
the safety of planned trajectories through appropriate metrics
or norms. There are a number of standard methods to weigh
risks associated with vehicle behavior, for instance, based on
the minimum distance to the closest obstacles, or on the average
distance to obstacles along the trajectory. In this paper we study
generalization of such norms based on the theory of Sobolev
spaces. In particular, Hk Sobolev norms applied to the distance-
to-obstacle function along a trajectory are based not only on
its spatial properties but also on its time variation or frequency
components. We show that this extra information renders an
H1 norm more effective for quantifying risk compared to the
standard Lp norms. This is demonstrated for an analytical
example as well as for a semi-realistic helicopter flying through
an obstacle terrain.

I. INTRODUCTION

Obstacle avoidance is one of the classical and most well

studied problems in robotics. Robotic vehicles operating

in obstructed environments must plan and safely execute

collision-free trajectories. Uncertainty in motion and sensing

naturally present in most settings can potentially influence

the executed trajectory and render it unsafe. The typical

approach to deal with noise is through sensor-based nav-

igation (see e.g. [1], [2]). Yet, quantifying the expected

performance and safety during sensor-based execution is

a difficult issue since it relies on precise knowledge of

the vehicle and environment dynamics, and all sources of

uncertainty present. Even if such information were available

its proper use requires extensive simulations that sample

the possible uncertain outcomes in the given time horizon.

This paper does not consider such an approach for dealing

with uncertainty. Instead, it is concerned with quantifying

uncertainty heuristically based solely on the distance to

known obstacles along the trajectory. While such informa-

tion is limiting and does not provide guarantees for safety

during execution, it leads to simple computations that can

be used for real-time decision making. In essense, this paper

poses the question: given a trajectory of a system with no

information about the underlying uncertainty in sensing and

motion model how to compute a single value (measure)

quantifying safety based solely on distance to obstacles. This

paper shows that a Sobolev norm (i.e. including temporal

frequency components) measure provides a richer notion of

safety than a standard euclidean norm (i.e. based on spatial

components only).

Fig. 1. Two trajectories of a vehicle (modeled here as a point for clarity)
among obstacles.

Consider a situation (see Fig. 1) in which a robotic vehicle1

navigates across a workspace denoted by W , where W = R2,

or R3. Following standard notation (e.g. [3], [4]), let the

configuration at time t be denoted by q(t) ∈ C, where C
is the configuration space, for instance describing the the

position, orientation, and joint angles of the system. Assume

that the vehicle is occupying a region A(q(t)) ⊂ W and must

travel from configuration q0 ∈ C to configuration qT ∈ C
at time T while avoiding obstacles Oi ⊂ W . Equivalently,

it is required that q(t) ∈ Cfree for all t ∈ [0, T ], where

Cfree = {q | A(q)∩O = ∅} with O = {O1,O2, ...} denoting

the set of all obstacles. A vehicle is in collision whenever

its configuration lies at the boundary of the free space, i.e.

when q ∈ ∂Cfree. In addition, the closest distance between

the vehicle and obstacles is defined by the function

d(q) = minx,x′{‖x − x′‖ | x ∈ A(q), x′ ∈ O}, (1)

and the obstacle avoidance requirement can be expressed as

d(q) > 0. The exact form of this function for almost any

type of obstacle is well established (e.g. [3]).

The vehicle motion is subject to uncertainty and the actual

executed trajectory is denoted by q̃ : [0, T ] → cl(Cfree),
where the closure operator applied to an open set X ,

cl(X) = X ∪ ∂X , simply closes the set by adding its

1The term “vehicle” refers to any mobile robotic system such as wheeled
robot, an aerial vehicle, or a robotic manipulator.
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boundary. Assume that the possible configurations along the

planned trajectory at time t are contained in a bounded region

Ω(q(t)) ⊂ cl(Cfree), i.e. q̃(t) ∈ Ω(q(t)). Fig. 1 shows two

trajectories qA and qB and the associated shaded uncertainty

“tubes” along them resulting from the union of all regions

Ω(q(t)), for t ∈ [0, T ]. The closest points to any obstacle

along these trajectories are shown with respective distances

dA and dB .

Which trajectory should the vehicle select? One choice is

to pick a trajectory with maximum distance to the closest

obstacle. In Fig. 1 this would be trajectory qA since dA >
dB . This corresponds to minimizing an L∞ norm as will be

explained in §III. Another choice is a trajectory for which the

average closest distance to any obstacle is minimized–which

corresponds to an L1 norm. A third choice is a quadratic

penalty for approaching an obstacle defined through an L2

norm. While such norms account for the spatial properties

of the distance-to-obstacle function in this paper we explore

more general Hk (for an integer k) Sobolev norms that also

capture properties of the function changing with time through

its frequency modes representation. Intuitively, the frequency

information can be regarded as a global notion about how

many times a vehicle approaches obstacles, and how long it

remains close to obstacles. Such norms are appropriate for

evaluating risk of collision. For instance, as shown in the

remaining part of the paper, an H1 norm can successfully

distinguish the de facto safer trajectory qB unlike standard

Lp norms.

II. SAFETY METRICS

In our setting we define two notions of predicting the

safety of a trajectory. The first is the actual expected

probability of collision (PC) based on the actual vehicle

behavior under all possible environment conditions. Such

a probability can be computed by considering all possible

scenarios that can happen in the world and computing the

fraction of trajectories that collide with obstacles. This would

be the ideal metric for evaluating risk. In the absence of

precise uncertainty models, an simpler approach is to employ

a heuristic metric based solely on a distance-to-obstacle

function. Norms based on such function are termed collision

avoidance (CA) norms.

We stress that this paper does not propose a new obstacle

avoidance scheme. Instead, it is concerned with quantifying

more effectively the safest trajectory among a given set of

possible actions. For instance, a typical collision handling

methods such as dynamic window or potential field (see e.g.

[5], [6]) are compatible with such measure by modifying the

cost along arcs in the dynamic window, or considering the

temporal frequency of the potential, respectively. We demon-

strate such ideas through two examples. In essense, this paper

attempts to determine which CA norm is most suitable for

choosing safer trajectory in real-time. Consequently, the PC

norm can be used to evaluate how appropriate this choice

was.

A. Approximate Probability of Collision

Probability of collision (PC) can be computed by simu-

lating the vehicle control system, sensing, and external dis-

turbances in a Monte Carlo sampling fashion and computing

expected chance of collision. While this is the correct way

to compute PC, in this paper we follow a simpler approach

which does not require choosing a particular implementation

of estimator, trajectory tracking, and collision avoidance

controllers. Instead, we assume that the exact nature of

uncertainty is unknown but that it is always bounded by a

given scalar r, with respect to a given uncertainty metric

ρ : C × C → R, through the operation of the vehicle on-

board estimator and controllers.

Under these assumptions we can set

Ω(q) = Br
ρ(q) ∩ cl(Cfree),

where the ball with radius r with respect to a metric ρ is

defined by Br
ρ(q) := {q′ | ρ(q, q′) < r, q′ ∈ C}. Assuming

that the vehicle configuration is uniformly distributed (the

worst case scenario) within Br
ρ(q) a simple way to quan-

tify the probability of collision is through the fraction of

configurations within the ball that lie inside obstacles. More

formally, the probability of collision along trajectory q at

time t denoted by P c
q (t) can be expressed as

P c
q (t) =

vol (Ω(q(t)))

vol
(
Br
ρ(q(t))

) . (2)

While this notion of probability might seem simplistic

and limiting, for the purposes of this paper it is a valid

choice since it captures general types of uncertainty and

is suitable for verification, for example as used in §IV to

evaluate various choices of CA norms.

B. Collision Avoidance Metric

In this paper we use a simple collision avoidance metric

based on the inverse of the distance-to-obstacle function

d(q(t)) defined in (1):

f(t) =

{ 1
d(q(t)) − 1

d0
, for d(q(t)) < d0

0, for d(q(t)) ≥ d0.
, (3)

where the given scalar d0 denotes distance to obstacle that

poses no danger for collision during execution, or equiva-

lently it satisfies d(q̃(t)) < d0, where q̃ was defined in §I.

This form ensures that f(t) varies smoothly from 0 when

far away from obstacles to ∞ at the boundary of the obstacle.

It is a standard metric used in robotics. For instance, potential

field based obstacle avoidance [7] or trajectory generation

using navigation functions [8] are based on scaled and

squared versions of (3) (see [3] and [6] for a summary of

such methods). Motion planning using trajectory deformation

for nonholonomic systems (e.g. [9]) or mobile manipulators

(e.g. [10]) are only a few examples among the multitude of

work on robotic obstacle avoidance in which (3) appears.

Note that often f(t) appears along with a scaling factor

which, nevertheless, can be ignored since the norms studied

here are scale-invariant.
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III. TRAJECTORY NORMS

In this section, we first discuss Lp norms on function

spaces. We show how these norms can be used to quantify

risks of collision and then discuss their shortcomings. We

then briefly describe classical Sobolev norms and demon-

strate their advantages. A more extensive study of the theory

of Sobolev spaces can be found in e.g. [11], [12]. Throughout

this section, we will assume any measurability requirement

for functions to make the integrals well defined.

A. Lp Spaces

Consider a real valued function f : R 7→ R which maps t
to f(t). Then roughly speaking, the p-norm of f denoted by

‖f‖p quantifies the magnitude of a function by combining

its height and width. It is formally defined as

‖f‖p =

(∫
|f(t)|pdt

)1/p

. (4)

When 1 ≤ p < ∞, the p-norm of a function is actually a

norm satisfying all the three required properties for a norm.

It turns out that the space of all measurable functions with

finite p-norm forms a Banach space, i.e., a complete normed

vector space. This space is denoted by Lp. For the rest of the

paper, we use either p-norm or Lp norm to refer to the norm

of a function. When p = 2, the space L2 forms a Hilbert

space with the inner product 〈f, g〉 =
∫

R
f(x)g(x)dx. This

fact will be used in the next section when we discuss Hk

norm of a function.

Example: If f is a step function with height h and width

w, the Lp norm of f is ‖f‖p = |h|w1/p. When p = 1, ‖f‖1

is just the total unsigned area enclosed by the graph of f .

As p → ∞, the limit norm ‖f‖∞ is just sup
R
|f(t)|.

For instance, the maximum value of a function can be

extracted using the L∞ norm. Yet, the L∞ norm of two

functions f and g will be the same even if g achieves its

maximum value multiple times. Another observation is that

the L1 norm cannot distinguish between a narrow and tall

function and a function whose graph is wide and short since

both have equal unsigned area.

We will see in §III-C that such observations have implica-

tions in collision avoidance. In the next section, we discuss

the classical Sobolev Hk norms, which unlike their Lp

counterpart, also take into account the frequency components

(or time variations) in a function. This will enable us to

develop improved norms quantifying collision risk which we

illustrate for an analytical example in §III-C and for a more

realistic helicopter dynamics scenario in §IV.

B. Classical Hk Sobolev Spaces

Consider again a real valued function f : R 7→ R

which maps t to f(t). We saw in the previous section how

Lp norms assign a magnitude to a function based on its

height and width. The classical Sobolev norm extends the

Lp norm by taking into account not just the height and

width but also its derivatives. The classical Hk norm of

a function (assuming any measurability and differentiability

requirements) is formally defined as

‖f‖Hk ≡
(∫ k∑

i=0

∣∣∣∣
∂if

∂ti

∣∣∣∣
2

dt

)1/2

, (5)

i.e. it consists of sums of the first k derivatives of f squared.

The L2 norm is recovered by choosing k = 0. We denote

by Hk the space of measurable functions (along with its

derivatives) with finite Hk norm. It turns out that the space

Hk is also a Banach space. If a function belongs to Hk,

then it also belongs to Hm for all m ≤ k. One can

also give a frequency based characterization of Hk norms.

If a function belongs to L2, then it has a well defined

Fourier transform[11], again belonging to L2 and defined

as f̂(ξ) =
∫

R
f(t)e−2πitξdt. Using Parseval’s identity given

by
∫

R
|f(t)|2dt =

∫
R
|f̂(ξ)|2dξ, we see that the L2 norm

of a function can also be expressed in term of its Fourier

transform. Since the Hk norm is based on the L2 norm of

a function and its derivatives, one can equivalently define it

as

‖f‖Hk =

(∫ (
1 + |ξ|2

)k |f̂(ξ)|2dξ

)1/2

(6)

When k = 0, one recovers the L2 norm. Using the Fourier

characterization of Hk norm, we see that for a function to

be in Hk, we require that its Fourier transform decays at a

sufficiently fast rate. So in general, a function in Hk1 will

be “smoother” than a function in Hk2 if k1 ≥ k2 if they

have comparable norms. Using the Fourier based definition

one can also show that Hk in fact is a Hilbert space with

inner product 〈f, g〉k =
∫

R

(
1 + |ξ|2

)k
f̂(ξ)ĝ(ξ)dξ.

Example: Consider the function f(t) =
hφ(t/w) sin(νt), where φ(t) is 1 for |t| ≤ w and

zero elsewhere. This function has height h, width w
and frequency ν. The H1 norm of f is roughly of the

order ‖f‖H1 ≈ hw1/2ν where as the L2 is of the order

‖f‖2 ≈ hw1/2. We see that the L2 norm is completely

oblivious to the frequency component (or time variation) in

f . Note that a function could have small height and width

but large H1 norm if it oscillates a lot.

In the next section, the norms introduced in §III-A and

§III-B will be used to quantify collision risk for trajectories

in an environment with obstacles. We will demonstrate the

advantages of Sobolev norms over more traditional norms in

the context of the work referred to in §II-B.

C. Analytical Example

In this section, we will discuss what information various

norms encode in the context of trajectories in a region with

obstacles. Suppose we are given N trajectories qi(t), i ∈
{1, . . . , N}, t ∈ [0 T ] in time and the distance in time

information d(qi(t)) of these trajectories to their nearest

obstacle (see (1)). How do we quantify the safety of these

trajectories based on the collision avoidance function f(t)
(see (3)) and choose one with minimal risk? Consider Fig. (2)

illustrating fi(t) for four trajectories labeled by A, B, C, D.

The expression for fi(t) for each of them is
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Fig. 2. f(t) versus t plots

TABLE I

TABLE OF VARIOUS SOBOLEV NORMS FOR CURVES IN FIG.2

L1 L2 L∞ H1

A 10.0 0.5 0.4 4.2

B 20.0 0.8 0.4 8.4

C 11.1 0.8 0.8 17.5

D 10.0 0.7 0.8 37.8

fA(t) =
exp(− t2

2σ2 )

σ
√

2π

fB(t) =
exp(− (t+2.5)2

2σ2 )

σ
√

2π
+

exp(− (t−2.5)2

2σ2 )

σ
√

2π

fC(t) =
exp(− t2

2σ2 )

σ
√

2π
(1 + cos(2πω1t))

fD(t) =
exp(− t2

2σ2 )

σ
√

2π
(1 + cos(2πω2t))

where σ = 1, ω1 = 1
3 , ω2 = 3

4 . Lets first discuss the

qualitative behavior of each of these curves. The curves

labeled by A and B correspond to trajectories that lie equally

close to an obstacle and so do the curves labeled by C
and D. The main difference between curves A, B is that

B approaches the minimum distance twice and A just once.

Similarly, note that the curves labeled by C, D have the same

peak value but the two other peaks for C are lower than

those of D and are spread out more than those of D. If

one were to visually inspect these curves and sort them in

increasing order of risk of collision, one would expect the

ordering to be A ≤ B ≤ C ≤ D where P ≤ Q means

P is safer than Q. Let us see what the Lp and Hk norm

tells us about these curves. The various norms for fi(t) for

these four trajectories are listed in Table I. We immediately

observe the shortcomings of the Lp norms in this scenario.

Lets discus each of these.

a) L1 norm:: The L1 norm of fi(t), containing the

average distance of the trajectory from obstacle, gives the

ordering A ≤ D ≤ C ≤ B. The L1 cannot differentiate

between curves A (narrow and tall) and D (wide and short).

But in realistic scenarios with uncertain dynamics, one would

want to declare D riskier than A since it approaches obstacles

twice as close as compared to A. Thus, the L1 norm would

be a inappropriate choice in terms of quantifying collision

risk of a trajectory in an uncertain environment.

b) L2 norm:: The L2 norm of fi(t) gives the ordering

A ≤ D ≤ B ≤ C. Thus, the L2 cannot differentiate between

curves B and C even though one would want to declare

C to be riskier than B since C approaches the obstacles

much closer than B. Thus, it is not clear whether L2 is an

appropriate choice for quantifying collision risk.

c) L∞ norm:: The L∞ norm of fi(t), which provides

the minimum distance to obstacles gives the ordering A ≤
B ≤ C ≤ D. Thus, L∞ cannot differentiate between curves

A and B (and similarly cannot differentiate between curves

C and D). This is because the L∞ does not count how many

times a trajectory gets close to an obstacle. In other words,

it does not account for frequency in a curve. In realistic

scenarios with uncertain dynamics, one would want to choose

A over B and C over D. Thus, the L∞ norm would also be

an appropriate choice in terms of quantifying collision risk

of a trajectory in an uncertain environment.

d) H1 norm:: The H1 norm of fi(t), which computes

the magnitude of fi(t) based not only the L2 norm of

fi(t) but also the L2 of its derivative
dfi(t)
dt , gives us the

the ordering A ≤ B ≤ C ≤ D. Thus by using a norm

which takes into account the derivative of a function (or its

frequency), one is able to construct a collision risk norm

whose outcome agrees with our intuition for trajectory safety.

In the next section, we will apply these norms to a semi-

realistic helicopter navigating in a cluttered environment and

confirm that the H1 is the optimal choice among the four

norms considered.

IV. AERIAL VEHICLE APPLICATION

A. Model

Consider the following model of a small autonomous

helicopter depicted in Fig. 3. The vehicle is modeled as a

single underactuated rigid body with configuration space C =
SE(3) described by position x ∈ R3 and orientation matrix

R ∈ SO(3). Its body-fixed angular and linear velocities are

denoted by ω ∈ R3 and v ∈ R3, respectively. The vehicle has

mass m and principal moments of rotational inertia J1, J2, J3

forming the inertia tensor J = diag(J1, J2, J3).

Fig. 3. Simplified helicopter model used in our tests.

The vehicle is controlled through a collective uc (lift

produced by the main rotor) and a yaw uψ (force produced

by the rear rotor), while the direction of the lift is controlled

by tilting the main blades forward or backward through a

pitch γp and sideways through a roll γr. The four control

inputs then consist of the two forces u = (uc, uψ) and the

two shape variables γ = (γp, γr).
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The equations of motion have the standard form (e.g.

[13]):

[
Ṙ
ẋ

]
=

[
R ω̂
R v

]
, (7)

[
J ω̇
mv̇

]
=

[
J ω × ω

mv × ω + RT (0, 0,−9.81m)

]
+ F (γ)u, (8)

where the map ·̂ : R3 → so(3) is defined by

ω̂ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 ,

while the control matrix is defined as

F (γ) =




dt sin γr 0
dt sin γp cos γr 0

0 dr
sin γp cos γr 0
− sinγr −1

cos γp cos γr 0




.

The motion along the trajectories studied next satisfies the

dynamics given in (7) and (8).

B. Test scenario

Consider an UAV commanded to fly in minimum time

to a given position across a terrain with obstacles. The

vehicle has an on-board motion planner which can compute

obstacle-free trajectories. While a detailed description of

the planning algorithm is not necessary for the purpose

of this paper we briefly mention that it is based on a

combination of probabilistic roadmaps, trajectory primitives,

and dynamic programming [14] and is implemented in C++.

Fig. 4 shows five computed trajectories with several states

shown to illustrate the vehicle motion.

The terrain is represented using a digital elevation map

loaded from a file. The distance d(q(t)) between the he-

licopter trajectory q(t) and the terrain is computed using

the Proximity Query Package (PQP) [15] that can compute

closest distance between two arbitrary polyhedra.

For simplicity, assume that for obstacle avoidance pur-

poses the helicopter body is represented by a spherical shell

with a given radius a, i.e. A(q) = Ba(x), where Ba(x) ⊂ R3

is the sphere with radius a centered at x ∈ R3 corresponding

to the position coordinates in q ∈ C. Therefore, uncertainty

in the orientation of the helicopter can be ignored and we

can assume that the uncertainty in position is bounded by

the scalar r (as introduced in §II-A), or equivalently that

ρ(q, q′) = ‖x − x′‖ and ρ(q, q′) < r.

Note that in this case the obstacle distance threshold d0

defined in (3) and r coincide since any distance to obstacle

larger than r is considered safe. The ball Br
ρ(q(t)) becomes a

regular sphere and the probability of collision at time t along

a trajectory q(t) defined in (2) can be computed through its

intersection with the terrain.

Fig. 4. Helicopter trajectories computed by the on-board motion planner to
a given position (five different views shown). These trajectories are of equal
cost (final time) but have different probability of collision once executed in
the uncertain environment. The tests performed in this section determine
which norm is most suitable for predicting and choosing the safest path.

A simple way to perform this computation is to assume

some finite discretization using a set of N points xi ∈
Br(x(t)) based on which

P c
q (t) ≈ 1

N

N∑

i=1

xi
?∈ O, (9)

using the binary notation a
?∈ A → {0, 1} with a

?∈ A = 1
only if a ∈ A. The points xi should be uniformly distributed

within Br, either using a grid or selected in Monte Carlo

manner.

The trajectories from Fig. 4 are marked for clarity on

Fig. 5. For each trajectory the probability of collision (PC)

norms based on the L1, L2, L∞ and H1 norms of P c
q (t) and

corresponding collision avoidance (CA) norms are computed

and shown in Fig. 5. We are interested in determining an

appropriate ordering of the trajectories in terms of real risk

of collision (computed by PC) and a heuristic notion of safety

(computed by CA). The purpose of computing different PC

norms is to demonstrate that all PC norms result in identical
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Top view of marked trajectories
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time

Norm A B C D E Ordering

Probability of Collision Norms

‖P c
q ‖1 .000 .158 .404 .512 .800 ABCDE

‖P c
q ‖2 .000 .147 .285 .450 .525 ABCDE

‖P c
q ‖∞ .001 .193 .318 .550 .584 ABCDE

‖P c
q ‖H1 .009 .401 .730 1.041 1.253 ABCDE

Collision Avoidance Norms (f defined in (3))

‖f‖1 .37 .33 1.13 .97 1.52 BADCE

‖f‖2 .25 .19 .73 .65 .88 BADCE

‖f‖∞ .23 .18 .84 .76 .98 BADCE

‖f‖H1 .37 .38 1.53 1.28 1.78 ABDCE

Fig. 5. Scenario from Fig. 4 projected onto the x−y plane for
clarity (top) followed by the corresponding distance and collision
avoidance functions (middle). The computed probability of collision
norms (PC) along with the collision norms (CA) of each marked
trajectory are given (bottom). All PC norms order the trajectories
according to A-B-C-D-E in terms of increasing risk of collision.
While all CA norms manage to detect the riskiest trajectory E only
the H1 CA norm manages to extract the correct safest trajectory
A.

ordering in terms of increased risk of collision A-B-C-D-E

with A being the safest and E the most dangerous trajectory.

According to the CA table in Fig. 5 all norms manage to

identify the riskiest trajectory E while only the H1 norm

selects trajectory A as the safest trajectory. On the other

hand, none of the norms manage to properly order all of the

trajectories (H1 comes closest with A-B-D-C-E). This is due

to the fact that all of these norms remain only heuristic and

cannot ideally capture the real collision risk. Yet, among the

norms considered H1 appears the most appropriate. As the

paper asserts this is achieved through the global frequency

component information which it encodes.

V. CONCLUSION AND FUTURE WORK

An interesting extension to the presented work is to

consider dynamic obstacles. The nature and magnitude of

changes in obstacles can be related to the frequency represen-

tation of the distance function to derive more general norms

useful for navigation in dynamic environments. When one

has deterministic time varying obstacle, the techniques in this

paper can be directly applied. What is nontrivial is to develop

techniques which can be applied to uncertain obstacles.
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